| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovnhoilem2.x |
|- ( ph -> X e. Fin ) |
| 2 |
|
ovnhoilem2.n |
|- ( ph -> X =/= (/) ) |
| 3 |
|
ovnhoilem2.a |
|- ( ph -> A : X --> RR ) |
| 4 |
|
ovnhoilem2.b |
|- ( ph -> B : X --> RR ) |
| 5 |
|
ovnhoilem2.i |
|- I = X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) |
| 6 |
|
ovnhoilem2.l |
|- L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) |
| 7 |
|
ovnhoilem2.m |
|- M = { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } |
| 8 |
|
ovnhoilem2.f |
|- F = ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) |-> ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) ) |
| 9 |
|
ovnhoilem2.s |
|- S = ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) |-> ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) ) |
| 10 |
7
|
eleq2i |
|- ( z e. M <-> z e. { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } ) |
| 11 |
|
rabid |
|- ( z e. { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } <-> ( z e. RR* /\ E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) ) |
| 12 |
10 11
|
bitri |
|- ( z e. M <-> ( z e. RR* /\ E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) ) |
| 13 |
12
|
biimpi |
|- ( z e. M -> ( z e. RR* /\ E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) ) |
| 14 |
13
|
simprd |
|- ( z e. M -> E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ z e. M ) -> E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) |
| 16 |
1
|
3ad2ant1 |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) -> X e. Fin ) |
| 17 |
3
|
3ad2ant1 |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) -> A : X --> RR ) |
| 18 |
4
|
3ad2ant1 |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) -> B : X --> RR ) |
| 19 |
|
elmapi |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> i : NN --> ( ( RR X. RR ) ^m X ) ) |
| 20 |
19
|
ffvelcdmda |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( i ` n ) e. ( ( RR X. RR ) ^m X ) ) |
| 21 |
|
elmapi |
|- ( ( i ` n ) e. ( ( RR X. RR ) ^m X ) -> ( i ` n ) : X --> ( RR X. RR ) ) |
| 22 |
20 21
|
syl |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( i ` n ) : X --> ( RR X. RR ) ) |
| 23 |
22
|
ffvelcdmda |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) /\ l e. X ) -> ( ( i ` n ) ` l ) e. ( RR X. RR ) ) |
| 24 |
|
xp1st |
|- ( ( ( i ` n ) ` l ) e. ( RR X. RR ) -> ( 1st ` ( ( i ` n ) ` l ) ) e. RR ) |
| 25 |
23 24
|
syl |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) /\ l e. X ) -> ( 1st ` ( ( i ` n ) ` l ) ) e. RR ) |
| 26 |
25
|
fmpttd |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) : X --> RR ) |
| 27 |
|
reex |
|- RR e. _V |
| 28 |
27
|
a1i |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> RR e. _V ) |
| 29 |
|
1nn |
|- 1 e. NN |
| 30 |
29
|
a1i |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> 1 e. NN ) |
| 31 |
19 30
|
ffvelcdmd |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( i ` 1 ) e. ( ( RR X. RR ) ^m X ) ) |
| 32 |
|
elmapex |
|- ( ( i ` 1 ) e. ( ( RR X. RR ) ^m X ) -> ( ( RR X. RR ) e. _V /\ X e. _V ) ) |
| 33 |
32
|
simprd |
|- ( ( i ` 1 ) e. ( ( RR X. RR ) ^m X ) -> X e. _V ) |
| 34 |
31 33
|
syl |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> X e. _V ) |
| 35 |
34
|
adantr |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> X e. _V ) |
| 36 |
|
elmapg |
|- ( ( RR e. _V /\ X e. _V ) -> ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) e. ( RR ^m X ) <-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) : X --> RR ) ) |
| 37 |
28 35 36
|
syl2anc |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) e. ( RR ^m X ) <-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) : X --> RR ) ) |
| 38 |
26 37
|
mpbird |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) e. ( RR ^m X ) ) |
| 39 |
38
|
fmpttd |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) : NN --> ( RR ^m X ) ) |
| 40 |
|
id |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) |
| 41 |
|
nnex |
|- NN e. _V |
| 42 |
41
|
mptex |
|- ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) e. _V |
| 43 |
42
|
