Step |
Hyp |
Ref |
Expression |
1 |
|
ovnhoilem2.x |
|- ( ph -> X e. Fin ) |
2 |
|
ovnhoilem2.n |
|- ( ph -> X =/= (/) ) |
3 |
|
ovnhoilem2.a |
|- ( ph -> A : X --> RR ) |
4 |
|
ovnhoilem2.b |
|- ( ph -> B : X --> RR ) |
5 |
|
ovnhoilem2.i |
|- I = X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) |
6 |
|
ovnhoilem2.l |
|- L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) |
7 |
|
ovnhoilem2.m |
|- M = { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } |
8 |
|
ovnhoilem2.f |
|- F = ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) |-> ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) ) |
9 |
|
ovnhoilem2.s |
|- S = ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) |-> ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) ) |
10 |
7
|
eleq2i |
|- ( z e. M <-> z e. { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } ) |
11 |
|
rabid |
|- ( z e. { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } <-> ( z e. RR* /\ E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) ) |
12 |
10 11
|
bitri |
|- ( z e. M <-> ( z e. RR* /\ E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) ) |
13 |
12
|
biimpi |
|- ( z e. M -> ( z e. RR* /\ E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) ) |
14 |
13
|
simprd |
|- ( z e. M -> E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) |
15 |
14
|
adantl |
|- ( ( ph /\ z e. M ) -> E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) |
16 |
1
|
3ad2ant1 |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) -> X e. Fin ) |
17 |
3
|
3ad2ant1 |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) -> A : X --> RR ) |
18 |
4
|
3ad2ant1 |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) -> B : X --> RR ) |
19 |
|
elmapi |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> i : NN --> ( ( RR X. RR ) ^m X ) ) |
20 |
19
|
ffvelrnda |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( i ` n ) e. ( ( RR X. RR ) ^m X ) ) |
21 |
|
elmapi |
|- ( ( i ` n ) e. ( ( RR X. RR ) ^m X ) -> ( i ` n ) : X --> ( RR X. RR ) ) |
22 |
20 21
|
syl |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( i ` n ) : X --> ( RR X. RR ) ) |
23 |
22
|
ffvelrnda |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) /\ l e. X ) -> ( ( i ` n ) ` l ) e. ( RR X. RR ) ) |
24 |
|
xp1st |
|- ( ( ( i ` n ) ` l ) e. ( RR X. RR ) -> ( 1st ` ( ( i ` n ) ` l ) ) e. RR ) |
25 |
23 24
|
syl |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) /\ l e. X ) -> ( 1st ` ( ( i ` n ) ` l ) ) e. RR ) |
26 |
25
|
fmpttd |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) : X --> RR ) |
27 |
|
reex |
|- RR e. _V |
28 |
27
|
a1i |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> RR e. _V ) |
29 |
|
1nn |
|- 1 e. NN |
30 |
29
|
a1i |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> 1 e. NN ) |
31 |
19 30
|
ffvelrnd |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( i ` 1 ) e. ( ( RR X. RR ) ^m X ) ) |
32 |
|
elmapex |
|- ( ( i ` 1 ) e. ( ( RR X. RR ) ^m X ) -> ( ( RR X. RR ) e. _V /\ X e. _V ) ) |
33 |
32
|
simprd |
|- ( ( i ` 1 ) e. ( ( RR X. RR ) ^m X ) -> X e. _V ) |
34 |
31 33
|
syl |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> X e. _V ) |
35 |
34
|
adantr |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> X e. _V ) |
36 |
|
elmapg |
|- ( ( RR e. _V /\ X e. _V ) -> ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) e. ( RR ^m X ) <-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) : X --> RR ) ) |
37 |
28 35 36
|
syl2anc |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) e. ( RR ^m X ) <-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) : X --> RR ) ) |
38 |
26 37
|
mpbird |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) e. ( RR ^m X ) ) |
39 |
38
|
fmpttd |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) : NN --> ( RR ^m X ) ) |
40 |
|
id |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) |
41 |
|
nnex |
|- NN e. _V |
42 |
41
|
mptex |
|- ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) e. _V |
