| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoidmvle.l |
|- L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) |
| 2 |
|
hoidmvle.x |
|- ( ph -> X e. Fin ) |
| 3 |
|
hoidmvle.a |
|- ( ph -> A : X --> RR ) |
| 4 |
|
hoidmvle.b |
|- ( ph -> B : X --> RR ) |
| 5 |
|
hoidmvle.c |
|- ( ph -> C : NN --> ( RR ^m X ) ) |
| 6 |
|
hoidmvle.d |
|- ( ph -> D : NN --> ( RR ^m X ) ) |
| 7 |
|
hoidmvle.s |
|- ( ph -> X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) |
| 8 |
|
ovex |
|- ( RR ^m X ) e. _V |
| 9 |
|
nnex |
|- NN e. _V |
| 10 |
8 9
|
pm3.2i |
|- ( ( RR ^m X ) e. _V /\ NN e. _V ) |
| 11 |
10
|
a1i |
|- ( ph -> ( ( RR ^m X ) e. _V /\ NN e. _V ) ) |
| 12 |
|
elmapg |
|- ( ( ( RR ^m X ) e. _V /\ NN e. _V ) -> ( D e. ( ( RR ^m X ) ^m NN ) <-> D : NN --> ( RR ^m X ) ) ) |
| 13 |
11 12
|
syl |
|- ( ph -> ( D e. ( ( RR ^m X ) ^m NN ) <-> D : NN --> ( RR ^m X ) ) ) |
| 14 |
6 13
|
mpbird |
|- ( ph -> D e. ( ( RR ^m X ) ^m NN ) ) |
| 15 |
|
elmapg |
|- ( ( ( RR ^m X ) e. _V /\ NN e. _V ) -> ( C e. ( ( RR ^m X ) ^m NN ) <-> C : NN --> ( RR ^m X ) ) ) |
| 16 |
11 15
|
syl |
|- ( ph -> ( C e. ( ( RR ^m X ) ^m NN ) <-> C : NN --> ( RR ^m X ) ) ) |
| 17 |
5 16
|
mpbird |
|- ( ph -> C e. ( ( RR ^m X ) ^m NN ) ) |
| 18 |
|
reex |
|- RR e. _V |
| 19 |
18
|
a1i |
|- ( ph -> RR e. _V ) |
| 20 |
19 2
|
jca |
|- ( ph -> ( RR e. _V /\ X e. Fin ) ) |
| 21 |
|
elmapg |
|- ( ( RR e. _V /\ X e. Fin ) -> ( B e. ( RR ^m X ) <-> B : X --> RR ) ) |
| 22 |
20 21
|
syl |
|- ( ph -> ( B e. ( RR ^m X ) <-> B : X --> RR ) ) |
| 23 |
4 22
|
mpbird |
|- ( ph -> B e. ( RR ^m X ) ) |
| 24 |
|
elmapg |
|- ( ( RR e. _V /\ X e. Fin ) -> ( A e. ( RR ^m X ) <-> A : X --> RR ) ) |
| 25 |
20 24
|
syl |
|- ( ph -> ( A e. ( RR ^m X ) <-> A : X --> RR ) ) |
| 26 |
3 25
|
mpbird |
|- ( ph -> A e. ( RR ^m X ) ) |
| 27 |
|
oveq2 |
|- ( x = (/) -> ( RR ^m x ) = ( RR ^m (/) ) ) |
| 28 |
27
|
eleq2d |
|- ( x = (/) -> ( a e. ( RR ^m x ) <-> a e. ( RR ^m (/) ) ) ) |
| 29 |
27
|
eleq2d |
|- ( x = (/) -> ( b e. ( RR ^m x ) <-> b e. ( RR ^m (/) ) ) ) |
| 30 |
27
|
oveq1d |
|- ( x = (/) -> ( ( RR ^m x ) ^m NN ) = ( ( RR ^m (/) ) ^m NN ) ) |
| 31 |
30
|
eleq2d |
|- ( x = (/) -> ( c e. ( ( RR ^m x ) ^m NN ) <-> c e. ( ( RR ^m (/) ) ^m NN ) ) ) |
| 32 |
30
|
eleq2d |
|- ( x = (/) -> ( d e. ( ( RR ^m x ) ^m NN ) <-> d e. ( ( RR ^m (/) ) ^m NN ) ) ) |
| 33 |
|
ixpeq1 |
|- ( x = (/) -> X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) = X_ k e. (/) ( ( a ` k ) [,) ( b ` k ) ) ) |
| 34 |
|
ixpeq1 |
|- ( x = (/) -> X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = X_ k e. (/) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 35 |
34
|
iuneq2d |
|- ( x = (/) -> U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = U_ j e. NN X_ k e. (/) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 36 |
33 35
|
sseq12d |
|- ( x = (/) -> ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) <-> X_ k e. (/) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. (/) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) ) |
| 37 |
|
fveq2 |
|- ( x = (/) -> ( L ` x ) = ( L ` (/) ) ) |
| 38 |
37
|
oveqd |
|- ( x = (/) -> ( a ( L ` x ) b ) = ( a ( L ` (/) ) b ) ) |
| 39 |
37
|
oveqd |
|- ( x = (/) -> ( ( c ` j ) ( L ` x ) ( d ` j ) ) = ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) ) |
| 40 |
39
|
mpteq2dv |
|- ( x = (/) -> ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) = ( j e. NN |-> ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) ) ) |
| 41 |
40
|
fveq2d |
|- ( x = (/) -> ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) ) ) ) |
| 42 |
38 41
|
breq12d |
|- ( x = (/) -> ( ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) <-> ( a ( L ` (/) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) ) ) ) ) |
| 43 |
36 42
|
imbi12d |
|- ( x = (/) -> ( ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) <-> ( X_ k e. (/) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. (/) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` (/) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) ) ) ) ) ) |
| 44 |
32 43
|
imbi12d |
|- ( x = (/) -> ( ( d e. ( ( RR ^m x ) ^m NN ) -> ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) ) <-> ( d e. ( ( RR ^m (/) ) ^m NN ) -> ( X_ k e. (/) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. (/) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` (/) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) ) ) ) ) ) ) |
| 45 |
44
|
ralbidv2 |
|- ( x = (/) -> ( A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) <-> A. d e. ( ( RR ^m (/) ) ^m NN ) ( X_ k e. (/) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. (/) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` (/) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) ) ) ) ) ) |
| 46 |
31 45
|
imbi12d |
|- ( x = (/) -> ( ( c e. ( ( RR ^m x ) ^m NN ) -> A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) ) <-> ( c e. ( ( RR ^m (/) ) ^m NN ) -> A. d e. ( ( RR ^m (/) ) ^m NN ) ( X_ k e. (/) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. (/) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` (/) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) ) ) ) ) ) ) |
| 47 |
46
|
ralbidv2 |
|- ( x = (/) -> ( A. c e. ( ( RR ^m x ) ^m NN ) A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) <-> A. c e. ( ( RR ^m (/) ) ^m NN ) A. d e. ( ( RR ^m (/) ) ^m NN ) ( X_ k e. (/) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. (/) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` (/) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) ) ) ) ) ) |
| 48 |
29 47
|
imbi12d |
|- ( x = (/) -> ( ( b e. ( RR ^m x ) -> A. c e. ( ( RR ^m x ) ^m NN ) A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) ) <-> ( b e. ( RR ^m (/) ) -> A. c e. ( ( RR ^m (/) ) ^m NN ) A. d e. ( ( RR ^m (/) ) ^m NN ) ( X_ k e. (/) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. (/) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` (/) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) ) ) ) ) ) ) |
| 49 |
48
|
ralbidv2 |