a1i |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) e. _V ) |
| 44 |
8
|
fvmpt2 |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) e. _V ) -> ( F ` i ) = ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) ) |
| 45 |
40 43 44
|
syl2anc |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( F ` i ) = ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) ) |
| 46 |
45
|
feq1d |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( ( F ` i ) : NN --> ( RR ^m X ) <-> ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) : NN --> ( RR ^m X ) ) ) |
| 47 |
39 46
|
mpbird |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( F ` i ) : NN --> ( RR ^m X ) ) |
| 48 |
47
|
3ad2ant2 |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) -> ( F ` i ) : NN --> ( RR ^m X ) ) |
| 49 |
|
xp2nd |
|- ( ( ( i ` n ) ` l ) e. ( RR X. RR ) -> ( 2nd ` ( ( i ` n ) ` l ) ) e. RR ) |
| 50 |
23 49
|
syl |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) /\ l e. X ) -> ( 2nd ` ( ( i ` n ) ` l ) ) e. RR ) |
| 51 |
50
|
fmpttd |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) : X --> RR ) |
| 52 |
|
elmapg |
|- ( ( RR e. _V /\ X e. _V ) -> ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) e. ( RR ^m X ) <-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) : X --> RR ) ) |
| 53 |
28 35 52
|
syl2anc |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) e. ( RR ^m X ) <-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) : X --> RR ) ) |
| 54 |
51 53
|
mpbird |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) e. ( RR ^m X ) ) |
| 55 |
54
|
fmpttd |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) : NN --> ( RR ^m X ) ) |
| 56 |
41
|
mptex |
|- ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) e. _V |
| 57 |
56
|
a1i |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) e. _V ) |
| 58 |
9
|
fvmpt2 |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) e. _V ) -> ( S ` i ) = ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) ) |
| 59 |
40 57 58
|
syl2anc |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( S ` i ) = ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) ) |
| 60 |
59
|
feq1d |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( ( S ` i ) : NN --> ( RR ^m X ) <-> ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) : NN --> ( RR ^m X ) ) ) |
| 61 |
55 60
|
mpbird |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( S ` i ) : NN --> ( RR ^m X ) ) |
| 62 |
61
|
3ad2ant2 |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) -> ( S ` i ) : NN --> ( RR ^m X ) ) |
| 63 |
|
simp3 |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) ) -> I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) ) |
| 64 |
5
|
a1i |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) ) -> I = X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) |
| 65 |
|
fveq2 |
|- ( j = n -> ( i ` j ) = ( i ` n ) ) |
| 66 |
65
|
fveq1d |
|- ( j = n -> ( ( i ` j ) ` k ) = ( ( i ` n ) ` k ) ) |
| 67 |
66
|
fveq2d |
|- ( j = n -> ( 1st ` ( ( i ` j ) ` k ) ) = ( 1st ` ( ( i ` n ) ` k ) ) ) |
| 68 |
66
|
fveq2d |
|- ( j = n -> ( 2nd ` ( ( i ` j ) ` k ) ) = ( 2nd ` ( ( i ` n ) ` k ) ) ) |
| 69 |
67 68
|
oveq12d |
|- ( j = n -> ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) = ( ( 1st ` ( ( i ` n ) ` k ) ) [,) ( 2nd ` ( ( i ` n ) ` k ) ) ) ) |
| 70 |
69
|
ixpeq2dv |
|- ( j = n -> X_ k e. X ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) = X_ k e. X ( ( 1st ` ( ( i ` n ) ` k ) ) [,) ( 2nd ` ( ( i ` n ) ` k ) ) ) ) |
| 71 |
70
|
cbviunv |
|- U_ j e. NN X_ k e. X ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) = U_ n e. NN X_ k e. X ( ( 1st ` ( ( i ` n ) ` k ) ) [,) ( 2nd ` ( ( i ` n ) ` k ) ) ) |
| 72 |
71
|
a1i |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> U_ j e. NN X_ k e. X ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) = U_ n e. NN X_ k e. X ( ( 1st ` ( ( i ` n ) ` k ) ) [,) ( 2nd ` ( ( i ` n ) ` k ) ) ) ) |
| 73 |
19
|
ffvelcdmda |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ j e. NN ) -> ( i ` j ) e. ( ( RR X. RR ) ^m X ) ) |