43 |
42
|
a1i |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) e. _V ) |
44 |
8
|
fvmpt2 |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) e. _V ) -> ( F ` i ) = ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) ) |
45 |
40 43 44
|
syl2anc |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( F ` i ) = ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) ) |
46 |
45
|
feq1d |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( ( F ` i ) : NN --> ( RR ^m X ) <-> ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) : NN --> ( RR ^m X ) ) ) |
47 |
39 46
|
mpbird |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( F ` i ) : NN --> ( RR ^m X ) ) |
48 |
47
|
3ad2ant2 |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) -> ( F ` i ) : NN --> ( RR ^m X ) ) |
49 |
|
xp2nd |
|- ( ( ( i ` n ) ` l ) e. ( RR X. RR ) -> ( 2nd ` ( ( i ` n ) ` l ) ) e. RR ) |
50 |
23 49
|
syl |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) /\ l e. X ) -> ( 2nd ` ( ( i ` n ) ` l ) ) e. RR ) |
51 |
50
|
fmpttd |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) : X --> RR ) |
52 |
|
elmapg |
|- ( ( RR e. _V /\ X e. _V ) -> ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) e. ( RR ^m X ) <-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) : X --> RR ) ) |
53 |
28 35 52
|
syl2anc |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) e. ( RR ^m X ) <-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) : X --> RR ) ) |
54 |
51 53
|
mpbird |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) e. ( RR ^m X ) ) |
55 |
54
|
fmpttd |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) : NN --> ( RR ^m X ) ) |
56 |
41
|
mptex |
|- ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) e. _V |
57 |
56
|
a1i |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) e. _V ) |
58 |
9
|
fvmpt2 |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) e. _V ) -> ( S ` i ) = ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) ) |
59 |
40 57 58
|
syl2anc |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( S ` i ) = ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) ) |
60 |
59
|
feq1d |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( ( S ` i ) : NN --> ( RR ^m X ) <-> ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) : NN --> ( RR ^m X ) ) ) |
61 |
55 60
|
mpbird |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( S ` i ) : NN --> ( RR ^m X ) ) |
62 |
61
|
3ad2ant2 |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) -> ( S ` i ) : NN --> ( RR ^m X ) ) |
63 |
|
simp3 |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) ) -> I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) ) |
64 |
5
|
a1i |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) ) -> I = X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) |
65 |
|
fveq2 |
|- ( j = n -> ( i ` j ) = ( i ` n ) ) |
66 |
65
|
fveq1d |
|- ( j = n -> ( ( i ` j ) ` k ) = ( ( i ` n ) ` k ) ) |
67 |
66
|
fveq2d |
|- ( j = n -> ( 1st ` ( ( i ` j ) ` k ) ) = ( 1st ` ( ( i ` n ) ` k ) ) ) |
68 |
66
|
fveq2d |
|- ( j = n -> ( 2nd ` ( ( i ` j ) ` k ) ) = ( 2nd ` ( ( i ` n ) ` k ) ) ) |
69 |
67 68
|
oveq12d |
|- ( j = n -> ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) = ( ( 1st ` ( ( i ` n ) ` k ) ) [,) ( 2nd ` ( ( i ` n ) ` k ) ) ) ) |
70 |
69
|
ixpeq2dv |
|- ( j = n -> X_ k e. X ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) = X_ k e. X ( ( 1st ` ( ( i ` n ) ` k ) ) [,) ( 2nd ` ( ( i ` n ) ` k ) ) ) ) |
71 |
70
|
cbviunv |
|- U_ j e. NN X_ k e. X ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) = U_ n e. NN X_ k e. X ( ( 1st ` ( ( i ` n ) ` k ) ) [,) ( 2nd ` ( ( i ` n ) ` k ) ) ) |
72 |
71
|
a1i |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> U_ j e. NN X_ k e. X ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) = U_ n e. NN X_ k e. X ( ( 1st ` ( ( i ` n ) ` k ) ) [,) ( 2nd ` ( ( i ` n ) ` k ) ) ) ) |
73 |
19
|
