Metamath Proof Explorer


Theorem hoidmvcl

Description: The dimensional volume of a multidimensional half-open interval is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoidmvcl.l L=xFinax,bxifx=0kxvolakbk
hoidmvcl.x φXFin
hoidmvcl.a φA:X
hoidmvcl.b φB:X
Assertion hoidmvcl φALXB0+∞

Proof

Step Hyp Ref Expression
1 hoidmvcl.l L=xFinax,bxifx=0kxvolakbk
2 hoidmvcl.x φXFin
3 hoidmvcl.a φA:X
4 hoidmvcl.b φB:X
5 1 3 4 2 hoidmvval φALXB=ifX=0kXvolAkBk
6 0e0icopnf 00+∞
7 6 a1i φ00+∞
8 0xr 0*
9 8 a1i φ0*
10 pnfxr +∞*
11 10 a1i φ+∞*
12 3 ffvelcdmda φkXAk
13 4 ffvelcdmda φkXBk
14 volico AkBkvolAkBk=ifAk<BkBkAk0
15 12 13 14 syl2anc φkXvolAkBk=ifAk<BkBkAk0
16 13 12 resubcld φkXBkAk
17 0red φkX0
18 16 17 ifcld φkXifAk<BkBkAk0
19 15 18 eqeltrd φkXvolAkBk
20 2 19 fprodrecl φkXvolAkBk
21 20 rexrd φkXvolAkBk*
22 nfv kφ
23 13 rexrd φkXBk*
24 icombl AkBk*AkBkdomvol
25 12 23 24 syl2anc φkXAkBkdomvol
26 volge0 AkBkdomvol0volAkBk
27 25 26 syl φkX0volAkBk
28 22 2 19 27 fprodge0 φ0kXvolAkBk
29 20 ltpnfd φkXvolAkBk<+∞
30 9 11 21 28 29 elicod φkXvolAkBk0+∞
31 7 30 ifcld φifX=0kXvolAkBk0+∞
32 5 31 eqeltrd φALXB0+∞