| 74 |
|
elmapi |
|- ( ( i ` j ) e. ( ( RR X. RR ) ^m X ) -> ( i ` j ) : X --> ( RR X. RR ) ) |
| 75 |
73 74
|
syl |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ j e. NN ) -> ( i ` j ) : X --> ( RR X. RR ) ) |
| 76 |
75
|
adantr |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ j e. NN ) /\ k e. X ) -> ( i ` j ) : X --> ( RR X. RR ) ) |
| 77 |
|
simpr |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ j e. NN ) /\ k e. X ) -> k e. X ) |
| 78 |
76 77
|
fvovco |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ j e. NN ) /\ k e. X ) -> ( ( [,) o. ( i ` j ) ) ` k ) = ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) ) |
| 79 |
78
|
ixpeq2dva |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ j e. NN ) -> X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) = X_ k e. X ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) ) |
| 80 |
79
|
iuneq2dv |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) = U_ j e. NN X_ k e. X ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) ) |
| 81 |
|
simpl |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) |
| 82 |
42
|
a1i |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) e. _V ) |
| 83 |
81 82 44
|
syl2anc |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( F ` i ) = ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) ) |
| 84 |
83
|
fveq1d |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( ( F ` i ) ` n ) = ( ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) ` n ) ) |
| 85 |
|
simpr |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> n e. NN ) |
| 86 |
|
mptexg |
|- ( X e. _V -> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) e. _V ) |
| 87 |
34 86
|
syl |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) e. _V ) |
| 88 |
87
|
adantr |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) e. _V ) |
| 89 |
|
eqid |
|- ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) = ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) |
| 90 |
89
|
fvmpt2 |
|- ( ( n e. NN /\ ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) e. _V ) -> ( ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) ` n ) = ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) |
| 91 |
85 88 90
|
syl2anc |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( ( n e. NN |-> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) ` n ) = ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) |
| 92 |
84 91
|
eqtrd |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( ( F ` i ) ` n ) = ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) |
| 93 |
92
|
fveq1d |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( ( ( F ` i ) ` n ) ` k ) = ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) ) |
| 94 |
93
|
adantr |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) /\ k e. X ) -> ( ( ( F ` i ) ` n ) ` k ) = ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) ) |
| 95 |
|
eqidd |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ k e. X ) -> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) = ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) |
| 96 |
|
simpr |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ k e. X ) /\ l = k ) -> l = k ) |
| 97 |
96
|
fveq2d |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ k e. X ) /\ l = k ) -> ( ( i ` n ) ` l ) = ( ( i ` n ) ` k ) ) |
| 98 |
97
|
fveq2d |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ k e. X ) /\ l = k ) -> ( 1st ` ( ( i ` n ) ` l ) ) = ( 1st ` ( ( i ` n ) ` k ) ) ) |
| 99 |
|
simpr |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ k e. X ) -> k e. X ) |
| 100 |
|
fvexd |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ k e. X ) -> ( 1st ` ( ( i ` n ) ` k ) ) e. _V ) |
| 101 |
95 98 99 100
|
fvmptd |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ k e. X ) -> ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) = ( 1st ` ( ( i ` n ) ` k ) ) ) |
| 102 |
101
|
adantlr |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) /\ k e. X ) -> ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) = ( 1st ` ( ( i ` n ) ` k ) ) ) |