ffvelrnda |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ j e. NN ) -> ( i ` j ) e. ( ( RR X. RR ) ^m X ) ) |
74 |
|
elmapi |
|- ( ( i ` j ) e. ( ( RR X. RR ) ^m X ) -> ( i ` j ) : X --> ( RR X. RR ) ) |
75 |
73 74
|
syl |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ j e. NN ) -> ( i ` j ) : X --> ( RR X. RR ) ) |
76 |
75
|
adantr |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ j e. NN ) /\ k e. X ) -> ( i ` j ) : X --> ( RR X. RR ) ) |
77 |
|
simpr |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ j e. NN ) /\ k e. X ) -> k e. X ) |
78 |
76 77
|
fvovco |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ j e. NN ) /\ k e. X ) -> ( ( [,) o. ( i ` j ) ) ` k ) = ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) ) |
79 |
78
|
ixpeq2dva |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ j e. NN ) -> X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) = X_ k e. X ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) ) |
80 |
79
|
iuneq2dv |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) = U_ j e. NN X_ k e. X ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) ) |
81 |
|
simpl |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) |
82 |
42
|
a1i |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) e. _V ) |
83 |
81 82 44
|
syl2anc |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( F ` i ) = ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) ) |
84 |
83
|
fveq1d |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( ( F ` i ) ` n ) = ( ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) ` n ) ) |
85 |
|
simpr |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> n e. NN ) |
86 |
|
mptexg |
|- ( X e. _V -> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) e. _V ) |
87 |
34 86
|
syl |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) e. _V ) |
88 |
87
|
adantr |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) e. _V ) |
89 |
|
eqid |
|- ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) = ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) |
90 |
89
|
fvmpt2 |
|- ( ( n e. NN /\ ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) e. _V ) -> ( ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) ` n ) = ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) |
91 |
85 88 90
|
syl2anc |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) ` n ) = ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) |
92 |
84 91
|
eqtrd |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( ( F ` i ) ` n ) = ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) |
93 |
92
|
fveq1d |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( ( ( F ` i ) ` n ) ` k ) = ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) ) |
94 |
93
|
adantr |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) /\ k e. X ) -> ( ( ( F ` i ) ` n ) ` k ) = ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) ) |
95 |
|
eqidd |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ k e. X ) -> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) = ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) |
96 |
|
simpr |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ k e. X ) /\ l = k ) -> l = k ) |
97 |
96
|
fveq2d |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ k e. X ) /\ l = k ) -> ( ( i ` n ) ` l ) = ( ( i ` n ) ` k ) ) |
98 |
97
|
fveq2d |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ k e. X ) /\ l = k ) -> ( 1st ` ( ( i ` n ) ` l ) ) = ( 1st ` ( ( i ` n ) ` k ) ) ) |
99 |
|
simpr |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ k e. X ) -> k e. X ) |
100 |
|
fvexd |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ k e. X ) -> ( 1st ` ( ( i ` n ) ` k ) ) e. _V ) |
101 |
95 98 99 100
|
fvmptd |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ k e. X ) -> ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) = ( 1st ` ( ( i ` n ) ` k ) ) ) |
102 |
101
|
adantlr |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) /\ k e. X ) -> ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) = ( 1st ` ( ( i ` n ) ` k ) ) ) |
