Step |
Hyp |
Ref |
Expression |
1 |
|
hoidmvcl.l |
⊢ 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
2 |
|
hoidmvcl.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
3 |
|
hoidmvcl.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
4 |
|
hoidmvcl.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
5 |
1 3 4 2
|
hoidmvval |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = if ( 𝑋 = ∅ , 0 , ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
6 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
7 |
6
|
a1i |
⊢ ( 𝜑 → 0 ∈ ( 0 [,) +∞ ) ) |
8 |
|
0xr |
⊢ 0 ∈ ℝ* |
9 |
8
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
10 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
11 |
10
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
12 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
13 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
14 |
|
volico |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = if ( ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) , ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) , 0 ) ) |
15 |
12 13 14
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = if ( ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) , ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) , 0 ) ) |
16 |
13 12
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ∈ ℝ ) |
17 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 0 ∈ ℝ ) |
18 |
16 17
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → if ( ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) , ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) , 0 ) ∈ ℝ ) |
19 |
15 18
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ ) |
20 |
2 19
|
fprodrecl |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ ) |
21 |
20
|
rexrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ* ) |
22 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
23 |
13
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) |
24 |
|
icombl |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) → ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ dom vol ) |
25 |
12 23 24
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ dom vol ) |
26 |
|
volge0 |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ dom vol → 0 ≤ ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
27 |
25 26
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 0 ≤ ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
28 |
22 2 19 27
|
fprodge0 |
⊢ ( 𝜑 → 0 ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
29 |
20
|
ltpnfd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) < +∞ ) |
30 |
9 11 21 28 29
|
elicod |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ( 0 [,) +∞ ) ) |
31 |
7 30
|
ifcld |
⊢ ( 𝜑 → if ( 𝑋 = ∅ , 0 , ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ∈ ( 0 [,) +∞ ) ) |
32 |
5 31
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ∈ ( 0 [,) +∞ ) ) |