|- ( x = (/) -> ( A. b e. ( RR ^m x ) A. c e. ( ( RR ^m x ) ^m NN ) A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) <-> A. b e. ( RR ^m (/) ) A. c e. ( ( RR ^m (/) ) ^m NN ) A. d e. ( ( RR ^m (/) ) ^m NN ) ( X_ k e. (/) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. (/) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` (/) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) ) ) ) ) ) |
| 50 |
28 49
|
imbi12d |
|- ( x = (/) -> ( ( a e. ( RR ^m x ) -> A. b e. ( RR ^m x ) A. c e. ( ( RR ^m x ) ^m NN ) A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) ) <-> ( a e. ( RR ^m (/) ) -> A. b e. ( RR ^m (/) ) A. c e. ( ( RR ^m (/) ) ^m NN ) A. d e. ( ( RR ^m (/) ) ^m NN ) ( X_ k e. (/) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. (/) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` (/) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) ) ) ) ) ) ) |
| 51 |
50
|
ralbidv2 |
|- ( x = (/) -> ( A. a e. ( RR ^m x ) A. b e. ( RR ^m x ) A. c e. ( ( RR ^m x ) ^m NN ) A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) <-> A. a e. ( RR ^m (/) ) A. b e. ( RR ^m (/) ) A. c e. ( ( RR ^m (/) ) ^m NN ) A. d e. ( ( RR ^m (/) ) ^m NN ) ( X_ k e. (/) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. (/) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` (/) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) ) ) ) ) ) |
| 52 |
|
oveq2 |
|- ( x = y -> ( RR ^m x ) = ( RR ^m y ) ) |
| 53 |
52
|
eleq2d |
|- ( x = y -> ( a e. ( RR ^m x ) <-> a e. ( RR ^m y ) ) ) |
| 54 |
52
|
eleq2d |
|- ( x = y -> ( b e. ( RR ^m x ) <-> b e. ( RR ^m y ) ) ) |
| 55 |
52
|
oveq1d |
|- ( x = y -> ( ( RR ^m x ) ^m NN ) = ( ( RR ^m y ) ^m NN ) ) |
| 56 |
55
|
eleq2d |
|- ( x = y -> ( c e. ( ( RR ^m x ) ^m NN ) <-> c e. ( ( RR ^m y ) ^m NN ) ) ) |
| 57 |
55
|
eleq2d |
|- ( x = y -> ( d e. ( ( RR ^m x ) ^m NN ) <-> d e. ( ( RR ^m y ) ^m NN ) ) ) |
| 58 |
|
ixpeq1 |
|- ( x = y -> X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) = X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) ) |
| 59 |
|
ixpeq1 |
|- ( x = y -> X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 60 |
59
|
iuneq2d |
|- ( x = y -> U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 61 |
58 60
|
sseq12d |
|- ( x = y -> ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) <-> X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) ) |
| 62 |
|
fveq2 |
|- ( x = y -> ( L ` x ) = ( L ` y ) ) |
| 63 |
62
|
oveqd |
|- ( x = y -> ( a ( L ` x ) b ) = ( a ( L ` y ) b ) ) |
| 64 |
62
|
oveqd |
|- ( x = y -> ( ( c ` j ) ( L ` x ) ( d ` j ) ) = ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) |
| 65 |
64
|
mpteq2dv |
|- ( x = y -> ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) = ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) |
| 66 |
65
|
fveq2d |
|- ( x = y -> ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) |
| 67 |
63 66
|
breq12d |
|- ( x = y -> ( ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) <-> ( a ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) |
| 68 |
61 67
|
imbi12d |
|- ( x = y -> ( ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) <-> ( X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) ) |
| 69 |
57 68
|
imbi12d |
|- ( x = y -> ( ( d e. ( ( RR ^m x ) ^m NN ) -> ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) ) <-> ( d e. ( ( RR ^m y ) ^m NN ) -> ( X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) ) ) |
| 70 |
69
|
ralbidv2 |
|- ( x = y -> ( A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) <-> A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) ) |
| 71 |
56 70
|
imbi12d |
|- ( x = y -> ( ( c e. ( ( RR ^m x ) ^m NN ) -> A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) ) <-> ( c e. ( ( RR ^m y ) ^m NN ) -> A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) ) ) |
| 72 |
71
|
ralbidv2 |
|- ( x = y -> ( A. c e. ( ( RR ^m x ) ^m NN ) A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) <-> A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) ) |
| 73 |
54 72
|
imbi12d |
|- ( x = y -> ( ( b e. ( RR ^m x ) -> A. c e. ( ( RR ^m x ) ^m NN ) A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) ) <-> ( b e. ( RR ^m y ) -> A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) ) ) |
| 74 |
73
|
ralbidv2 |
|- ( x = y -> ( A. b e. ( RR ^m x ) A. c e. ( ( RR ^m x ) ^m NN ) A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) <-> A. b e. ( RR ^m y ) A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) ) |
| 75 |
53 74
|
imbi12d |
|- ( x = y -> ( ( a e. ( RR ^m x ) -> A. b e. ( RR ^m x ) A. c e. ( ( RR ^m x ) ^m NN ) A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) ) <-> ( a e. ( RR ^m y ) -> A. b e. ( RR ^m y ) A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) ) ) |
| 76 |
75
|
ralbidv2 |
|- ( x = y -> ( A. a e. ( RR ^m x ) A. b e. ( RR ^m x ) A. c e. ( ( RR ^m x ) ^m NN ) A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) <-> A. a e. ( RR ^m y ) A. b e. ( RR ^m y ) A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) ) |
| 77 |
|
oveq2 |
|- ( x = ( y u. { z } ) -> ( RR ^m x ) = ( RR ^m ( y u. { z } ) ) ) |
| 78 |
77
|
eleq2d |
|- ( x = ( y u. { z } ) -> ( a e. ( RR ^m x ) <-> a e. ( RR ^m ( y u. { z } ) ) ) ) |
| 79 |
77
|
eleq2d |
|- ( x = ( y u. { z } ) -> ( b e. ( RR ^m x ) <-> b e. ( RR ^m ( y u. { z } ) ) ) ) |
| 80 |
77
|
oveq1d |
|- ( x = ( y u. { z } ) -> ( ( RR ^m x ) ^m NN ) = ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) |
| 81 |
80
|
eleq2d |
|- ( x = ( y u. { z } ) -> ( c e. ( ( RR ^m x ) ^m NN ) <-> c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) ) |
| 82 |
80
|
eleq2d |
|- ( x = ( y u. { z } ) -> ( d e. ( ( RR ^m x ) ^m NN ) <-> d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) ) |
| 83 |
|
ixpeq1 |
|- ( x = ( y u. { z } ) -> X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) = X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) ) |
| 84 |
|
ixpeq1 |
|- ( x = ( y u. { z } ) -> X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 85 |
84
|
iuneq2d |
|- ( x = ( y u. { z } ) -> U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 86 |
83 85
|
sseq12d |
|- ( x = ( y u. { z } ) -> ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) <-> X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) ) |
| 87 |
|
fveq2 |
|- ( x = ( y u. { z } ) -> ( L ` x ) = ( L ` ( y u. { z } ) ) ) |
| 88 |
87
|
oveqd |
