| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovnhoi.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 2 |
|
ovnhoi.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
| 3 |
|
ovnhoi.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
| 4 |
|
ovnhoi.c |
⊢ 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) |
| 5 |
|
ovnhoi.l |
⊢ 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
| 6 |
4
|
a1i |
⊢ ( 𝜑 → 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 7 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 8 |
2
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
| 9 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
| 10 |
9
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) |
| 11 |
7 8 10
|
hoissrrn2 |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ( ℝ ↑m 𝑋 ) ) |
| 12 |
6 11
|
eqsstrd |
⊢ ( 𝜑 → 𝐼 ⊆ ( ℝ ↑m 𝑋 ) ) |
| 13 |
1 12
|
ovnxrcl |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) ∈ ℝ* ) |
| 14 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
| 15 |
5 1 2 3
|
hoidmvcl |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ∈ ( 0 [,) +∞ ) ) |
| 16 |
14 15
|
sselid |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ∈ ℝ* ) |
| 17 |
|
fveq2 |
⊢ ( 𝑋 = ∅ → ( voln* ‘ 𝑋 ) = ( voln* ‘ ∅ ) ) |
| 18 |
17
|
fveq1d |
⊢ ( 𝑋 = ∅ → ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) = ( ( voln* ‘ ∅ ) ‘ 𝐼 ) ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) = ( ( voln* ‘ ∅ ) ‘ 𝐼 ) ) |
| 20 |
|
ixpeq1 |
⊢ ( 𝑋 = ∅ → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = X 𝑘 ∈ ∅ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 21 |
|
ixp0x |
⊢ X 𝑘 ∈ ∅ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = { ∅ } |
| 22 |
21
|
a1i |
⊢ ( 𝑋 = ∅ → X 𝑘 ∈ ∅ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = { ∅ } ) |
| 23 |
20 22
|
eqtrd |
⊢ ( 𝑋 = ∅ → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = { ∅ } ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = { ∅ } ) |
| 25 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 26 |
|
reex |
⊢ ℝ ∈ V |
| 27 |
|
mapdm0 |
⊢ ( ℝ ∈ V → ( ℝ ↑m ∅ ) = { ∅ } ) |
| 28 |
26 27
|
ax-mp |
⊢ ( ℝ ↑m ∅ ) = { ∅ } |
| 29 |
28
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ℝ ↑m ∅ ) = { ∅ } ) |
| 30 |
24 25 29
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐼 = ( ℝ ↑m ∅ ) ) |
| 31 |
|
eqimss |
⊢ ( 𝐼 = ( ℝ ↑m ∅ ) → 𝐼 ⊆ ( ℝ ↑m ∅ ) ) |
| 32 |
30 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐼 ⊆ ( ℝ ↑m ∅ ) ) |
| 33 |
32
|
ovn0val |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ( voln* ‘ ∅ ) ‘ 𝐼 ) = 0 ) |
| 34 |
19 33
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) = 0 ) |
| 35 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 0 ∈ ℝ ) |
| 36 |
34 35
