Metamath Proof Explorer


Theorem hoidmv0val

Description: The dimensional volume of a 0-dimensional half-open interval. Definition 115A (c) of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoidmv0val.l
|- L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) )
hoidmv0val.a
|- ( ph -> A : (/) --> RR )
hoidmv0val.b
|- ( ph -> B : (/) --> RR )
Assertion hoidmv0val
|- ( ph -> ( A ( L ` (/) ) B ) = 0 )

Proof

Step Hyp Ref Expression
1 hoidmv0val.l
 |-  L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) )
2 hoidmv0val.a
 |-  ( ph -> A : (/) --> RR )
3 hoidmv0val.b
 |-  ( ph -> B : (/) --> RR )
4 0fin
 |-  (/) e. Fin
5 4 a1i
 |-  ( ph -> (/) e. Fin )
6 1 2 3 5 hoidmvval
 |-  ( ph -> ( A ( L ` (/) ) B ) = if ( (/) = (/) , 0 , prod_ k e. (/) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) )
7 eqid
 |-  (/) = (/)
8 iftrue
 |-  ( (/) = (/) -> if ( (/) = (/) , 0 , prod_ k e. (/) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) = 0 )
9 7 8 ax-mp
 |-  if ( (/) = (/) , 0 , prod_ k e. (/) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) = 0
10 9 a1i
 |-  ( ph -> if ( (/) = (/) , 0 , prod_ k e. (/) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) = 0 )
11 6 10 eqtrd
 |-  ( ph -> ( A ( L ` (/) ) B ) = 0 )