|- ( x = ( y u. { z } ) -> ( a ( L ` x ) b ) = ( a ( L ` ( y u. { z } ) ) b ) ) |
| 89 |
87
|
oveqd |
|- ( x = ( y u. { z } ) -> ( ( c ` j ) ( L ` x ) ( d ` j ) ) = ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) |
| 90 |
89
|
mpteq2dv |
|- ( x = ( y u. { z } ) -> ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) = ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) |
| 91 |
90
|
fveq2d |
|- ( x = ( y u. { z } ) -> ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) |
| 92 |
88 91
|
breq12d |
|- ( x = ( y u. { z } ) -> ( ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) <-> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) ) |
| 93 |
86 92
|
imbi12d |
|- ( x = ( y u. { z } ) -> ( ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) <-> ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) ) ) |
| 94 |
82 93
|
imbi12d |
|- ( x = ( y u. { z } ) -> ( ( d e. ( ( RR ^m x ) ^m NN ) -> ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) ) <-> ( d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) -> ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) ) ) ) |
| 95 |
94
|
ralbidv2 |
|- ( x = ( y u. { z } ) -> ( A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) <-> A. d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) ) ) |
| 96 |
81 95
|
imbi12d |
|- ( x = ( y u. { z } ) -> ( ( c e. ( ( RR ^m x ) ^m NN ) -> A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) ) <-> ( c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) -> A. d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) ) ) ) |
| 97 |
96
|
ralbidv2 |
|- ( x = ( y u. { z } ) -> ( A. c e. ( ( RR ^m x ) ^m NN ) A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) <-> A. c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) A. d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) ) ) |
| 98 |
79 97
|
imbi12d |
|- ( x = ( y u. { z } ) -> ( ( b e. ( RR ^m x ) -> A. c e. ( ( RR ^m x ) ^m NN ) A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) ) <-> ( b e. ( RR ^m ( y u. { z } ) ) -> A. c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) A. d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) ) ) ) |
| 99 |
98
|
ralbidv2 |
|- ( x = ( y u. { z } ) -> ( A. b e. ( RR ^m x ) A. c e. ( ( RR ^m x ) ^m NN ) A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) <-> A. b e. ( RR ^m ( y u. { z } ) ) A. c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) A. d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) ) ) |
| 100 |
78 99
|
imbi12d |
|- ( x = ( y u. { z } ) -> ( ( a e. ( RR ^m x ) -> A. b e. ( RR ^m x ) A. c e. ( ( RR ^m x ) ^m NN ) A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) ) <-> ( a e. ( RR ^m ( y u. { z } ) ) -> A. b e. ( RR ^m ( y u. { z } ) ) A. c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) A. d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) ) ) ) |
| 101 |
100
|
ralbidv2 |
|- ( x = ( y u. { z } ) -> ( A. a e. ( RR ^m x ) A. b e. ( RR ^m x ) A. c e. ( ( RR ^m x ) ^m NN ) A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) <-> A. a e. ( RR ^m ( y u. { z } ) ) A. b e. ( RR ^m ( y u. { z } ) ) A. c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) A. d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) ) ) |
| 102 |
|
oveq2 |
|- ( x = X -> ( RR ^m x ) = ( RR ^m X ) ) |
| 103 |
102
|
eleq2d |
|- ( x = X -> ( a e. ( RR ^m x ) <-> a e. ( RR ^m X ) ) ) |
| 104 |
102
|
eleq2d |
|- ( x = X -> ( b e. ( RR ^m x ) <-> b e. ( RR ^m X ) ) ) |
| 105 |
102
|
oveq1d |
|- ( x = X -> ( ( RR ^m x ) ^m NN ) = ( ( RR ^m X ) ^m NN ) ) |
| 106 |
105
|
eleq2d |
|- ( x = X -> ( c e. ( ( RR ^m x ) ^m NN ) <-> c e. ( ( RR ^m X ) ^m NN ) ) ) |
| 107 |
105
|
eleq2d |
|- ( x = X -> ( d e. ( ( RR ^m x ) ^m NN ) <-> d e. ( ( RR ^m X ) ^m NN ) ) ) |
| 108 |
|
ixpeq1 |
|- ( x = X -> X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) = X_ k e. X ( ( a ` k ) [,) ( b ` k ) ) ) |
| 109 |
|
ixpeq1 |
|- ( x = X -> X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 110 |
109
|
iuneq2d |
|- ( x = X -> U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 111 |
108 110
|
sseq12d |
|- ( x = X -> ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) <-> X_ k e. X ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) ) |
| 112 |
|
fveq2 |
|- ( x = X -> ( L ` x ) = ( L ` X ) ) |
| 113 |
112
|
oveqd |
|- ( x = X -> ( a ( L ` x ) b ) = ( a ( L ` X ) b ) ) |
| 114 |
112
|
oveqd |
|- ( x = X -> ( ( c ` j ) ( L ` x ) ( d ` j ) ) = ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) |
| 115 |
114
|
mpteq2dv |
|- ( x = X -> ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) = ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) |
| 116 |
115
|
fveq2d |
|- ( x = X -> ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) |
| 117 |
113 116
|
breq12d |
|- ( x = X -> ( ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) <-> ( a ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) |
| 118 |
111 117
|
imbi12d |
|- ( x = X -> ( ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) <-> ( X_ k e. X ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) ) |
| 119 |
107 118
|
imbi12d |
|- ( x = X -> ( ( d e. ( ( RR ^m x ) ^m NN ) -> ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) ) <-> ( d e. ( ( RR ^m X ) ^m NN ) -> ( X_ k e. X ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) ) ) |
| 120 |
119
|
ralbidv2 |
|- ( x = X -> ( A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) <-> A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) ) |
| 121 |
106 120
|
imbi12d |
|- ( x = X -> ( ( c e. ( ( RR ^m x ) ^m NN ) -> A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) ) <-> ( c e. ( ( RR ^m X ) ^m NN ) -> A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) ) ) |
| 122 |
121
|
ralbidv2 |
|- ( x = X -> ( A. c e. ( ( RR ^m x ) ^m NN ) A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) <-> A. c e. ( ( RR ^m X ) ^m NN ) A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) ) |
| 123 |
104 122
|
imbi12d |
|- ( x = X -> ( ( b e. ( RR ^m x ) -> A. c e. ( ( RR ^m x ) ^m NN ) A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) ) <-> ( b e. ( RR ^m X ) -> A. c e. ( ( RR ^m X ) ^m NN ) A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) ) ) |
| 124 |
