Step |
Hyp |
Ref |
Expression |
1 |
|
hoidmv0val.l |
|- L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) |
2 |
|
hoidmv0val.a |
|- ( ph -> A : (/) --> RR ) |
3 |
|
hoidmv0val.b |
|- ( ph -> B : (/) --> RR ) |
4 |
|
0fin |
|- (/) e. Fin |
5 |
4
|
a1i |
|- ( ph -> (/) e. Fin ) |
6 |
1 2 3 5
|
hoidmvval |
|- ( ph -> ( A ( L ` (/) ) B ) = if ( (/) = (/) , 0 , prod_ k e. (/) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) ) |
7 |
|
eqid |
|- (/) = (/) |
8 |
|
iftrue |
|- ( (/) = (/) -> if ( (/) = (/) , 0 , prod_ k e. (/) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) = 0 ) |
9 |
7 8
|
ax-mp |
|- if ( (/) = (/) , 0 , prod_ k e. (/) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) = 0 |
10 |
9
|
a1i |
|- ( ph -> if ( (/) = (/) , 0 , prod_ k e. (/) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) = 0 ) |
11 |
6 10
|
eqtrd |
|- ( ph -> ( A ( L ` (/) ) B ) = 0 ) |