| 103 |
94 102
|
eqtrd |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) /\ k e. X ) -> ( ( ( F ` i ) ` n ) ` k ) = ( 1st ` ( ( i ` n ) ` k ) ) ) |
| 104 |
59
|
fveq1d |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( ( S ` i ) ` n ) = ( ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) ` n ) ) |
| 105 |
104
|
adantr |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( ( S ` i ) ` n ) = ( ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) ` n ) ) |
| 106 |
|
mptexg |
|- ( X e. _V -> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) e. _V ) |
| 107 |
34 106
|
syl |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) e. _V ) |
| 108 |
107
|
adantr |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) e. _V ) |
| 109 |
|
eqid |
|- ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) = ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) |
| 110 |
109
|
fvmpt2 |
|- ( ( n e. NN /\ ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) e. _V ) -> ( ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) ` n ) = ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) |
| 111 |
85 108 110
|
syl2anc |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( ( n e. NN |-> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) ` n ) = ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) |
| 112 |
105 111
|
eqtrd |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( ( S ` i ) ` n ) = ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) |
| 113 |
112
|
fveq1d |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> ( ( ( S ` i ) ` n ) ` k ) = ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) |
| 114 |
113
|
adantr |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) /\ k e. X ) -> ( ( ( S ` i ) ` n ) ` k ) = ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) |
| 115 |
|
eqidd |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ k e. X ) -> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) = ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) |
| 116 |
|
2fveq3 |
|- ( l = k -> ( 2nd ` ( ( i ` n ) ` l ) ) = ( 2nd ` ( ( i ` n ) ` k ) ) ) |
| 117 |
116
|
adantl |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ k e. X ) /\ l = k ) -> ( 2nd ` ( ( i ` n ) ` l ) ) = ( 2nd ` ( ( i ` n ) ` k ) ) ) |
| 118 |
|
fvexd |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ k e. X ) -> ( 2nd ` ( ( i ` n ) ` k ) ) e. _V ) |
| 119 |
115 117 99 118
|
fvmptd |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ k e. X ) -> ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) = ( 2nd ` ( ( i ` n ) ` k ) ) ) |
| 120 |
119
|
adantlr |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) /\ k e. X ) -> ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) = ( 2nd ` ( ( i ` n ) ` k ) ) ) |
| 121 |
114 120
|
eqtrd |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) /\ k e. X ) -> ( ( ( S ` i ) ` n ) ` k ) = ( 2nd ` ( ( i ` n ) ` k ) ) ) |
| 122 |
103 121
|
oveq12d |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) /\ k e. X ) -> ( ( ( ( F ` i ) ` n ) ` k ) [,) ( ( ( S ` i ) ` n ) ` k ) ) = ( ( 1st ` ( ( i ` n ) ` k ) ) [,) ( 2nd ` ( ( i ` n ) ` k ) ) ) ) |
| 123 |
122
|
ixpeq2dva |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ n e. NN ) -> X_ k e. X ( ( ( ( F ` i ) ` n ) ` k ) [,) ( ( ( S ` i ) ` n ) ` k ) ) = X_ k e. X ( ( 1st ` ( ( i ` n ) ` k ) ) [,) ( 2nd ` ( ( i ` n ) ` k ) ) ) ) |
| 124 |
123
|
iuneq2dv |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> U_ n e. NN X_ k e. X ( ( ( ( F ` i ) ` n ) ` k ) [,) ( ( ( S ` i ) ` n ) ` k ) ) = U_ n e. NN X_ k e. X ( ( 1st ` ( ( i ` n ) ` k ) ) [,) ( 2nd ` ( ( i ` n ) ` k ) ) ) ) |
| 125 |
72 80 124
|
3eqtr4d |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) = U_ n e. NN X_ k e. X ( ( ( ( F ` i ) ` n ) ` k ) [,) ( ( ( S ` i ) ` n ) ` k ) ) ) |
| 126 |
125
|
adantl |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) -> U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) = U_ n e. NN X_ k e. X ( ( ( ( F ` i ) ` n ) ` k ) [,) ( ( ( S ` i ) ` n ) ` k ) ) ) |
| 127 |
126