123
|
ralbidv2 |
|- ( x = X -> ( A. b e. ( RR ^m x ) A. c e. ( ( RR ^m x ) ^m NN ) A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) <-> A. b e. ( RR ^m X ) A. c e. ( ( RR ^m X ) ^m NN ) A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) ) |
| 125 |
103 124
|
imbi12d |
|- ( x = X -> ( ( a e. ( RR ^m x ) -> A. b e. ( RR ^m x ) A. c e. ( ( RR ^m x ) ^m NN ) A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) ) <-> ( a e. ( RR ^m X ) -> A. b e. ( RR ^m X ) A. c e. ( ( RR ^m X ) ^m NN ) A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) ) ) |
| 126 |
125
|
ralbidv2 |
|- ( x = X -> ( A. a e. ( RR ^m x ) A. b e. ( RR ^m x ) A. c e. ( ( RR ^m x ) ^m NN ) A. d e. ( ( RR ^m x ) ^m NN ) ( X_ k e. x ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. x ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` x ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` x ) ( d ` j ) ) ) ) ) <-> A. a e. ( RR ^m X ) A. b e. ( RR ^m X ) A. c e. ( ( RR ^m X ) ^m NN ) A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) ) |
| 127 |
|
fveq1 |
|- ( a = e -> ( a ` k ) = ( e ` k ) ) |
| 128 |
127
|
oveq1d |
|- ( a = e -> ( ( a ` k ) [,) ( b ` k ) ) = ( ( e ` k ) [,) ( b ` k ) ) ) |
| 129 |
128
|
fveq2d |
|- ( a = e -> ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) = ( vol ` ( ( e ` k ) [,) ( b ` k ) ) ) ) |
| 130 |
129
|
prodeq2ad |
|- ( a = e -> prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) = prod_ k e. x ( vol ` ( ( e ` k ) [,) ( b ` k ) ) ) ) |
| 131 |
130
|
ifeq2d |
|- ( a = e -> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) = if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( e ` k ) [,) ( b ` k ) ) ) ) ) |
| 132 |
|
fveq1 |
|- ( b = f -> ( b ` k ) = ( f ` k ) ) |
| 133 |
132
|
oveq2d |
|- ( b = f -> ( ( e ` k ) [,) ( b ` k ) ) = ( ( e ` k ) [,) ( f ` k ) ) ) |
| 134 |
133
|
fveq2d |
|- ( b = f -> ( vol ` ( ( e ` k ) [,) ( b ` k ) ) ) = ( vol ` ( ( e ` k ) [,) ( f ` k ) ) ) ) |
| 135 |
134
|
prodeq2ad |
|- ( b = f -> prod_ k e. x ( vol ` ( ( e ` k ) [,) ( b ` k ) ) ) = prod_ k e. x ( vol ` ( ( e ` k ) [,) ( f ` k ) ) ) ) |
| 136 |
135
|
ifeq2d |
|- ( b = f -> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( e ` k ) [,) ( b ` k ) ) ) ) = if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( e ` k ) [,) ( f ` k ) ) ) ) ) |
| 137 |
131 136
|
cbvmpov |
|- ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) = ( e e. ( RR ^m x ) , f e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( e ` k ) [,) ( f ` k ) ) ) ) ) |
| 138 |
137
|
mpteq2i |
|- ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) = ( x e. Fin |-> ( e e. ( RR ^m x ) , f e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( e ` k ) [,) ( f ` k ) ) ) ) ) ) |
| 139 |
1 138
|
eqtri |
|- L = ( x e. Fin |-> ( e e. ( RR ^m x ) , f e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( e ` k ) [,) ( f ` k ) ) ) ) ) ) |
| 140 |
|
elmapi |
|- ( a e. ( RR ^m (/) ) -> a : (/) --> RR ) |
| 141 |
140
|
adantr |
|- ( ( a e. ( RR ^m (/) ) /\ b e. ( RR ^m (/) ) ) -> a : (/) --> RR ) |
| 142 |
|
elmapi |
|- ( b e. ( RR ^m (/) ) -> b : (/) --> RR ) |
| 143 |
142
|
adantl |
|- ( ( a e. ( RR ^m (/) ) /\ b e. ( RR ^m (/) ) ) -> b : (/) --> RR ) |
| 144 |
139 141 143
|
hoidmv0val |
|- ( ( a e. ( RR ^m (/) ) /\ b e. ( RR ^m (/) ) ) -> ( a ( L ` (/) ) b ) = 0 ) |
| 145 |
144
|
ad5ant23 |
|- ( ( ( ( ( ph /\ a e. ( RR ^m (/) ) ) /\ b e. ( RR ^m (/) ) ) /\ c e. ( ( RR ^m (/) ) ^m NN ) ) /\ d e. ( ( RR ^m (/) ) ^m NN ) ) -> ( a ( L ` (/) ) b ) = 0 ) |
| 146 |
|
nfv |
|- F/ j ( c e. ( ( RR ^m (/) ) ^m NN ) /\ d e. ( ( RR ^m (/) ) ^m NN ) ) |
| 147 |
9
|
a1i |
|- ( ( c e. ( ( RR ^m (/) ) ^m NN ) /\ d e. ( ( RR ^m (/) ) ^m NN ) ) -> NN e. _V ) |
| 148 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
| 149 |
|
0fi |
|- (/) e. Fin |
| 150 |
149
|
a1i |
|- ( ( ( c e. ( ( RR ^m (/) ) ^m NN ) /\ d e. ( ( RR ^m (/) ) ^m NN ) ) /\ j e. NN ) -> (/) e. Fin ) |
| 151 |
|
ovexd |
|- ( ( c e. ( ( RR ^m (/) ) ^m NN ) /\ j e. NN ) -> ( RR ^m (/) ) e. _V ) |
| 152 |
9
|
a1i |
|- ( ( c e. ( ( RR ^m (/) ) ^m NN ) /\ j e. NN ) -> NN e. _V ) |
| 153 |
|
simpl |
|- ( ( c e. ( ( RR ^m (/) ) ^m NN ) /\ j e. NN ) -> c e. ( ( RR ^m (/) ) ^m NN ) ) |
| 154 |
|
simpr |
|- ( ( c e. ( ( RR ^m (/) ) ^m NN ) /\ j e. NN ) -> j e. NN ) |
| 155 |
151 152 153 154
|
fvmap |
|- ( ( c e. ( ( RR ^m (/) ) ^m NN ) /\ j e. NN ) -> ( c ` j ) e. ( RR ^m (/) ) ) |
| 156 |
|
elmapi |
|- ( ( c ` j ) e. ( RR ^m (/) ) -> ( c ` j ) : (/) --> RR ) |
| 157 |
155 156
|
syl |
|- ( ( c e. ( ( RR ^m (/) ) ^m NN ) /\ j e. NN ) -> ( c ` j ) : (/) --> RR ) |
| 158 |
157
|
adantlr |
|- ( ( ( c e. ( ( RR ^m (/) ) ^m NN ) /\ d e. ( ( RR ^m (/) ) ^m NN ) ) /\ j e. NN ) -> ( c ` j ) : (/) --> RR ) |
| 159 |
|
ovexd |
|- ( ( d e. ( ( RR ^m (/) ) ^m NN ) /\ j e. NN ) -> ( RR ^m (/) ) e. _V ) |
| 160 |
9
|
a1i |
|- ( ( d e. ( ( RR ^m (/) ) ^m NN ) /\ j e. NN ) -> NN e. _V ) |
| 161 |
|
simpl |
|- ( ( d e. ( ( RR ^m (/) ) ^m NN ) /\ j e. NN ) -> d e. ( ( RR ^m (/) ) ^m NN ) ) |
| 162 |
|
simpr |
|- ( ( d e. ( ( RR ^m (/) ) ^m NN ) /\ j e. NN ) -> j e. NN ) |
| 163 |
159 160 161 162
|
fvmap |
|- ( ( d e. ( ( RR ^m (/) ) ^m NN ) /\ j e. NN ) -> ( d ` j ) e. ( RR ^m (/) ) ) |
| 164 |
|
elmapi |
|- ( ( d ` j ) e. ( RR ^m (/) ) -> ( d ` j ) : (/) --> RR ) |
| 165 |
163 164
|
syl |
|- ( ( d e. ( ( RR ^m (/) ) ^m NN ) /\ j e. NN ) -> ( d ` j ) : (/) --> RR ) |
| 166 |
165
|
adantll |
|- ( ( ( c e. ( ( RR ^m (/) ) ^m NN ) /\ d e. ( ( RR ^m (/) ) ^m NN ) ) /\ j e. NN ) -> ( d ` j ) : (/) --> RR ) |
| 167 |
1 150 158 166
|
hoidmvcl |
|- ( ( ( c e. ( ( RR ^m (/) ) ^m NN ) /\ d e. ( ( RR ^m (/) ) ^m NN ) ) /\ j e. NN ) -> ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) e. ( 0 [,) +oo ) ) |
| 168 |
148 167
|
sselid |
|- ( ( ( c e. ( ( RR ^m (/) ) ^m NN ) /\ d e. ( ( RR ^m (/) ) ^m NN ) ) /\ j e. NN ) -> ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) e. ( 0 [,] +oo ) ) |
| 169 |
146 147 168
|
sge0ge0mpt |
|- ( ( c e. ( ( RR ^m (/) ) ^m NN ) /\ d e. ( ( RR ^m (/) ) ^m NN ) ) -> 0 <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) ) ) ) |
| 170 |
169
|
adantll |