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) ∈ ℝ ) |
| 37 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 0 = 0 ) |
| 38 |
|
fveq2 |
⊢ ( 𝑋 = ∅ → ( 𝐿 ‘ 𝑋 ) = ( 𝐿 ‘ ∅ ) ) |
| 39 |
38
|
oveqd |
⊢ ( 𝑋 = ∅ → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = ( 𝐴 ( 𝐿 ‘ ∅ ) 𝐵 ) ) |
| 40 |
39
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = ( 𝐴 ( 𝐿 ‘ ∅ ) 𝐵 ) ) |
| 41 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐴 : 𝑋 ⟶ ℝ ) |
| 42 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝑋 = ∅ ) |
| 43 |
42
|
feq2d |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 𝐴 : 𝑋 ⟶ ℝ ↔ 𝐴 : ∅ ⟶ ℝ ) ) |
| 44 |
41 43
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐴 : ∅ ⟶ ℝ ) |
| 45 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐵 : 𝑋 ⟶ ℝ ) |
| 46 |
42
|
feq2d |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 𝐵 : 𝑋 ⟶ ℝ ↔ 𝐵 : ∅ ⟶ ℝ ) ) |
| 47 |
45 46
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐵 : ∅ ⟶ ℝ ) |
| 48 |
5 44 47
|
hoidmv0val |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 𝐴 ( 𝐿 ‘ ∅ ) 𝐵 ) = 0 ) |
| 49 |
40 48
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = 0 ) |
| 50 |
37 34 49
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
| 51 |
36 50
|
eqled |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) ≤ ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
| 52 |
|
eqid |
⊢ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } |
| 53 |
|
eqeq1 |
⊢ ( 𝑛 = 𝑗 → ( 𝑛 = 1 ↔ 𝑗 = 1 ) ) |
| 54 |
53
|
ifbid |
⊢ ( 𝑛 = 𝑗 → if ( 𝑛 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) = if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) |
| 55 |
54
|
mpteq2dv |
⊢ ( 𝑛 = 𝑗 → ( 𝑘 ∈ 𝑋 ↦ if ( 𝑛 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) = ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ) |
| 56 |
55
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ if ( 𝑛 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ) |
| 57 |
1 2 3 4 52 56
|
ovnhoilem1 |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 59 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ∈ Fin ) |
| 60 |
|
neqne |
⊢ ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ ) |
| 61 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ≠ ∅ ) |
| 62 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝐴 : 𝑋 ⟶ ℝ ) |
| 63 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝐵 : 𝑋 ⟶ ℝ ) |
| 64 |
5 59 61 62 63
|
hoidmvn0val |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 65 |
64
|
eqcomd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
| 66 |
58 65
|
breqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) ≤ ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
| 67 |
51 66
|
pm2.61dan |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) ≤ ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
