| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovnhoi.x |
|- ( ph -> X e. Fin ) |
| 2 |
|
ovnhoi.a |
|- ( ph -> A : X --> RR ) |
| 3 |
|
ovnhoi.b |
|- ( ph -> B : X --> RR ) |
| 4 |
|
ovnhoi.c |
|- I = X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) |
| 5 |
|
ovnhoi.l |
|- L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) |
| 6 |
4
|
a1i |
|- ( ph -> I = X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) |
| 7 |
|
nfv |
|- F/ k ph |
| 8 |
2
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) |
| 9 |
3
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) |
| 10 |
9
|
rexrd |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR* ) |
| 11 |
7 8 10
|
hoissrrn2 |
|- ( ph -> X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ ( RR ^m X ) ) |
| 12 |
6 11
|
eqsstrd |
|- ( ph -> I C_ ( RR ^m X ) ) |
| 13 |
1 12
|
ovnxrcl |
|- ( ph -> ( ( voln* ` X ) ` I ) e. RR* ) |
| 14 |
|
icossxr |
|- ( 0 [,) +oo ) C_ RR* |
| 15 |
5 1 2 3
|
hoidmvcl |
|- ( ph -> ( A ( L ` X ) B ) e. ( 0 [,) +oo ) ) |
| 16 |
14 15
|
sselid |
|- ( ph -> ( A ( L ` X ) B ) e. RR* ) |
| 17 |
|
fveq2 |
|- ( X = (/) -> ( voln* ` X ) = ( voln* ` (/) ) ) |
| 18 |
17
|
fveq1d |
|- ( X = (/) -> ( ( voln* ` X ) ` I ) = ( ( voln* ` (/) ) ` I ) ) |
| 19 |
18
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( ( voln* ` X ) ` I ) = ( ( voln* ` (/) ) ` I ) ) |
| 20 |
|
ixpeq1 |
|- ( X = (/) -> X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) = X_ k e. (/) ( ( A ` k ) [,) ( B ` k ) ) ) |
| 21 |
|
ixp0x |
|- X_ k e. (/) ( ( A ` k ) [,) ( B ` k ) ) = { (/) } |
| 22 |
21
|
a1i |
|- ( X = (/) -> X_ k e. (/) ( ( A ` k ) [,) ( B ` k ) ) = { (/) } ) |
| 23 |
20 22
|
eqtrd |
|- ( X = (/) -> X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) = { (/) } ) |
| 24 |
23
|
adantl |
|- ( ( ph /\ X = (/) ) -> X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) = { (/) } ) |
| 25 |
4
|
a1i |
|- ( ( ph /\ X = (/) ) -> I = X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) |
| 26 |
|
reex |
|- RR e. _V |
| 27 |
|
mapdm0 |
|- ( RR e. _V -> ( RR ^m (/) ) = { (/) } ) |
| 28 |
26 27
|
ax-mp |
|- ( RR ^m (/) ) = { (/) } |
| 29 |
28
|
a1i |
|- ( ( ph /\ X = (/) ) -> ( RR ^m (/) ) = { (/) } ) |
| 30 |
24 25 29
|
3eqtr4d |
|- ( ( ph /\ X = (/) ) -> I = ( RR ^m (/) ) ) |
| 31 |
|
eqimss |
|- ( I = ( RR ^m (/) ) -> I C_ ( RR ^m (/) ) ) |
| 32 |
30 31
|
syl |
|- ( ( ph /\ X = (/) ) -> I C_ ( RR ^m (/) ) ) |
| 33 |
32
|
ovn0val |
|- ( ( ph /\ X = (/) ) -> ( ( voln* ` (/) ) ` I ) = 0 ) |
| 34 |
19 33
|
eqtrd |
|- ( ( ph /\ X = (/) ) -> ( ( voln* ` X ) ` I ) = 0 ) |
| 35 |
|
0red |
|- ( ( ph /\ X = (/) ) -> 0 e. RR ) |
| 36 |
34 35
|
eqeltrd |
|- ( ( ph /\ X = (/) ) -> ( ( voln* ` X ) ` I ) e. RR ) |
| 37 |
|
eqidd |
|- ( ( ph /\ X = (/) ) -> 0 = 0 ) |
| 38 |
|
fveq2 |
|- ( X = (/) -> ( L ` X ) = ( L ` (/) ) ) |
| 39 |
38
|
oveqd |
|- ( X = (/) -> ( A ( L ` X ) B ) = ( A ( L ` (/) ) B ) ) |
| 40 |
39