103 |
94 102
|
eqtrd |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) /\ k e. X ) -> ( ( ( F ` i ) ` n ) ` k ) = ( 1st ` ( ( i ` n ) ` k ) ) ) |
104 |
59
|
fveq1d |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( ( S ` i ) ` n ) = ( ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) ` n ) ) |
105 |
104
|
adantr |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( ( S ` i ) ` n ) = ( ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) ` n ) ) |
106 |
|
mptexg |
|- ( X e. _V -> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) e. _V ) |
107 |
34 106
|
syl |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) e. _V ) |
108 |
107
|
adantr |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) e. _V ) |
109 |
|
eqid |
|- ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) = ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) |
110 |
109
|
fvmpt2 |
|- ( ( n e. NN /\ ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) e. _V ) -> ( ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) ` n ) = ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) |
111 |
85 108 110
|
syl2anc |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) ` n ) = ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) |
112 |
105 111
|
eqtrd |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( ( S ` i ) ` n ) = ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) |
113 |
112
|
fveq1d |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( ( ( S ` i ) ` n ) ` k ) = ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) |
114 |
113
|
adantr |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) /\ k e. X ) -> ( ( ( S ` i ) ` n ) ` k ) = ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) |
115 |
|
eqidd |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ k e. X ) -> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) = ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) |
116 |
|
2fveq3 |
|- ( l = k -> ( 2nd ` ( ( i ` n ) ` l ) ) = ( 2nd ` ( ( i ` n ) ` k ) ) ) |
117 |
116
|
adantl |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ k e. X ) /\ l = k ) -> ( 2nd ` ( ( i ` n ) ` l ) ) = ( 2nd ` ( ( i ` n ) ` k ) ) ) |
118 |
|
fvexd |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ k e. X ) -> ( 2nd ` ( ( i ` n ) ` k ) ) e. _V ) |
119 |
115 117 99 118
|
fvmptd |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ k e. X ) -> ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) = ( 2nd ` ( ( i ` n ) ` k ) ) ) |
120 |
119
|
adantlr |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) /\ k e. X ) -> ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) = ( 2nd ` ( ( i ` n ) ` k ) ) ) |
121 |
114 120
|
eqtrd |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) /\ k e. X ) -> ( ( ( S ` i ) ` n ) ` k ) = ( 2nd ` ( ( i ` n ) ` k ) ) ) |
122 |
103 121
|
oveq12d |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) /\ k e. X ) -> ( ( ( ( F ` i ) ` n ) ` k ) [,) ( ( ( S ` i ) ` n ) ` k ) ) = ( ( 1st ` ( ( i ` n ) ` k ) ) [,) ( 2nd ` ( ( i ` n ) ` k ) ) ) ) |
123 |
122
|
ixpeq2dva |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> X_ k e. X ( ( ( ( F ` i ) ` n ) ` k ) [,) ( ( ( S ` i ) ` n ) ` k ) ) = X_ k e. X ( ( 1st ` ( ( i ` n ) ` k ) ) [,) ( 2nd ` ( ( i ` n ) ` k ) ) ) ) |
124 |
123
|
iuneq2dv |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> U_ n e. NN X_ k e. X ( ( ( ( F ` i ) ` n ) ` k ) [,) ( ( ( S ` i ) ` n ) ` k ) ) = U_ n e. NN X_ k e. X ( ( 1st ` ( ( i ` n ) ` k ) ) [,) ( 2nd ` ( ( i ` n ) ` k ) ) ) ) |
125 |
72 80 124
|
3eqtr4d |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) = U_ n e. NN X_ k e. X ( ( ( ( F ` i ) ` n ) ` k ) [,) ( ( ( S ` i ) ` n ) ` k ) ) ) |
126 |
125
|
adantl |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) -> U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) = U_ n e. NN X_ k e. X ( ( ( ( F ` i ) ` n ) ` k ) [,) ( ( ( S ` i ) ` n ) ` k ) ) ) |