| 68 |
49 35
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ∈ ℝ ) |
| 69 |
50
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) ) |
| 70 |
68 69
|
eqled |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) ) |
| 71 |
|
fveq1 |
⊢ ( 𝑎 = 𝑐 → ( 𝑎 ‘ 𝑘 ) = ( 𝑐 ‘ 𝑘 ) ) |
| 72 |
71
|
fvoveq1d |
⊢ ( 𝑎 = 𝑐 → ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) = ( vol ‘ ( ( 𝑐 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) |
| 73 |
72
|
prodeq2ad |
⊢ ( 𝑎 = 𝑐 → ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑐 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) |
| 74 |
73
|
ifeq2d |
⊢ ( 𝑎 = 𝑐 → if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) = if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑐 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) |
| 75 |
|
fveq1 |
⊢ ( 𝑏 = 𝑑 → ( 𝑏 ‘ 𝑘 ) = ( 𝑑 ‘ 𝑘 ) ) |
| 76 |
75
|
oveq2d |
⊢ ( 𝑏 = 𝑑 → ( ( 𝑐 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = ( ( 𝑐 ‘ 𝑘 ) [,) ( 𝑑 ‘ 𝑘 ) ) ) |
| 77 |
76
|
fveq2d |
⊢ ( 𝑏 = 𝑑 → ( vol ‘ ( ( 𝑐 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) = ( vol ‘ ( ( 𝑐 ‘ 𝑘 ) [,) ( 𝑑 ‘ 𝑘 ) ) ) ) |
| 78 |
77
|
prodeq2ad |
⊢ ( 𝑏 = 𝑑 → ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑐 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑐 ‘ 𝑘 ) [,) ( 𝑑 ‘ 𝑘 ) ) ) ) |
| 79 |
78
|
ifeq2d |
⊢ ( 𝑏 = 𝑑 → if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑐 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) = if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑐 ‘ 𝑘 ) [,) ( 𝑑 ‘ 𝑘 ) ) ) ) ) |
| 80 |
74 79
|
cbvmpov |
⊢ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) = ( 𝑐 ∈ ( ℝ ↑m 𝑥 ) , 𝑑 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑐 ‘ 𝑘 ) [,) ( 𝑑 ‘ 𝑘 ) ) ) ) ) |
| 81 |
80
|
a1i |
⊢ ( 𝑥 = 𝑦 → ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) = ( 𝑐 ∈ ( ℝ ↑m 𝑥 ) , 𝑑 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑐 ‘ 𝑘 ) [,) ( 𝑑 ‘ 𝑘 ) ) ) ) ) ) |
| 82 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ℝ ↑m 𝑥 ) = ( ℝ ↑m 𝑦 ) ) |
| 83 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ∅ ↔ 𝑦 = ∅ ) ) |
| 84 |
|
prodeq1 |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑐 ‘ 𝑘 ) [,) ( 𝑑 ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑦 ( vol ‘ ( ( 𝑐 ‘ 𝑘 ) [,) ( 𝑑 ‘ 𝑘 ) ) ) ) |
| 85 |
83 84
|
ifbieq2d |
⊢ ( 𝑥 = 𝑦 → if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑐 ‘ 𝑘 ) [,) ( 𝑑 ‘ 𝑘 ) ) ) ) = if ( 𝑦 = ∅ , 0 , ∏ 𝑘 ∈ 𝑦 ( vol ‘ ( ( 𝑐 ‘ 𝑘 ) [,) ( 𝑑 ‘ 𝑘 ) ) ) ) ) |
| 86 |
82 82 85
|
mpoeq123dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑐 ∈ ( ℝ ↑m 𝑥 ) , 𝑑 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑐 ‘ 𝑘 ) [,) ( 𝑑 ‘ 𝑘 ) ) ) ) ) = ( 𝑐 ∈ ( ℝ ↑m 𝑦 ) , 𝑑 ∈ ( ℝ ↑m 𝑦 ) ↦ if ( 𝑦 = ∅ , 0 , ∏ 𝑘 ∈ 𝑦 ( vol ‘ ( ( 𝑐 ‘ 𝑘 ) [,) ( 𝑑 ‘ 𝑘 ) ) ) ) ) ) |