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( A ( L ` X ) B ) = ( A ( L ` (/) ) B ) ) |
| 41 |
2
|
adantr |
|- ( ( ph /\ X = (/) ) -> A : X --> RR ) |
| 42 |
|
simpr |
|- ( ( ph /\ X = (/) ) -> X = (/) ) |
| 43 |
42
|
feq2d |
|- ( ( ph /\ X = (/) ) -> ( A : X --> RR <-> A : (/) --> RR ) ) |
| 44 |
41 43
|
mpbid |
|- ( ( ph /\ X = (/) ) -> A : (/) --> RR ) |
| 45 |
3
|
adantr |
|- ( ( ph /\ X = (/) ) -> B : X --> RR ) |
| 46 |
42
|
feq2d |
|- ( ( ph /\ X = (/) ) -> ( B : X --> RR <-> B : (/) --> RR ) ) |
| 47 |
45 46
|
mpbid |
|- ( ( ph /\ X = (/) ) -> B : (/) --> RR ) |
| 48 |
5 44 47
|
hoidmv0val |
|- ( ( ph /\ X = (/) ) -> ( A ( L ` (/) ) B ) = 0 ) |
| 49 |
40 48
|
eqtrd |
|- ( ( ph /\ X = (/) ) -> ( A ( L ` X ) B ) = 0 ) |
| 50 |
37 34 49
|
3eqtr4d |
|- ( ( ph /\ X = (/) ) -> ( ( voln* ` X ) ` I ) = ( A ( L ` X ) B ) ) |
| 51 |
36 50
|
eqled |
|- ( ( ph /\ X = (/) ) -> ( ( voln* ` X ) ` I ) <_ ( A ( L ` X ) B ) ) |
| 52 |
|
eqid |
|- { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } = { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } |
| 53 |
|
eqeq1 |
|- ( n = j -> ( n = 1 <-> j = 1 ) ) |
| 54 |
53
|
ifbid |
|- ( n = j -> if ( n = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) = if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) ) |
| 55 |
54
|
mpteq2dv |
|- ( n = j -> ( k e. X |-> if ( n = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) ) = ( k e. X |-> if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) ) ) |
| 56 |
55
|
cbvmptv |
|- ( n e. NN |-> ( k e. X |-> if ( n = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) ) ) = ( j e. NN |-> ( k e. X |-> if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) ) ) |
| 57 |
1 2 3 4 52 56
|
ovnhoilem1 |
|- ( ph -> ( ( voln* ` X ) ` I ) <_ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> ( ( voln* ` X ) ` I ) <_ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
| 59 |
1
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> X e. Fin ) |
| 60 |
|
neqne |
|- ( -. X = (/) -> X =/= (/) ) |
| 61 |
60
|
adantl |
|- ( ( ph /\ -. X = (/) ) -> X =/= (/) ) |
| 62 |
2
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> A : X --> RR ) |
| 63 |
3
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> B : X --> RR ) |
| 64 |
5 59 61 62 63
|
hoidmvn0val |
|- ( ( ph /\ -. X = (/) ) -> ( A ( L ` X ) B ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
| 65 |
64
|
eqcomd |
|- ( ( ph /\ -. X = (/) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( A ( L ` X ) B ) ) |
| 66 |
58 65
|
breqtrd |
|- ( ( ph /\ -. X = (/) ) -> ( ( voln* ` X ) ` I ) <_ ( A ( L ` X ) B ) ) |
| 67 |
51 66
|
pm2.61dan |
|- ( ph -> ( ( voln* ` X ) ` I ) <_ ( A ( L ` X ) B ) ) |
| 68 |
49 35
|
eqeltrd |
|- ( ( ph /\ X = (/) ) -> ( A ( L ` X ) B ) e. RR ) |
| 69 |
50
|
eqcomd |
|- ( ( ph /\ X = (/) ) -> ( A ( L ` X ) B ) = ( ( voln* ` X ) ` I ) ) |
| 70 |
68 69
|
eqled |
|- ( ( ph /\ X = (/) ) -> ( A ( L ` X ) B ) <_ ( ( voln* ` X ) ` I ) ) |
| 71 |
|
fveq1 |