|
3adant3 |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) ) -> U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) = U_ n e. NN X_ k e. X ( ( ( ( F ` i ) ` n ) ` k ) [,) ( ( ( S ` i ) ` n ) ` k ) ) ) |
| 128 |
64 127
|
sseq12d |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) ) -> ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) <-> X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ n e. NN X_ k e. X ( ( ( ( F ` i ) ` n ) ` k ) [,) ( ( ( S ` i ) ` n ) ` k ) ) ) ) |
| 129 |
63 128
|
mpbid |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) ) -> X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ n e. NN X_ k e. X ( ( ( ( F ` i ) ` n ) ` k ) [,) ( ( ( S ` i ) ` n ) ` k ) ) ) |
| 130 |
129
|
3adant3r |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) -> X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ n e. NN X_ k e. X ( ( ( ( F ` i ) ` n ) ` k ) [,) ( ( ( S ` i ) ` n ) ` k ) ) ) |
| 131 |
6 16 17 18 48 62 130
|
hoidmvle |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) -> ( A ( L ` X ) B ) <_ ( sum^ ` ( n e. NN |-> ( ( ( F ` i ) ` n ) ( L ` X ) ( ( S ` i ) ` n ) ) ) ) ) |
| 132 |
|
simpl |
|- ( ( n = j /\ l e. X ) -> n = j ) |
| 133 |
132
|
fveq2d |
|- ( ( n = j /\ l e. X ) -> ( i ` n ) = ( i ` j ) ) |
| 134 |
133
|
fveq1d |
|- ( ( n = j /\ l e. X ) -> ( ( i ` n ) ` l ) = ( ( i ` j ) ` l ) ) |
| 135 |
134
|
fveq2d |
|- ( ( n = j /\ l e. X ) -> ( 1st ` ( ( i ` n ) ` l ) ) = ( 1st ` ( ( i ` j ) ` l ) ) ) |
| 136 |
135
|
mpteq2dva |
|- ( n = j -> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) = ( l e. X |-> ( 1st ` ( ( i ` j ) ` l ) ) ) ) |
| 137 |
136
|
fveq1d |
|- ( n = j -> ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) = ( ( l e. X |-> ( 1st ` ( ( i ` j ) ` l ) ) ) ` k ) ) |
| 138 |
137
|
adantr |
|- ( ( n = j /\ k e. X ) -> ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) = ( ( l e. X |-> ( 1st ` ( ( i ` j ) ` l ) ) ) ` k ) ) |
| 139 |
|
eqidd |
|- ( k e. X -> ( l e. X |-> ( 1st ` ( ( i ` j ) ` l ) ) ) = ( l e. X |-> ( 1st ` ( ( i ` j ) ` l ) ) ) ) |
| 140 |
|
2fveq3 |
|- ( l = k -> ( 1st ` ( ( i ` j ) ` l ) ) = ( 1st ` ( ( i ` j ) ` k ) ) ) |
| 141 |
140
|
adantl |
|- ( ( k e. X /\ l = k ) -> ( 1st ` ( ( i ` j ) ` l ) ) = ( 1st ` ( ( i ` j ) ` k ) ) ) |
| 142 |
|
id |
|- ( k e. X -> k e. X ) |
| 143 |
|
fvexd |
|- ( k e. X -> ( 1st ` ( ( i ` j ) ` k ) ) e. _V ) |
| 144 |
139 141 142 143
|
fvmptd |
|- ( k e. X -> ( ( l e. X |-> ( 1st ` ( ( i ` j ) ` l ) ) ) ` k ) = ( 1st ` ( ( i ` j ) ` k ) ) ) |
| 145 |
144
|
adantl |
|- ( ( n = j /\ k e. X ) -> ( ( l e. X |-> ( 1st ` ( ( i ` j ) ` l ) ) ) ` k ) = ( 1st ` ( ( i ` j ) ` k ) ) ) |
| 146 |
138 145
|
eqtrd |
|- ( ( n = j /\ k e. X ) -> ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) = ( 1st ` ( ( i ` j ) ` k ) ) ) |
| 147 |
134
|
fveq2d |
|- ( ( n = j /\ l e. X ) -> ( 2nd ` ( ( i ` n ) ` l ) ) = ( 2nd ` ( ( i ` j ) ` l ) ) ) |
| 148 |
147
|
mpteq2dva |
|- ( n = j -> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) = ( l e. X |-> ( 2nd ` ( ( i ` j ) ` l ) ) ) ) |
| 149 |
148
|
fveq1d |
|- ( n = j -> ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) = ( ( l e. X |-> ( 2nd ` ( ( i ` j ) ` l ) ) ) ` k ) ) |
| 150 |
149
|
adantr |
|- ( ( n = j /\ k e. X ) -> ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) = ( ( l e. X |-> ( 2nd ` ( ( i ` j ) ` l ) ) ) ` k ) ) |
| 151 |
|
eqidd |
|- ( k e. X -> ( l e. X |-> ( 2nd ` ( ( i ` j ) ` l ) ) ) = ( l e. X |-> ( 2nd ` ( ( i ` j ) ` l ) ) ) ) |
| 152 |
|
2fveq3 |
|- ( l = k -> ( 2nd ` ( ( i ` j ) ` l ) ) = ( 2nd ` ( ( i ` j ) ` k ) ) ) |
| 153 |
152
|
adantl |
|- ( ( k e. X /\ l = k ) -> ( 2nd ` ( ( i ` j ) ` l ) ) = ( 2nd ` ( ( i ` j ) ` k ) ) ) |
| 154 |
|
fvexd |
|- ( k e. X -> ( 2nd ` ( ( i ` j ) ` k ) ) e. _V ) |
| 155 |
151 153 142 154
|
fvmptd |
|- ( k e. X -> ( ( l e. X |-> ( 2nd ` ( ( i ` j ) ` l ) ) ) ` k ) = ( 2nd ` ( ( i ` j ) ` k ) ) ) |
| 156 |
155
|
adantl |
|- ( ( n = j /\ k e. X ) -> ( ( l e. X |-> ( 2nd ` ( ( i ` j ) ` l ) ) ) ` k ) = ( 2nd ` ( ( i ` j ) ` k ) ) ) |
| 157 |
150 156
|
eqtrd |