|- ( ( ( ( ( ph /\ a e. ( RR ^m (/) ) ) /\ b e. ( RR ^m (/) ) ) /\ c e. ( ( RR ^m (/) ) ^m NN ) ) /\ d e. ( ( RR ^m (/) ) ^m NN ) ) -> 0 <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) ) ) ) |
| 171 |
145 170
|
eqbrtrd |
|- ( ( ( ( ( ph /\ a e. ( RR ^m (/) ) ) /\ b e. ( RR ^m (/) ) ) /\ c e. ( ( RR ^m (/) ) ^m NN ) ) /\ d e. ( ( RR ^m (/) ) ^m NN ) ) -> ( a ( L ` (/) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) ) ) ) |
| 172 |
171
|
a1d |
|- ( ( ( ( ( ph /\ a e. ( RR ^m (/) ) ) /\ b e. ( RR ^m (/) ) ) /\ c e. ( ( RR ^m (/) ) ^m NN ) ) /\ d e. ( ( RR ^m (/) ) ^m NN ) ) -> ( X_ k e. (/) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. (/) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` (/) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) ) ) ) ) |
| 173 |
172
|
ralrimiva |
|- ( ( ( ( ph /\ a e. ( RR ^m (/) ) ) /\ b e. ( RR ^m (/) ) ) /\ c e. ( ( RR ^m (/) ) ^m NN ) ) -> A. d e. ( ( RR ^m (/) ) ^m NN ) ( X_ k e. (/) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. (/) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` (/) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) ) ) ) ) |
| 174 |
173
|
ralrimiva |
|- ( ( ( ph /\ a e. ( RR ^m (/) ) ) /\ b e. ( RR ^m (/) ) ) -> A. c e. ( ( RR ^m (/) ) ^m NN ) A. d e. ( ( RR ^m (/) ) ^m NN ) ( X_ k e. (/) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. (/) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` (/) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) ) ) ) ) |
| 175 |
174
|
ralrimiva |
|- ( ( ph /\ a e. ( RR ^m (/) ) ) -> A. b e. ( RR ^m (/) ) A. c e. ( ( RR ^m (/) ) ^m NN ) A. d e. ( ( RR ^m (/) ) ^m NN ) ( X_ k e. (/) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. (/) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` (/) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) ) ) ) ) |
| 176 |
175
|
ralrimiva |
|- ( ph -> A. a e. ( RR ^m (/) ) A. b e. ( RR ^m (/) ) A. c e. ( ( RR ^m (/) ) ^m NN ) A. d e. ( ( RR ^m (/) ) ^m NN ) ( X_ k e. (/) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. (/) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` (/) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` (/) ) ( d ` j ) ) ) ) ) ) |
| 177 |
|
simpl |
|- ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. a e. ( RR ^m y ) A. b e. ( RR ^m y ) A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) -> ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) ) |
| 178 |
128
|
ixpeq2dv |
|- ( a = e -> X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) = X_ k e. y ( ( e ` k ) [,) ( b ` k ) ) ) |
| 179 |
178
|
sseq1d |
|- ( a = e -> ( X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) <-> X_ k e. y ( ( e ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) ) |
| 180 |
|
oveq1 |
|- ( a = e -> ( a ( L ` y ) b ) = ( e ( L ` y ) b ) ) |
| 181 |
180
|
breq1d |
|- ( a = e -> ( ( a ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) <-> ( e ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) |
| 182 |
179 181
|
imbi12d |
|- ( a = e -> ( ( X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) <-> ( X_ k e. y ( ( e ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) ) |
| 183 |
182
|
ralbidv |
|- ( a = e -> ( A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) <-> A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) ) |
| 184 |
183
|
ralbidv |
|- ( a = e -> ( A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) <-> A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) ) |
| 185 |
184
|
ralbidv |
|- ( a = e -> ( A. b e. ( RR ^m y ) A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) <-> A. b e. ( RR ^m y ) A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) ) |
| 186 |
133
|
ixpeq2dv |
|- ( b = f -> X_ k e. y ( ( e ` k ) [,) ( b ` k ) ) = X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) ) |
| 187 |
186
|
sseq1d |
|- ( b = f -> ( X_ k e. y ( ( e ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) <-> X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) ) |
| 188 |
|
oveq2 |
|- ( b = f -> ( e ( L ` y ) b ) = ( e ( L ` y ) f ) ) |
| 189 |
188
|
breq1d |
|- ( b = f -> ( ( e ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) <-> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) |
| 190 |
187 189
|
imbi12d |
|- ( b = f -> ( ( X_ k e. y ( ( e ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) <-> ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) ) |
| 191 |
190
|
ralbidv |
|- ( b = f -> ( A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) <-> A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) ) |
| 192 |
191
|
ralbidv |
|- ( b = f -> ( A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) <-> A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) ) |
| 193 |
|
fveq1 |
|- ( c = g -> ( c ` j ) = ( g ` j ) ) |
| 194 |
193
|
fveq1d |
|- ( c = g -> ( ( c ` j ) ` k ) = ( ( g ` j ) ` k ) ) |
| 195 |
194
|
oveq1d |
|- ( c = g -> ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = ( ( ( g ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 196 |
195
|
ixpeq2dv |
|- ( c = g -> X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 197 |
196
|
adantr |
|- ( ( c = g /\ j e. NN ) -> X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 198 |
197
|
iuneq2dv |
|- ( c = g -> U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 199 |
198
|
sseq2d |
|- ( c = g -> ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) <-> X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) ) |
| 200 |
193
|
oveq1d |
|- ( c = g -> ( ( c ` j ) ( L ` y ) ( d ` j ) ) = ( ( g ` j ) ( L ` y ) ( d ` j ) ) ) |
| 201 |
200
|
mpteq2dv |
|- ( c = g -> ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) = ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( d ` j ) ) ) ) |
| 202 |
201
|
fveq2d |
|- ( c = g -> ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( d ` j ) ) ) ) ) |
| 203 |
202
|
breq2d |
|- ( c = g -> ( ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) <-> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) |
| 204 |
199 203
|
imbi12d |
|- ( c = g -> ( ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) <-> ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) ) |
| 205 |
204
|
ralbidv |
|- ( c = g -> ( A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) <-> A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) ) |