|- ( a = c -> ( a ` k ) = ( c ` k ) ) |
| 72 |
71
|
fvoveq1d |
|- ( a = c -> ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) = ( vol ` ( ( c ` k ) [,) ( b ` k ) ) ) ) |
| 73 |
72
|
prodeq2ad |
|- ( a = c -> prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) = prod_ k e. x ( vol ` ( ( c ` k ) [,) ( b ` k ) ) ) ) |
| 74 |
73
|
ifeq2d |
|- ( a = c -> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) = if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( c ` k ) [,) ( b ` k ) ) ) ) ) |
| 75 |
|
fveq1 |
|- ( b = d -> ( b ` k ) = ( d ` k ) ) |
| 76 |
75
|
oveq2d |
|- ( b = d -> ( ( c ` k ) [,) ( b ` k ) ) = ( ( c ` k ) [,) ( d ` k ) ) ) |
| 77 |
76
|
fveq2d |
|- ( b = d -> ( vol ` ( ( c ` k ) [,) ( b ` k ) ) ) = ( vol ` ( ( c ` k ) [,) ( d ` k ) ) ) ) |
| 78 |
77
|
prodeq2ad |
|- ( b = d -> prod_ k e. x ( vol ` ( ( c ` k ) [,) ( b ` k ) ) ) = prod_ k e. x ( vol ` ( ( c ` k ) [,) ( d ` k ) ) ) ) |
| 79 |
78
|
ifeq2d |
|- ( b = d -> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( c ` k ) [,) ( b ` k ) ) ) ) = if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( c ` k ) [,) ( d ` k ) ) ) ) ) |
| 80 |
74 79
|
cbvmpov |
|- ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) = ( c e. ( RR ^m x ) , d e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( c ` k ) [,) ( d ` k ) ) ) ) ) |
| 81 |
80
|
a1i |
|- ( x = y -> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) = ( c e. ( RR ^m x ) , d e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( c ` k ) [,) ( d ` k ) ) ) ) ) ) |
| 82 |
|
oveq2 |
|- ( x = y -> ( RR ^m x ) = ( RR ^m y ) ) |
| 83 |
|
eqeq1 |
|- ( x = y -> ( x = (/) <-> y = (/) ) ) |
| 84 |
|
prodeq1 |
|- ( x = y -> prod_ k e. x ( vol ` ( ( c ` k ) [,) ( d ` k ) ) ) = prod_ k e. y ( vol ` ( ( c ` k ) [,) ( d ` k ) ) ) ) |
| 85 |
83 84
|
ifbieq2d |
|- ( x = y -> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( c ` k ) [,) ( d ` k ) ) ) ) = if ( y = (/) , 0 , prod_ k e. y ( vol ` ( ( c ` k ) [,) ( d ` k ) ) ) ) ) |
| 86 |
82 82 85
|
mpoeq123dv |
|- ( x = y -> ( c e. ( RR ^m x ) , d e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( c ` k ) [,) ( d ` k ) ) ) ) ) = ( c e. ( RR ^m y ) , d e. ( RR ^m y ) |-> if ( y = (/) , 0 , prod_ k e. y ( vol ` ( ( c ` k ) [,) ( d ` k ) ) ) ) ) ) |
| 87 |
81 86
|
eqtrd |
|- ( x = y -> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) = ( c e. ( RR ^m y ) , d e. ( RR ^m y ) |-> if ( y = (/) , 0 , prod_ k e. y ( vol ` ( ( c ` k ) [,) ( d ` k ) ) ) ) ) ) |
| 88 |
87
|
cbvmptv |
|- ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) = ( y e. Fin |-> ( c e. ( RR ^m y ) , d e. ( RR ^m y ) |-> if ( y = (/) , 0 , prod_ k e. y ( vol ` ( ( c ` k ) [,) ( d ` k ) ) ) ) ) ) |
| 89 |
5 88
|
eqtri |
|- L = ( y e. Fin |-> ( c e. ( RR ^m y ) , d e. ( RR ^m y ) |-> if ( y = (/) , 0 , prod_ k e. y ( vol ` ( ( c ` k ) [,) ( d ` k ) ) ) ) ) ) |
| 90 |
|
eqeq1 |
|- ( w = z -> ( w = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( h ` j ) ) ` k ) ) ) ) <-> z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( h ` j ) ) ` k ) ) ) ) ) ) |