|- ( ( n = j /\ k e. X ) -> ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) = ( 2nd ` ( ( i ` j ) ` k ) ) ) |
| 158 |
146 157
|
oveq12d |
|- ( ( n = j /\ k e. X ) -> ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) = ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) ) |
| 159 |
158
|
fveq2d |
|- ( ( n = j /\ k e. X ) -> ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) = ( vol ` ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) ) ) |
| 160 |
159
|
prodeq2dv |
|- ( n = j -> prod_ k e. X ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) = prod_ k e. X ( vol ` ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) ) ) |
| 161 |
160
|
cbvmptv |
|- ( n e. NN |-> prod_ k e. X ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) ) = ( j e. NN |-> prod_ k e. X ( vol ` ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) ) ) |
| 162 |
161
|
a1i |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( n e. NN |-> prod_ k e. X ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) ) = ( j e. NN |-> prod_ k e. X ( vol ` ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) ) ) ) |
| 163 |
78
|
eqcomd |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ j e. NN ) /\ k e. X ) -> ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) = ( ( [,) o. ( i ` j ) ) ` k ) ) |
| 164 |
163
|
fveq2d |
|- ( ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ j e. NN ) /\ k e. X ) -> ( vol ` ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) ) = ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) |
| 165 |
164
|
prodeq2dv |
|- ( ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ j e. NN ) -> prod_ k e. X ( vol ` ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) ) = prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) |
| 166 |
165
|
mpteq2dva |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( j e. NN |-> prod_ k e. X ( vol ` ( ( 1st ` ( ( i ` j ) ` k ) ) [,) ( 2nd ` ( ( i ` j ) ` k ) ) ) ) ) = ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) |
| 167 |
162 166
|
eqtrd |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( n e. NN |-> prod_ k e. X ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) ) = ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) |
| 168 |
167
|
fveq2d |
|- ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( sum^ ` ( n e. NN |-> prod_ k e. X ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) |
| 169 |
168
|
3ad2ant2 |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) -> ( sum^ ` ( n e. NN |-> prod_ k e. X ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) |
| 170 |
92
|
adantll |
|- ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) -> ( ( F ` i ) ` n ) = ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ) |
| 171 |
112
|
adantll |
|- ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) -> ( ( S ` i ) ` n ) = ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) |
| 172 |
170 171
|
oveq12d |
|- ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) -> ( ( ( F ` i ) ` n ) ( L ` X ) ( ( S ` i ) ` n ) ) = ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ( L ` X ) ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) ) |
| 173 |
1
|
ad2antrr |
|- ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) -> X e. Fin ) |
| 174 |
2
|
ad2antrr |
|- ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) -> X =/= (/) ) |
| 175 |
23
|
adantlll |
|- ( ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) /\ l e. X ) -> ( ( i ` n ) ` l ) e. ( RR X. RR ) ) |
| 176 |
175 24
|
syl |
|- ( ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) /\ l e. X ) -> ( 1st ` ( ( i ` n ) ` l ) ) e. RR ) |
| 177 |
176
|
fmpttd |
|- ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) -> ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) : X --> RR ) |
| 178 |
175 49
|
syl |
|- ( ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) /\ l e. X ) -> ( 2nd ` ( ( i ` n ) ` l ) ) e. RR ) |
| 179 |
178
|
fmpttd |
|- ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) -> ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) : X --> RR ) |