| 87 |
81 86
|
eqtrd |
⊢ ( 𝑥 = 𝑦 → ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) = ( 𝑐 ∈ ( ℝ ↑m 𝑦 ) , 𝑑 ∈ ( ℝ ↑m 𝑦 ) ↦ if ( 𝑦 = ∅ , 0 , ∏ 𝑘 ∈ 𝑦 ( vol ‘ ( ( 𝑐 ‘ 𝑘 ) [,) ( 𝑑 ‘ 𝑘 ) ) ) ) ) ) |
| 88 |
87
|
cbvmptv |
⊢ ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) = ( 𝑦 ∈ Fin ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑦 ) , 𝑑 ∈ ( ℝ ↑m 𝑦 ) ↦ if ( 𝑦 = ∅ , 0 , ∏ 𝑘 ∈ 𝑦 ( vol ‘ ( ( 𝑐 ‘ 𝑘 ) [,) ( 𝑑 ‘ 𝑘 ) ) ) ) ) ) |
| 89 |
5 88
|
eqtri |
⊢ 𝐿 = ( 𝑦 ∈ Fin ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑦 ) , 𝑑 ∈ ( ℝ ↑m 𝑦 ) ↦ if ( 𝑦 = ∅ , 0 , ∏ 𝑘 ∈ 𝑦 ( vol ‘ ( ( 𝑐 ‘ 𝑘 ) [,) ( 𝑑 ‘ 𝑘 ) ) ) ) ) ) |
| 90 |
|
eqeq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ↔ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 91 |
90
|
anbi2d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑤 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ↔ ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
| 92 |
91
|
rexbidv |
⊢ ( 𝑤 = 𝑧 → ( ∃ ℎ ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑤 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ↔ ∃ ℎ ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
| 93 |
|
simpl |
⊢ ( ( ℎ = 𝑖 ∧ 𝑗 ∈ ℕ ) → ℎ = 𝑖 ) |
| 94 |
93
|
fveq1d |
⊢ ( ( ℎ = 𝑖 ∧ 𝑗 ∈ ℕ ) → ( ℎ ‘ 𝑗 ) = ( 𝑖 ‘ 𝑗 ) ) |
| 95 |
94
|
coeq2d |
⊢ ( ( ℎ = 𝑖 ∧ 𝑗 ∈ ℕ ) → ( [,) ∘ ( ℎ ‘ 𝑗 ) ) = ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ) |
| 96 |
95
|
fveq1d |
⊢ ( ( ℎ = 𝑖 ∧ 𝑗 ∈ ℕ ) → ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 97 |
96
|
ixpeq2dv |
⊢ ( ( ℎ = 𝑖 ∧ 𝑗 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) = X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 98 |
97
|
iuneq2dv |
⊢ ( ℎ = 𝑖 → ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 99 |
98
|
sseq2d |
⊢ ( ℎ = 𝑖 → ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ↔ 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 100 |
|
simpl |
⊢ ( ( ℎ = 𝑖 ∧ 𝑘 ∈ 𝑋 ) → ℎ = 𝑖 ) |
| 101 |
100
|
fveq1d |
⊢ ( ( ℎ = 𝑖 ∧ 𝑘 ∈ 𝑋 ) → ( ℎ ‘ 𝑗 ) = ( 𝑖 ‘ 𝑗 ) ) |
| 102 |
101
|
coeq2d |
⊢ ( ( ℎ = 𝑖 ∧ 𝑘 ∈ 𝑋 ) → ( [,) ∘ ( ℎ ‘ 𝑗 ) ) = ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ) |
| 103 |
102
|
fveq1d |
⊢ ( ( ℎ = 𝑖 ∧ 𝑘 ∈ 𝑋 ) → ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 104 |
103
|
fveq2d |
⊢ ( ( ℎ = 𝑖 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 105 |
104
|
prodeq2dv |
⊢ ( ℎ = 𝑖 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 106 |
105
|
mpteq2dv |
⊢ ( ℎ = 𝑖 → ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) = ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
| 107 |
106
|
fveq2d |
⊢ ( ℎ = 𝑖 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
| 108 |
107
|
eqeq2d |