| 91 |
90
|
anbi2d |
|- ( w = z -> ( ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( h ` j ) ) ` k ) /\ w = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( h ` j ) ) ` k ) ) ) ) ) <-> ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( h ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( h ` j ) ) ` k ) ) ) ) ) ) ) |
| 92 |
91
|
rexbidv |
|- ( w = z -> ( E. h e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( h ` j ) ) ` k ) /\ w = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( h ` j ) ) ` k ) ) ) ) ) <-> E. h e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( h ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( h ` j ) ) ` k ) ) ) ) ) ) ) |
| 93 |
|
simpl |
|- ( ( h = i /\ j e. NN ) -> h = i ) |
| 94 |
93
|
fveq1d |
|- ( ( h = i /\ j e. NN ) -> ( h ` j ) = ( i ` j ) ) |
| 95 |
94
|
coeq2d |
|- ( ( h = i /\ j e. NN ) -> ( [,) o. ( h ` j ) ) = ( [,) o. ( i ` j ) ) ) |
| 96 |
95
|
fveq1d |
|- ( ( h = i /\ j e. NN ) -> ( ( [,) o. ( h ` j ) ) ` k ) = ( ( [,) o. ( i ` j ) ) ` k ) ) |
| 97 |
96
|
ixpeq2dv |
|- ( ( h = i /\ j e. NN ) -> X_ k e. X ( ( [,) o. ( h ` j ) ) ` k ) = X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) ) |
| 98 |
97
|
iuneq2dv |
|- ( h = i -> U_ j e. NN X_ k e. X ( ( [,) o. ( h ` j ) ) ` k ) = U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) ) |
| 99 |
98
|
sseq2d |
|- ( h = i -> ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( h ` j ) ) ` k ) <-> I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) ) ) |
| 100 |
|
simpl |
|- ( ( h = i /\ k e. X ) -> h = i ) |
| 101 |
100
|
fveq1d |
|- ( ( h = i /\ k e. X ) -> ( h ` j ) = ( i ` j ) ) |
| 102 |
101
|
coeq2d |
|- ( ( h = i /\ k e. X ) -> ( [,) o. ( h ` j ) ) = ( [,) o. ( i ` j ) ) ) |
| 103 |
102
|
fveq1d |
|- ( ( h = i /\ k e. X ) -> ( ( [,) o. ( h ` j ) ) ` k ) = ( ( [,) o. ( i ` j ) ) ` k ) ) |
| 104 |
103
|
fveq2d |
|- ( ( h = i /\ k e. X ) -> ( vol ` ( ( [,) o. ( h ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) |
| 105 |
104
|
prodeq2dv |
|- ( h = i -> prod_ k e. X ( vol ` ( ( [,) o. ( h ` j ) ) ` k ) ) = prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) |
| 106 |
105
|
mpteq2dv |
|- ( h = i -> ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( h ` j ) ) ` k ) ) ) = ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) |
| 107 |
106
|
fveq2d |
|- ( h = i -> ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( h ` j ) ) ` k ) ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) |
| 108 |
107
|
eqeq2d |
|- ( h = i -> ( z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( h ` j ) ) ` k ) ) ) ) <-> z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) |
| 109 |
99 108
|
anbi12d |
|- ( h = i -> ( ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( h ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( h ` j ) ) ` k ) ) ) ) ) <-> ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) ) |
