Metamath Proof Explorer


Theorem hoidmv0val

Description: The dimensional volume of a 0-dimensional half-open interval. Definition 115A (c) of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoidmv0val.l L = x Fin a x , b x if x = 0 k x vol a k b k
hoidmv0val.a φ A :
hoidmv0val.b φ B :
Assertion hoidmv0val φ A L B = 0

Proof

Step Hyp Ref Expression
1 hoidmv0val.l L = x Fin a x , b x if x = 0 k x vol a k b k
2 hoidmv0val.a φ A :
3 hoidmv0val.b φ B :
4 0fin Fin
5 4 a1i φ Fin
6 1 2 3 5 hoidmvval φ A L B = if = 0 k vol A k B k
7 eqid =
8 iftrue = if = 0 k vol A k B k = 0
9 7 8 ax-mp if = 0 k vol A k B k = 0
10 9 a1i φ if = 0 k vol A k B k = 0
11 6 10 eqtrd φ A L B = 0