| 206 |
|
fveq1 |
|- ( d = h -> ( d ` j ) = ( h ` j ) ) |
| 207 |
206
|
fveq1d |
|- ( d = h -> ( ( d ` j ) ` k ) = ( ( h ` j ) ` k ) ) |
| 208 |
207
|
oveq2d |
|- ( d = h -> ( ( ( g ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) ) |
| 209 |
208
|
ixpeq2dv |
|- ( d = h -> X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) ) |
| 210 |
209
|
adantr |
|- ( ( d = h /\ j e. NN ) -> X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) ) |
| 211 |
210
|
iuneq2dv |
|- ( d = h -> U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) ) |
| 212 |
211
|
sseq2d |
|- ( d = h -> ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) <-> X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) ) ) |
| 213 |
206
|
oveq2d |
|- ( d = h -> ( ( g ` j ) ( L ` y ) ( d ` j ) ) = ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) |
| 214 |
213
|
mpteq2dv |
|- ( d = h -> ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( d ` j ) ) ) = ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) |
| 215 |
214
|
fveq2d |
|- ( d = h -> ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( d ` j ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) |
| 216 |
215
|
breq2d |
|- ( d = h -> ( ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( d ` j ) ) ) ) <-> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) |
| 217 |
212 216
|
imbi12d |
|- ( d = h -> ( ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( d ` j ) ) ) ) ) <-> ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) ) |
| 218 |
217
|
cbvralvw |
|- ( A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( d ` j ) ) ) ) ) <-> A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) |
| 219 |
218
|
a1i |
|- ( c = g -> ( A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( d ` j ) ) ) ) ) <-> A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) ) |
| 220 |
205 219
|
bitrd |
|- ( c = g -> ( A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) <-> A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) ) |
| 221 |
220
|
cbvralvw |
|- ( A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) <-> A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) |
| 222 |
221
|
a1i |
|- ( b = f -> ( A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) <-> A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) ) |
| 223 |
192 222
|
bitrd |
|- ( b = f -> ( A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) <-> A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) ) |
| 224 |
223
|
cbvralvw |
|- ( A. b e. ( RR ^m y ) A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) <-> A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) |
| 225 |
224
|
a1i |
|- ( a = e -> ( A. b e. ( RR ^m y ) A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( e ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) <-> A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) ) |
| 226 |
185 225
|
bitrd |
|- ( a = e -> ( A. b e. ( RR ^m y ) A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) <-> A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) ) |
| 227 |
226
|
cbvralvw |
|- ( A. a e. ( RR ^m y ) A. b e. ( RR ^m y ) A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) <-> A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) |
| 228 |
227
|
biimpi |
|- ( A. a e. ( RR ^m y ) A. b e. ( RR ^m y ) A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) -> A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) |
| 229 |
228
|
adantl |
|- ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. a e. ( RR ^m y ) A. b e. ( RR ^m y ) A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) -> A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) |
| 230 |
|
simplll |
|- ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ y = (/) ) -> ph ) |
| 231 |
|
eldifi |
|- ( z e. ( X \ y ) -> z e. X ) |
| 232 |
231
|
adantl |
|- ( ( ph /\ z e. ( X \ y ) ) -> z e. X ) |
| 233 |
232
|
adantrl |
|- ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) -> z e. X ) |
| 234 |
233
|
ad2antrr |
|- ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ y = (/) ) -> z e. X ) |
| 235 |
|
simpl |
|- ( ( a e. ( RR ^m ( y u. { z } ) ) /\ y = (/) ) -> a e. ( RR ^m ( y u. { z } ) ) ) |
| 236 |
|
uneq1 |
|- ( y = (/) -> ( y u. { z } ) = ( (/) u. { z } ) ) |
| 237 |
|
0un |
|- ( (/) u. { z } ) = { z } |
| 238 |
237
|
a1i |
|- ( y = (/) -> ( (/) u. { z } ) = { z } ) |
| 239 |
236 238
|
eqtr2d |
|- ( y = (/) -> { z } = ( y u. { z } ) ) |
| 240 |
239
|
eqcomd |
|- ( y = (/) -> ( y u. { z } ) = { z } ) |
| 241 |
240
|
oveq2d |
|- ( y = (/) -> ( RR ^m ( y u. { z } ) ) = ( RR ^m { z } ) ) |
| 242 |
241
|
adantl |
|- ( ( a e. ( RR ^m ( y u. { z } ) ) /\ y = (/) ) -> ( RR ^m ( y u. { z } ) ) = ( RR ^m { z } ) ) |
| 243 |
235 242
|
eleqtrd |
|- ( ( a e. ( RR ^m ( y u. { z } ) ) /\ y = (/) ) -> a e. ( RR ^m { z } ) ) |
| 244 |
243
|
adantll |
|- ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ y = (/) ) -> a e. ( RR ^m { z } ) ) |
| 245 |
230 234 244
|
jca31 |
|- ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ y = (/) ) -> ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) ) |
| 246 |
245
|
adantllr |
|- ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ y = (/) ) -> ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) ) |
| 247 |
246
|
adantlr |
|- ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ y = (/) ) -> ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) ) |
| 248 |
247
|
adantlr |
|- ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ y = (/) ) -> ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) ) |
| 249 |
|
simpl |
|- ( ( b e. ( RR ^m ( y u. { z } ) ) /\ y = (/) ) -> b e. ( RR ^m ( y u. { z } ) ) ) |
| 250 |
241
|
adantl |
|- ( ( b e. ( RR ^m ( y u. { z } ) ) /\ y = (/) ) -> ( RR ^m ( y u. { z } ) ) = ( RR ^m { z } ) ) |
| 251 |
249 250
|
eleqtrd |
|- ( ( b e. ( RR ^m ( y u. { z } ) ) /\ y = (/) ) -> b e. ( RR ^m { z } ) ) |
| 252 |
251
|
adantlr |
|- ( ( ( b e. ( RR ^m ( y u. { z } ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ y = (/) ) -> b e. ( RR ^m { z } ) ) |
| 253 |
252
|
adantlll |
|- ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ y = (/) ) -> b e. ( RR ^m { z } ) ) |
| 254 |