| 110 |
109
|
cbvrexvw |
|- ( E. h e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( h ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( h ` j ) ) ` k ) ) ) ) ) <-> E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) |
| 111 |
110
|
a1i |
|- ( w = z -> ( E. h e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( h ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( h ` j ) ) ` k ) ) ) ) ) <-> E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) ) |
| 112 |
92 111
|
bitrd |
|- ( w = z -> ( E. h e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( h ` j ) ) ` k ) /\ w = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( h ` j ) ) ` k ) ) ) ) ) <-> E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) ) |
| 113 |
112
|
cbvrabv |
|- { w e. RR* | E. h e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( h ` j ) ) ` k ) /\ w = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( h ` j ) ) ` k ) ) ) ) ) } = { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } |
| 114 |
|
simpl |
|- ( ( j = n /\ l e. X ) -> j = n ) |
| 115 |
114
|
fveq2d |
|- ( ( j = n /\ l e. X ) -> ( i ` j ) = ( i ` n ) ) |
| 116 |
115
|
fveq1d |
|- ( ( j = n /\ l e. X ) -> ( ( i ` j ) ` l ) = ( ( i ` n ) ` l ) ) |
| 117 |
116
|
fveq2d |
|- ( ( j = n /\ l e. X ) -> ( 1st ` ( ( i ` j ) ` l ) ) = ( 1st ` ( ( i ` n ) ` l ) ) ) |
| 118 |
117
|
mpteq2dva |
|- ( j = n -> ( l e. X |-> ( 1st ` ( ( i ` j ) ` l ) ) ) = ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) |
| 119 |
118
|
cbvmptv |
|- ( j e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` j ) ` l ) ) ) ) = ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) |
| 120 |
119
|
mpteq2i |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) |-> ( j e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` j ) ` l ) ) ) ) ) = ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) |-> ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) ) |
| 121 |
116
|
fveq2d |
|- ( ( j = n /\ l e. X ) -> ( 2nd ` ( ( i ` j ) ` l ) ) = ( 2nd ` ( ( i ` n ) ` l ) ) ) |
| 122 |
121
|
mpteq2dva |
|- ( j = n -> ( l e. X |-> ( 2nd ` ( ( i ` j ) ` l ) ) ) = ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) |
| 123 |
122
|
cbvmptv |
|- ( j e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` j ) ` l ) ) ) ) = ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) |
| 124 |
123
|
mpteq2i |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) |-> ( j e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` j ) ` l ) ) ) ) ) = ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) |-> ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) ) |
| 125 |
59 61 62 63 4 89 113 120 124
|
ovnhoilem2 |
|- ( ( ph /\ -. X = (/) ) -> ( A ( L ` X ) B ) <_ ( ( voln* ` X ) ` I ) ) |
| 126 |
70 125
|
pm2.61dan |
|- ( ph -> ( A ( L ` X ) B ) <_ ( ( voln* ` X ) ` I ) ) |
| 127 |
13 16 67 126
|
xrletrid |
|- ( ph -> ( ( voln* ` X ) ` I ) = ( A ( L ` X ) B ) ) |