127 |
126
|
3adant3 |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) ) -> U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) = U_ n e. NN X_ k e. X ( ( ( ( F ` i ) ` n ) ` k ) [,) ( ( ( S ` i ) ` n ) ` k ) ) ) |
128 |
64 127
|
sseq12d |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) ) -> ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) <-> X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ n e. NN X_ k e. X ( ( ( ( F ` i ) ` n ) ` k ) [,) ( ( ( S ` i ) ` n ) ` k ) ) ) ) |
129 |
63 128
|
mpbid |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) ) -> X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ n e. NN X_ k e. X ( ( ( ( F ` i ) ` n ) ` k ) [,) ( ( ( S ` i ) ` n ) ` k ) ) ) |
130 |
129
|
3adant3r |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) -> X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ n e. NN X_ k e. X ( ( ( ( F ` i ) ` n ) ` k ) [,) ( ( ( S ` i ) ` n ) ` k ) ) ) |
131 |
6 16 17 18 48 62 130
|
hoidmvle |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) -> ( A ( L ` X ) B ) <_ ( sum^ ` ( n e. NN |-> ( ( ( F ` i ) ` n ) ( L ` X ) ( ( S ` i ) ` n ) ) ) ) ) |
132 |
|
simpl |
|- ( ( n = j /\ l e. X ) -> n = j ) |
133 |
132
|
fveq2d |
|- ( ( n = j /\ l e. X ) -> ( i ` n ) = ( i ` j ) ) |
134 |
133
|
fveq1d |
|- ( ( n = j /\ l e. X ) -> ( ( i ` n ) ` l ) = ( ( i ` j ) ` l ) ) |
135 |
134
|
fveq2d |
|- ( ( n = j /\ l e. X ) -> ( 1st ` ( ( i ` n ) ` l ) ) = ( 1st ` ( ( i ` j ) ` l ) ) ) |
136 |
135
|
mpteq2dva |
|- ( n = j -> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) = ( l e. X |-> ( 1st ` ( ( i ` j ) ` l ) ) ) ) |
137 |
136
|
fveq1d |
|- ( n = j -> ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) = ( ( l e. X |-> ( 1st ` ( ( i ` j ) ` l ) ) ) ` k ) ) |
138 |
137
|
adantr |
|- ( ( n = j /\ k e. X ) -> ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) = ( ( l e. X |-> ( 1st ` ( ( i ` j ) ` l ) ) ) ` k ) ) |
139 |
|
eqidd |
|- ( k e. X -> ( l e. X |-> ( 1st ` ( ( i ` j ) ` l ) ) ) = ( l e. X |-> ( 1st ` ( ( i ` j ) ` l ) ) ) ) |
140 |
|
2fveq3 |
|- ( l = k -> ( 1st ` ( ( i ` j ) ` l ) ) = ( 1st ` ( ( i ` j ) ` k ) ) ) |
141 |
140
|
adantl |
|- ( ( k e. X /\ l = k ) -> ( 1st ` ( ( i ` j ) ` l ) ) = ( 1st ` ( ( i ` j ) ` k ) ) ) |
142 |
|
id |
|- ( k e. X -> k e. X ) |
143 |
|
fvexd |
|- ( k e. X -> ( 1st ` ( ( i ` j ) ` k ) ) e. _V ) |
144 |
139 141 142 143
|
fvmptd |
|- ( k e. X -> ( ( l e. X |-> ( 1st ` ( ( i ` j ) ` l ) ) ) ` k ) = ( 1st ` ( ( i ` j ) ` k ) ) ) |
145 |
144
|
adantl |
|- ( ( n = j /\ k e. X ) -> ( ( l e. X |-> ( 1st ` ( ( i ` j ) ` l ) ) ) ` k ) = ( 1st ` ( ( i ` j ) ` k ) ) ) |
146 |
138 145
|
eqtrd |
|- ( ( n = j /\ k e. X ) -> ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) = ( 1st ` ( ( i ` j ) ` k ) ) ) |
147 |
134
|
fveq2d |
|- ( ( n = j /\ l e. X ) -> ( 2nd ` ( ( i ` n ) ` l ) ) = ( 2nd ` ( ( i ` j ) ` l ) ) ) |
148 |
147
|
mpteq2dva |
|- ( n = j -> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) = ( l e. X |-> ( 2nd ` ( ( i ` j ) ` l ) ) ) ) |
149 |
148
|
fveq1d |
|- ( n = j -> ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) = ( ( l e. X |-> ( 2nd ` ( ( i ` j ) ` l ) ) ) ` k ) ) |
150 |
149
|
adantr |
|- ( ( n = j /\ k e. X ) -> ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) = ( ( l e. X |-> ( 2nd ` ( ( i ` j ) ` l ) ) ) ` k ) ) |
151 |
|
eqidd |
|- ( k e. X -> ( l e. X |-> ( 2nd ` ( ( i ` j ) ` l ) ) ) = ( l e. X |-> ( 2nd ` ( ( i ` j ) ` l ) ) ) ) |
152 |
|
2fveq3 |
|- ( l = k -> ( 2nd ` ( ( i ` j ) ` l ) ) = ( 2nd ` ( ( i ` j ) ` k ) ) ) |
153 |
152
|
adantl |
|- ( ( k e. X /\ l = k ) -> ( 2nd ` ( ( i ` j ) ` l ) ) = ( 2nd ` ( ( i ` j ) ` k ) ) ) |
154 |
|
fvexd |
|- ( k e. X -> ( 2nd ` ( ( i ` j ) ` k ) ) e. _V ) |
155 |
151 153 142 154
|
fvmptd |
|- ( k e. X -> ( ( l e. X |-> ( 2nd ` ( ( i ` j ) ` l ) ) ) ` k ) = ( 2nd ` ( ( i ` j ) ` k ) ) ) |
156 |
155
|
adantl |
|- ( ( n = j /\ k e. X ) -> ( ( l e. X |-> ( 2nd ` ( ( i ` j ) ` l ) ) ) ` k ) = ( 2nd ` ( ( i ` j ) ` k ) ) ) |
