Step |
Hyp |
Ref |
Expression |
1 |
|
hoidmvcl.l |
|- L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) |
2 |
|
hoidmvcl.x |
|- ( ph -> X e. Fin ) |
3 |
|
hoidmvcl.a |
|- ( ph -> A : X --> RR ) |
4 |
|
hoidmvcl.b |
|- ( ph -> B : X --> RR ) |
5 |
1 3 4 2
|
hoidmvval |
|- ( ph -> ( A ( L ` X ) B ) = if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) ) |
6 |
|
0e0icopnf |
|- 0 e. ( 0 [,) +oo ) |
7 |
6
|
a1i |
|- ( ph -> 0 e. ( 0 [,) +oo ) ) |
8 |
|
0xr |
|- 0 e. RR* |
9 |
8
|
a1i |
|- ( ph -> 0 e. RR* ) |
10 |
|
pnfxr |
|- +oo e. RR* |
11 |
10
|
a1i |
|- ( ph -> +oo e. RR* ) |
12 |
3
|
ffvelrnda |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) |
13 |
4
|
ffvelrnda |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) |
14 |
|
volico |
|- ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = if ( ( A ` k ) < ( B ` k ) , ( ( B ` k ) - ( A ` k ) ) , 0 ) ) |
15 |
12 13 14
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = if ( ( A ` k ) < ( B ` k ) , ( ( B ` k ) - ( A ` k ) ) , 0 ) ) |
16 |
13 12
|
resubcld |
|- ( ( ph /\ k e. X ) -> ( ( B ` k ) - ( A ` k ) ) e. RR ) |
17 |
|
0red |
|- ( ( ph /\ k e. X ) -> 0 e. RR ) |
18 |
16 17
|
ifcld |
|- ( ( ph /\ k e. X ) -> if ( ( A ` k ) < ( B ` k ) , ( ( B ` k ) - ( A ` k ) ) , 0 ) e. RR ) |
19 |
15 18
|
eqeltrd |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) |
20 |
2 19
|
fprodrecl |
|- ( ph -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) |
21 |
20
|
rexrd |
|- ( ph -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR* ) |
22 |
|
nfv |
|- F/ k ph |
23 |
13
|
rexrd |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR* ) |
24 |
|
icombl |
|- ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR* ) -> ( ( A ` k ) [,) ( B ` k ) ) e. dom vol ) |
25 |
12 23 24
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( ( A ` k ) [,) ( B ` k ) ) e. dom vol ) |
26 |
|
volge0 |
|- ( ( ( A ` k ) [,) ( B ` k ) ) e. dom vol -> 0 <_ ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
27 |
25 26
|
syl |
|- ( ( ph /\ k e. X ) -> 0 <_ ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
28 |
22 2 19 27
|
fprodge0 |
|- ( ph -> 0 <_ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
29 |
20
|
ltpnfd |
|- ( ph -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) < +oo ) |
30 |
9 11 21 28 29
|
elicod |
|- ( ph -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. ( 0 [,) +oo ) ) |
31 |
7 30
|
ifcld |
|- ( ph -> if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) e. ( 0 [,) +oo ) ) |
32 |
5 31
|
eqeltrd |
|- ( ph -> ( A ( L ` X ) B ) e. ( 0 [,) +oo ) ) |