|
simpl |
|- ( ( c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) /\ y = (/) ) -> c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) |
| 255 |
241
|
oveq1d |
|- ( y = (/) -> ( ( RR ^m ( y u. { z } ) ) ^m NN ) = ( ( RR ^m { z } ) ^m NN ) ) |
| 256 |
255
|
adantl |
|- ( ( c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) /\ y = (/) ) -> ( ( RR ^m ( y u. { z } ) ) ^m NN ) = ( ( RR ^m { z } ) ^m NN ) ) |
| 257 |
254 256
|
eleqtrd |
|- ( ( c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) /\ y = (/) ) -> c e. ( ( RR ^m { z } ) ^m NN ) ) |
| 258 |
257
|
adantll |
|- ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ y = (/) ) -> c e. ( ( RR ^m { z } ) ^m NN ) ) |
| 259 |
248 253 258
|
jca31 |
|- ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ y = (/) ) -> ( ( ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) /\ b e. ( RR ^m { z } ) ) /\ c e. ( ( RR ^m { z } ) ^m NN ) ) ) |
| 260 |
259
|
adantlr |
|- ( ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ y = (/) ) -> ( ( ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) /\ b e. ( RR ^m { z } ) ) /\ c e. ( ( RR ^m { z } ) ^m NN ) ) ) |
| 261 |
260
|
adantlr |
|- ( ( ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) /\ y = (/) ) -> ( ( ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) /\ b e. ( RR ^m { z } ) ) /\ c e. ( ( RR ^m { z } ) ^m NN ) ) ) |
| 262 |
|
simpl |
|- ( ( d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) /\ y = (/) ) -> d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) |
| 263 |
255
|
adantl |
|- ( ( d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) /\ y = (/) ) -> ( ( RR ^m ( y u. { z } ) ) ^m NN ) = ( ( RR ^m { z } ) ^m NN ) ) |
| 264 |
262 263
|
eleqtrd |
|- ( ( d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) /\ y = (/) ) -> d e. ( ( RR ^m { z } ) ^m NN ) ) |
| 265 |
264
|
adantlr |
|- ( ( ( d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) /\ X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) /\ y = (/) ) -> d e. ( ( RR ^m { z } ) ^m NN ) ) |
| 266 |
265
|
adantlll |
|- ( ( ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) /\ y = (/) ) -> d e. ( ( RR ^m { z } ) ^m NN ) ) |
| 267 |
|
simpl |
|- ( ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) /\ y = (/) ) -> X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 268 |
239
|
ixpeq1d |
|- ( y = (/) -> X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) = X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) ) |
| 269 |
268
|
adantl |
|- ( ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) /\ y = (/) ) -> X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) = X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) ) |
| 270 |
239
|
ixpeq1d |
|- ( y = (/) -> X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) = X_ k e. ( y u. { z } ) ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) ) |
| 271 |
270
|
adantr |
|- ( ( y = (/) /\ i e. NN ) -> X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) = X_ k e. ( y u. { z } ) ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) ) |
| 272 |
271
|
iuneq2dv |
|- ( y = (/) -> U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) = U_ i e. NN X_ k e. ( y u. { z } ) ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) ) |
| 273 |
|
fveq2 |
|- ( i = j -> ( c ` i ) = ( c ` j ) ) |
| 274 |
273
|
fveq1d |
|- ( i = j -> ( ( c ` i ) ` k ) = ( ( c ` j ) ` k ) ) |
| 275 |
|
fveq2 |
|- ( i = j -> ( d ` i ) = ( d ` j ) ) |
| 276 |
275
|
fveq1d |
|- ( i = j -> ( ( d ` i ) ` k ) = ( ( d ` j ) ` k ) ) |
| 277 |
274 276
|
oveq12d |
|- ( i = j -> ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) = ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 278 |
277
|
ixpeq2dv |
|- ( i = j -> X_ k e. ( y u. { z } ) ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) = X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 279 |
278
|
cbviunv |
|- U_ i e. NN X_ k e. ( y u. { z } ) ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) = U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) |
| 280 |
279
|
a1i |
|- ( y = (/) -> U_ i e. NN X_ k e. ( y u. { z } ) ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) = U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 281 |
272 280
|
eqtrd |
|- ( y = (/) -> U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) = U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 282 |
281
|
adantl |
|- ( ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) /\ y = (/) ) -> U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) = U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 283 |
269 282
|
sseq12d |
|- ( ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) /\ y = (/) ) -> ( X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) <-> X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) ) |
| 284 |
267 283
|
mpbird |
|- ( ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) /\ y = (/) ) -> X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) ) |
| 285 |
284
|
adantll |
|- ( ( ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) /\ y = (/) ) -> X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) ) |
| 286 |
261 266 285
|
jca31 |
|- ( ( ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) /\ y = (/) ) -> ( ( ( ( ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) /\ b e. ( RR ^m { z } ) ) /\ c e. ( ( RR ^m { z } ) ^m NN ) ) /\ d e. ( ( RR ^m { z } ) ^m NN ) ) /\ X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) ) ) |
| 287 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) /\ y = (/) ) -> y = (/) ) |
| 288 |
|
fveq1 |
|- ( a = u -> ( a ` k ) = ( u ` k ) ) |
| 289 |
288
|
oveq1d |
|- ( a = u -> ( ( a ` k ) [,) ( b ` k ) ) = ( ( u ` k ) [,) ( b ` k ) ) ) |
| 290 |
289
|
fveq2d |
|- ( a = u -> ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) = ( vol ` ( ( u ` k ) [,) ( b ` k ) ) ) ) |
| 291 |
290
|
prodeq2ad |
|- ( a = u -> prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) = prod_ k e. x ( vol ` ( ( u ` k ) [,) ( b ` k ) ) ) ) |
| 292 |
291
|
ifeq2d |
|- ( a = u -> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) = if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( u ` k ) [,) ( b ` k ) ) ) ) ) |
| 293 |
|
fveq2 |