⊢ ( ℎ = 𝑖 → ( 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ↔ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 109 |
99 108
|
anbi12d |
⊢ ( ℎ = 𝑖 → ( ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ↔ ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
| 110 |
109
|
cbvrexvw |
⊢ ( ∃ ℎ ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ↔ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 111 |
110
|
a1i |
⊢ ( 𝑤 = 𝑧 → ( ∃ ℎ ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ↔ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
| 112 |
92 111
|
bitrd |
⊢ ( 𝑤 = 𝑧 → ( ∃ ℎ ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑤 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ↔ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
| 113 |
112
|
cbvrabv |
⊢ { 𝑤 ∈ ℝ* ∣ ∃ ℎ ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑤 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( ℎ ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } |
| 114 |
|
simpl |
⊢ ( ( 𝑗 = 𝑛 ∧ 𝑙 ∈ 𝑋 ) → 𝑗 = 𝑛 ) |
| 115 |
114
|
fveq2d |
⊢ ( ( 𝑗 = 𝑛 ∧ 𝑙 ∈ 𝑋 ) → ( 𝑖 ‘ 𝑗 ) = ( 𝑖 ‘ 𝑛 ) ) |
| 116 |
115
|
fveq1d |
⊢ ( ( 𝑗 = 𝑛 ∧ 𝑙 ∈ 𝑋 ) → ( ( 𝑖 ‘ 𝑗 ) ‘ 𝑙 ) = ( ( 𝑖 ‘ 𝑛 ) ‘ 𝑙 ) ) |
| 117 |
116
|
fveq2d |
⊢ ( ( 𝑗 = 𝑛 ∧ 𝑙 ∈ 𝑋 ) → ( 1st ‘ ( ( 𝑖 ‘ 𝑗 ) ‘ 𝑙 ) ) = ( 1st ‘ ( ( 𝑖 ‘ 𝑛 ) ‘ 𝑙 ) ) ) |
| 118 |
117
|
mpteq2dva |
⊢ ( 𝑗 = 𝑛 → ( 𝑙 ∈ 𝑋 ↦ ( 1st ‘ ( ( 𝑖 ‘ 𝑗 ) ‘ 𝑙 ) ) ) = ( 𝑙 ∈ 𝑋 ↦ ( 1st ‘ ( ( 𝑖 ‘ 𝑛 ) ‘ 𝑙 ) ) ) ) |
| 119 |
118
|
cbvmptv |
⊢ ( 𝑗 ∈ ℕ ↦ ( 𝑙 ∈ 𝑋 ↦ ( 1st ‘ ( ( 𝑖 ‘ 𝑗 ) ‘ 𝑙 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑙 ∈ 𝑋 ↦ ( 1st ‘ ( ( 𝑖 ‘ 𝑛 ) ‘ 𝑙 ) ) ) ) |
| 120 |
119
|
mpteq2i |
⊢ ( 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ↦ ( 𝑗 ∈ ℕ ↦ ( 𝑙 ∈ 𝑋 ↦ ( 1st ‘ ( ( 𝑖 ‘ 𝑗 ) ‘ 𝑙 ) ) ) ) ) = ( 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ↦ ( 𝑛 ∈ ℕ ↦ ( 𝑙 ∈ 𝑋 ↦ ( 1st ‘ ( ( 𝑖 ‘ 𝑛 ) ‘ 𝑙 ) ) ) ) ) |
| 121 |
116
|
fveq2d |
⊢ ( ( 𝑗 = 𝑛 ∧ 𝑙 ∈ 𝑋 ) → ( 2nd ‘ ( ( 𝑖 ‘ 𝑗 ) ‘ 𝑙 ) ) = ( 2nd ‘ ( ( 𝑖 ‘ 𝑛 ) ‘ 𝑙 ) ) ) |
| 122 |
121
|
mpteq2dva |
⊢ ( 𝑗 = 𝑛 → ( 𝑙 ∈ 𝑋 ↦ ( 2nd ‘ ( ( 𝑖 ‘ 𝑗 ) ‘ 𝑙 ) ) ) = ( 𝑙 ∈ 𝑋 ↦ ( 2nd ‘ ( ( 𝑖 ‘ 𝑛 ) ‘ 𝑙 ) ) ) ) |
| 123 |
122
|
cbvmptv |
⊢ ( 𝑗 ∈ ℕ ↦ ( 𝑙 ∈ 𝑋 ↦ ( 2nd ‘ ( ( 𝑖 ‘ 𝑗 ) ‘ 𝑙 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑙 ∈ 𝑋 ↦ ( 2nd ‘ ( ( 𝑖 ‘ 𝑛 ) ‘ 𝑙 ) ) ) ) |
| 124 |
123
|
mpteq2i |
⊢ ( 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ↦ ( 𝑗 ∈ ℕ ↦ ( 𝑙 ∈ 𝑋 ↦ ( 2nd ‘ ( ( 𝑖 ‘ 𝑗 ) ‘ 𝑙 ) ) ) ) ) = ( 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ↦ ( 𝑛 ∈ ℕ ↦ ( 𝑙 ∈ 𝑋 ↦ ( 2nd ‘ ( ( 𝑖 ‘ 𝑛 ) ‘ 𝑙 ) ) ) ) ) |
| 125 |
59 61 62 63 4 89 113 120 124
|
ovnhoilem2 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) ) |
| 126 |
70 125
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) ) |
| 127 |
13 16 67 126
|
xrletrid |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |