| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoidmvcl.l |
|- L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) |
| 2 |
|
hoidmvcl.x |
|- ( ph -> X e. Fin ) |
| 3 |
|
hoidmvcl.a |
|- ( ph -> A : X --> RR ) |
| 4 |
|
hoidmvcl.b |
|- ( ph -> B : X --> RR ) |
| 5 |
1 3 4 2
|
hoidmvval |
|- ( ph -> ( A ( L ` X ) B ) = if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) ) |
| 6 |
|
0e0icopnf |
|- 0 e. ( 0 [,) +oo ) |
| 7 |
6
|
a1i |
|- ( ph -> 0 e. ( 0 [,) +oo ) ) |
| 8 |
|
0xr |
|- 0 e. RR* |
| 9 |
8
|
a1i |
|- ( ph -> 0 e. RR* ) |
| 10 |
|
pnfxr |
|- +oo e. RR* |
| 11 |
10
|
a1i |
|- ( ph -> +oo e. RR* ) |
| 12 |
3
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) |
| 13 |
4
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) |
| 14 |
|
volico |
|- ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = if ( ( A ` k ) < ( B ` k ) , ( ( B ` k ) - ( A ` k ) ) , 0 ) ) |
| 15 |
12 13 14
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = if ( ( A ` k ) < ( B ` k ) , ( ( B ` k ) - ( A ` k ) ) , 0 ) ) |
| 16 |
13 12
|
resubcld |
|- ( ( ph /\ k e. X ) -> ( ( B ` k ) - ( A ` k ) ) e. RR ) |
| 17 |
|
0red |
|- ( ( ph /\ k e. X ) -> 0 e. RR ) |
| 18 |
16 17
|
ifcld |
|- ( ( ph /\ k e. X ) -> if ( ( A ` k ) < ( B ` k ) , ( ( B ` k ) - ( A ` k ) ) , 0 ) e. RR ) |
| 19 |
15 18
|
eqeltrd |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) |
| 20 |
2 19
|
fprodrecl |
|- ( ph -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) |
| 21 |
20
|
rexrd |
|- ( ph -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR* ) |
| 22 |
|
nfv |
|- F/ k ph |
| 23 |
13
|
rexrd |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR* ) |
| 24 |
|
icombl |
|- ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR* ) -> ( ( A ` k ) [,) ( B ` k ) ) e. dom vol ) |
| 25 |
12 23 24
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( ( A ` k ) [,) ( B ` k ) ) e. dom vol ) |
| 26 |
|
volge0 |
|- ( ( ( A ` k ) [,) ( B ` k ) ) e. dom vol -> 0 <_ ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
| 27 |
25 26
|
syl |
|- ( ( ph /\ k e. X ) -> 0 <_ ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
| 28 |
22 2 19 27
|
fprodge0 |
|- ( ph -> 0 <_ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
| 29 |
20
|
ltpnfd |
|- ( ph -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) < +oo ) |
| 30 |
9 11 21 28 29
|
elicod |
|- ( ph -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. ( 0 [,) +oo ) ) |
| 31 |
7 30
|
ifcld |
|- ( ph -> if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) e. ( 0 [,) +oo ) ) |
| 32 |
5 31
|
eqeltrd |
|- ( ph -> ( A ( L ` X ) B ) e. ( 0 [,) +oo ) ) |