| 180 |
6 173 174 177 179
|
hoidmvn0val |
|- ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) -> ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ( L ` X ) ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ) = prod_ k e. X ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) ) |
| 181 |
172 180
|
eqtrd |
|- ( ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) /\ n e. NN ) -> ( ( ( F ` i ) ` n ) ( L ` X ) ( ( S ` i ) ` n ) ) = prod_ k e. X ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) ) |
| 182 |
181
|
mpteq2dva |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) -> ( n e. NN |-> ( ( ( F ` i ) ` n ) ( L ` X ) ( ( S ` i ) ` n ) ) ) = ( n e. NN |-> prod_ k e. X ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) ) ) |
| 183 |
182
|
fveq2d |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) -> ( sum^ ` ( n e. NN |-> ( ( ( F ` i ) ` n ) ( L ` X ) ( ( S ` i ) ` n ) ) ) ) = ( sum^ ` ( n e. NN |-> prod_ k e. X ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) ) ) ) |
| 184 |
183
|
3adant3 |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) -> ( sum^ ` ( n e. NN |-> ( ( ( F ` i ) ` n ) ( L ` X ) ( ( S ` i ) ` n ) ) ) ) = ( sum^ ` ( n e. NN |-> prod_ k e. X ( vol ` ( ( ( l e. X |-> ( 1st ` ( ( i ` n ) ` l ) ) ) ` k ) [,) ( ( l e. X |-> ( 2nd ` ( ( i ` n ) ` l ) ) ) ` k ) ) ) ) ) ) |
| 185 |
|
simp3 |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) -> z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) |
| 186 |
169 184 185
|
3eqtr4d |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) -> ( sum^ ` ( n e. NN |-> ( ( ( F ` i ) ` n ) ( L ` X ) ( ( S ` i ) ` n ) ) ) ) = z ) |
| 187 |
186
|
3adant3l |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) -> ( sum^ ` ( n e. NN |-> ( ( ( F ` i ) ` n ) ( L ` X ) ( ( S ` i ) ` n ) ) ) ) = z ) |
| 188 |
131 187
|
breqtrd |
|- ( ( ph /\ i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) -> ( A ( L ` X ) B ) <_ z ) |
| 189 |
188
|
3exp |
|- ( ph -> ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) -> ( A ( L ` X ) B ) <_ z ) ) ) |
| 190 |
189
|
adantr |
|- ( ( ph /\ z e. M ) -> ( i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> ( ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) -> ( A ( L ` X ) B ) <_ z ) ) ) |
| 191 |
190
|
rexlimdv |
|- ( ( ph /\ z e. M ) -> ( E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) -> ( A ( L ` X ) B ) <_ z ) ) |
| 192 |
15 191
|
mpd |
|- ( ( ph /\ z e. M ) -> ( A ( L ` X ) B ) <_ z ) |
| 193 |
192
|
ralrimiva |
|- ( ph -> A. z e. M ( A ( L ` X ) B ) <_ z ) |
| 194 |
|
ssrab2 |
|- { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } C_ RR* |
| 195 |
7 194
|
eqsstri |
|- M C_ RR* |
| 196 |
195
|
a1i |
|- ( ph -> M C_ RR* ) |
| 197 |
|
icossxr |
|- ( 0 [,) +oo ) C_ RR* |
| 198 |
6 1 3 4
|
hoidmvcl |
|- ( ph -> ( A ( L ` X ) B ) e. ( 0 [,) +oo ) ) |
| 199 |
197 198
|
sselid |
|- ( ph -> ( A ( L ` X ) B ) e. RR* ) |
| 200 |
|
infxrgelb |
|- ( ( M C_ RR* /\ ( A ( L ` X ) B ) e. RR* ) -> ( ( A ( L ` X ) B ) <_ inf ( M , RR* , < ) <-> A. z e. M ( A ( L ` X ) B ) <_ z ) ) |
| 201 |
196 199 200
|
syl2anc |
|- ( ph -> ( ( A ( L ` X ) B ) <_ inf ( M , RR* , < ) <-> A. z e. M ( A ( L ` X ) B ) <_ z ) ) |
| 202 |
193 201
|
mpbird |
|- ( ph -> ( A ( L ` X ) B ) <_ inf ( M , RR* , < ) ) |
| 203 |
5
|
a1i |
|- ( ph -> I = X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) |
| 204 |
|
nfv |
|- F/ k ph |
| 205 |
3
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) |
| 206 |
4
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) |
| 207 |
206
|
rexrd |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR* ) |
| 208 |
204 205 207
|
hoissrrn2 |
|- ( ph -> X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ ( RR ^m X ) ) |
| 209 |
203 208
|
eqsstrd |
|- ( ph -> I C_ ( RR ^m X ) ) |
| 210 |
1 2 209 7
|
ovnn0val |
|- ( ph -> ( ( voln* ` X ) ` I ) = inf ( M , RR* , < ) ) |
| 211 |
210
|
eqcomd |
|- ( ph -> inf ( M , RR* , < ) = ( ( voln* ` X ) ` I ) ) |
| 212 |
202 211
|
breqtrd |
|- ( ph -> ( A ( L ` X ) B ) <_ ( ( voln* ` X ) ` I ) ) |