157 |
150 156
|
eqtrd |
|- ( ( n = j /\ k e. X ) -> ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) = ( 2nd ` ( ( i ` j ) ` k ) ) ) |
158 |
146 157
|
oveq12d |
|- ( ( n = j /\ k e. X ) -> ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) = ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) ) |
159 |
158
|
fveq2d |
|- ( ( n = j /\ k e. X ) -> ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) = ( vol ` ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) ) ) |
160 |
159
|
prodeq2dv |
|- ( n = j -> prod_ k e. X ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) = prod_ k e. X ( vol ` ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) ) ) |
161 |
160
|
cbvmptv |
|- ( n e. NN |-> prod_ k e. X ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) ) = ( j e. NN |-> prod_ k e. X ( vol ` ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) ) ) |
162 |
161
|
a1i |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( n e. NN |-> prod_ k e. X ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) ) = ( j e. NN |-> prod_ k e. X ( vol ` ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) ) ) ) |
163 |
78
|
eqcomd |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ j e. NN ) /\ k e. X ) -> ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) = ( ( [,) o. ( i ` j ) ) ` k ) ) |
164 |
163
|
fveq2d |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ j e. NN ) /\ k e. X ) -> ( vol ` ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) ) = ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) |
165 |
164
|
prodeq2dv |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ j e. NN ) -> prod_ k e. X ( vol ` ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) ) = prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) |
166 |
165
|
mpteq2dva |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( j e. NN |-> prod_ k e. X ( vol ` ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) ) ) = ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) |
167 |
162 166
|
eqtrd |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( n e. NN |-> prod_ k e. X ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) ) = ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) |
168 |
167
|
fveq2d |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( sum^ ` ( n e. NN |-> prod_ k e. X ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) |
169 |
168
|
3ad2ant2 |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) -> ( sum^ ` ( n e. NN |-> prod_ k e. X ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) |
170 |
92
|
adantll |
|- ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) -> ( ( F ` i ) ` n ) = ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) |
171 |
112
|
adantll |
|- ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) -> ( ( S ` i ) ` n ) = ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) |
172 |
170 171
|
oveq12d |
|- ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) -> ( ( ( F ` i ) ` n ) ( L ` X ) ( ( S ` i ) ` n ) ) = ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ( L ` X ) ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) ) |
173 |
1
|
ad2antrr |
|- ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) -> X e. Fin ) |
174 |
2
|
ad2antrr |
|- ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) -> X =/= (/) ) |
175 |
23
|
adantlll |
|- ( ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) /\ l e. X ) -> ( ( i ` n ) ` l ) e. ( RR X. RR ) ) |
176 |
175 24
|
syl |
|- ( ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) /\ l e. X ) -> ( 1st ` ( ( i ` n ) ` l ) ) e. RR ) |
177 |
176
|
fmpttd |
|- ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) -> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) : X --> RR ) |
178 |
175 49
|
syl |
|- ( ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) /\ l e. X ) -> ( 2nd ` ( ( i ` n ) ` l ) ) e. RR ) |
179 |
178
|
fmpttd |
|- ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) -> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) : X --> RR ) |
180 |
6 173 174 177 179
|
hoidmvn0val |
|- ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) -> ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ( L ` X ) ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) = prod_ k e. X ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) ) |
181 |
172 180
|
eqtrd |
|- ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) -> ( ( ( F ` i ) ` n ) ( L ` X ) ( ( S ` i ) ` n ) ) = prod_ k e. X ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) ) |
182 |
181
|
mpteq2dva |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) -> ( n e. NN |-> ( ( ( F ` i ) ` n ) ( L ` X ) ( ( S ` i ) ` n ) ) ) = ( n e. NN |-> prod_ k e. X ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) ) ) |
183 |
182
|
fveq2d |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) -> ( sum^ ` ( n e. NN |-> ( ( ( F ` i ) ` n ) ( L ` X ) ( ( S ` i ) ` n ) ) ) ) = ( sum^ ` ( n e. NN |-> prod_ k e. X ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) ) ) ) |
184 |
183
|
3adant3 |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) -> ( sum^ ` ( n e. NN |-> ( ( ( F ` i ) ` n ) ( L ` X ) ( ( S ` i ) ` n ) ) ) ) = ( sum^ ` ( n e. NN |-> prod_ k e. X ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) ) ) ) |
185 |
|
simp3 |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) -> z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) |
186 |
169 184 185
|
3eqtr4d |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) -> ( sum^ ` ( n e. NN |-> ( ( ( F ` i ) ` n ) ( L ` X ) ( ( S ` i ) ` n ) ) ) ) = z ) |
187 |
186
|
3adant3l |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) -> ( sum^ ` ( n e. NN |-> ( ( ( F ` i ) ` n ) ( L ` X ) ( ( S ` i ) ` n ) ) ) ) = z ) |
188 |
131 187
|
breqtrd |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) -> ( A ( L ` X ) B ) <_ z ) |
189 |
188
|
3exp |
|- ( ph -> ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) -> ( A ( L ` X ) B ) <_ z ) ) ) |
190 |
189
|
adantr |
|- ( ( ph /\ z e. M ) -> ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) -> ( A ( L ` X ) B ) <_ z ) ) ) |
191 |
190
|
rexlimdv |
|- ( ( ph /\ z e. M ) -> ( E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) -> ( A ( L ` X ) B ) <_ z ) ) |
192 |
15 191
|
mpd |
|- ( ( ph /\ z e. M ) -> ( A ( L ` X ) B ) <_ z ) |
193 |
192
|
ralrimiva |
|- ( ph -> A. z e. M ( A ( L ` X ) B ) <_ z ) |
194 |
|
ssrab2 |
|- { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } C_ RR* |
195 |
7 194
|
eqsstri |
|- M C_ RR* |
196 |
195
|
a1i |
|- ( ph -> M C_ RR* ) |
197 |
|
icossxr |
|- ( 0 [,) +oo ) C_ RR* |
198 |
6 1 3 4
|
hoidmvcl |
|- ( ph -> ( A ( L ` X ) B ) e. ( 0 [,) +oo ) ) |
199 |
197 198
|
sselid |
|- ( ph -> ( A ( L ` X ) B ) e. RR* ) |
200 |
|
infxrgelb |
|- ( ( M C_ RR* /\ ( A ( L ` X ) B ) e. RR* ) -> ( ( A ( L ` X ) B ) <_ inf ( M , RR* , < ) <-> A. z e. M ( A ( L ` X ) B ) <_ z ) ) |
201 |
196 199 200
|
syl2anc |
|- ( ph -> ( ( A ( L ` X ) B ) <_ inf ( M , RR* , < ) <-> A. z e. M ( A ( L ` X ) B ) <_ z ) ) |
202 |
193 201
|
mpbird |
|- ( ph -> ( A ( L ` X ) B ) <_ inf ( M , RR* , < ) ) |
203 |
5
|
a1i |
|- ( ph -> I = X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) |
204 |
|
nfv |
|- F/ k ph |
205 |
3
|
ffvelrnda |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) |
206 |
4
|
ffvelrnda |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) |
207 |
206
|
rexrd |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR* ) |
208 |
204 205 207
|
hoissrrn2 |
|- ( ph -> X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ ( RR ^m X ) ) |
209 |
203 208
|
eqsstrd |
|- ( ph -> I C_ ( RR ^m X ) ) |
210 |
1 2 209 7
|
ovnn0val |
|- ( ph -> ( ( voln* ` X ) ` I ) = inf ( M , RR* , < ) ) |
211 |
210
|
eqcomd |
|- ( ph -> inf ( M , RR* , < ) = ( ( voln* ` X ) ` I ) ) |
212 |
202 211
|
breqtrd |
|- ( ph -> ( A ( L ` X ) B ) <_ ( ( voln* ` X ) ` I ) ) |