|- ( k = l -> ( u ` k ) = ( u ` l ) ) |
| 294 |
|
fveq2 |
|- ( k = l -> ( b ` k ) = ( b ` l ) ) |
| 295 |
293 294
|
oveq12d |
|- ( k = l -> ( ( u ` k ) [,) ( b ` k ) ) = ( ( u ` l ) [,) ( b ` l ) ) ) |
| 296 |
295
|
fveq2d |
|- ( k = l -> ( vol ` ( ( u ` k ) [,) ( b ` k ) ) ) = ( vol ` ( ( u ` l ) [,) ( b ` l ) ) ) ) |
| 297 |
296
|
cbvprodv |
|- prod_ k e. x ( vol ` ( ( u ` k ) [,) ( b ` k ) ) ) = prod_ l e. x ( vol ` ( ( u ` l ) [,) ( b ` l ) ) ) |
| 298 |
297
|
a1i |
|- ( b = v -> prod_ k e. x ( vol ` ( ( u ` k ) [,) ( b ` k ) ) ) = prod_ l e. x ( vol ` ( ( u ` l ) [,) ( b ` l ) ) ) ) |
| 299 |
|
fveq1 |
|- ( b = v -> ( b ` l ) = ( v ` l ) ) |
| 300 |
299
|
oveq2d |
|- ( b = v -> ( ( u ` l ) [,) ( b ` l ) ) = ( ( u ` l ) [,) ( v ` l ) ) ) |
| 301 |
300
|
fveq2d |
|- ( b = v -> ( vol ` ( ( u ` l ) [,) ( b ` l ) ) ) = ( vol ` ( ( u ` l ) [,) ( v ` l ) ) ) ) |
| 302 |
301
|
prodeq2ad |
|- ( b = v -> prod_ l e. x ( vol ` ( ( u ` l ) [,) ( b ` l ) ) ) = prod_ l e. x ( vol ` ( ( u ` l ) [,) ( v ` l ) ) ) ) |
| 303 |
298 302
|
eqtrd |
|- ( b = v -> prod_ k e. x ( vol ` ( ( u ` k ) [,) ( b ` k ) ) ) = prod_ l e. x ( vol ` ( ( u ` l ) [,) ( v ` l ) ) ) ) |
| 304 |
303
|
ifeq2d |
|- ( b = v -> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( u ` k ) [,) ( b ` k ) ) ) ) = if ( x = (/) , 0 , prod_ l e. x ( vol ` ( ( u ` l ) [,) ( v ` l ) ) ) ) ) |
| 305 |
292 304
|
cbvmpov |
|- ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) = ( u e. ( RR ^m x ) , v e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ l e. x ( vol ` ( ( u ` l ) [,) ( v ` l ) ) ) ) ) |
| 306 |
305
|
mpteq2i |
|- ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) = ( x e. Fin |-> ( u e. ( RR ^m x ) , v e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ l e. x ( vol ` ( ( u ` l ) [,) ( v ` l ) ) ) ) ) ) |
| 307 |
1 306
|
eqtri |
|- L = ( x e. Fin |-> ( u e. ( RR ^m x ) , v e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ l e. x ( vol ` ( ( u ` l ) [,) ( v ` l ) ) ) ) ) ) |
| 308 |
|
simp-6r |
|- ( ( ( ( ( ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) /\ b e. ( RR ^m { z } ) ) /\ c e. ( ( RR ^m { z } ) ^m NN ) ) /\ d e. ( ( RR ^m { z } ) ^m NN ) ) /\ X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) ) -> z e. X ) |
| 309 |
|
eqid |
|- { z } = { z } |
| 310 |
|
elmapi |
|- ( a e. ( RR ^m { z } ) -> a : { z } --> RR ) |
| 311 |
310
|
ad2antlr |
|- ( ( ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) /\ b e. ( RR ^m { z } ) ) -> a : { z } --> RR ) |
| 312 |
311
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) /\ b e. ( RR ^m { z } ) ) /\ c e. ( ( RR ^m { z } ) ^m NN ) ) /\ d e. ( ( RR ^m { z } ) ^m NN ) ) /\ X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) ) -> a : { z } --> RR ) |
| 313 |
|
elmapi |
|- ( b e. ( RR ^m { z } ) -> b : { z } --> RR ) |
| 314 |
313
|
adantl |
|- ( ( ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) /\ b e. ( RR ^m { z } ) ) -> b : { z } --> RR ) |
| 315 |
314
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) /\ b e. ( RR ^m { z } ) ) /\ c e. ( ( RR ^m { z } ) ^m NN ) ) /\ d e. ( ( RR ^m { z } ) ^m NN ) ) /\ X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) ) -> b : { z } --> RR ) |
| 316 |
|
elmapi |
|- ( c e. ( ( RR ^m { z } ) ^m NN ) -> c : NN --> ( RR ^m { z } ) ) |
| 317 |
316
|
adantl |
|- ( ( ( ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) /\ b e. ( RR ^m { z } ) ) /\ c e. ( ( RR ^m { z } ) ^m NN ) ) -> c : NN --> ( RR ^m { z } ) ) |
| 318 |
317
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) /\ b e. ( RR ^m { z } ) ) /\ c e. ( ( RR ^m { z } ) ^m NN ) ) /\ d e. ( ( RR ^m { z } ) ^m NN ) ) /\ X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) ) -> c : NN --> ( RR ^m { z } ) ) |
| 319 |
|
elmapi |
|- ( d e. ( ( RR ^m { z } ) ^m NN ) -> d : NN --> ( RR ^m { z } ) ) |
| 320 |
319
|
ad2antlr |
|- ( ( ( ( ( ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) /\ b e. ( RR ^m { z } ) ) /\ c e. ( ( RR ^m { z } ) ^m NN ) ) /\ d e. ( ( RR ^m { z } ) ^m NN ) ) /\ X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) ) -> d : NN --> ( RR ^m { z } ) ) |
| 321 |
|
id |
|- ( X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) -> X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) ) |
| 322 |
|
fveq2 |
|- ( k = l -> ( a ` k ) = ( a ` l ) ) |
| 323 |
322 294
|
oveq12d |
|- ( k = l -> ( ( a ` k ) [,) ( b ` k ) ) = ( ( a ` l ) [,) ( b ` l ) ) ) |
| 324 |
|
eqcom |
|- ( k = l <-> l = k ) |
| 325 |
324
|
imbi1i |
|- ( ( k = l -> ( ( a ` k ) [,) ( b ` k ) ) = ( ( a ` l ) [,) ( b ` l ) ) ) <-> ( l = k -> ( ( a ` k ) [,) ( b ` k ) ) = ( ( a ` l ) [,) ( b ` l ) ) ) ) |
| 326 |
|
eqcom |
|- ( ( ( a ` k ) [,) ( b ` k ) ) = ( ( a ` l ) [,) ( b ` l ) ) <-> ( ( a ` l ) [,) ( b ` l ) ) = ( ( a ` k ) [,) ( b ` k ) ) ) |
| 327 |
326
|
imbi2i |
|- ( ( l = k -> ( ( a ` k ) [,) ( b ` k ) ) = ( ( a ` l ) [,) ( b ` l ) ) ) <-> ( l = k -> ( ( a ` l ) [,) ( b ` l ) ) = ( ( a ` k ) [,) ( b ` k ) ) ) ) |
| 328 |
325 327
|
bitri |
|- ( ( k = l -> ( ( a ` k ) [,) ( b ` k ) ) = ( ( a ` l ) [,) ( b ` l ) ) ) <-> ( l = k -> ( ( a ` l ) [,) ( b ` l ) ) = ( ( a ` k ) [,) ( b ` k ) ) ) ) |
| 329 |
323 328
|
mpbi |
|- ( l = k -> ( ( a ` l ) [,) ( b ` l ) ) = ( ( a ` k ) [,) ( b ` k ) ) ) |
| 330 |
329
|
cbvixpv |
|- X_ l e. { z } ( ( a ` l ) [,) ( b ` l ) ) = X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) |
| 331 |
330
|
a1i |
|- ( X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) -> X_ l e. { z } ( ( a ` l ) [,) ( b ` l ) ) = X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) ) |
| 332 |
277
|
ixpeq2dv |
|- ( i = j -> X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) = X_ k e. { z } ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 333 |
332
|
cbviunv |
|- U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) = U_ j e. NN X_ k e. { z } ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) |
| 334 |
|
fveq2 |
|- ( k = l -> ( ( c ` j ) ` k ) = ( ( c ` j ) ` l ) ) |
| 335 |
|
fveq2 |
|- ( k = l -> ( ( d ` j ) ` k ) = ( ( d ` j ) ` l ) ) |
| 336 |
334 335
|
oveq12d |
|- ( k = l -> ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = ( ( ( c ` j ) ` l ) [,) ( ( d ` j ) ` l ) ) ) |
| 337 |
336
|
cbvixpv |
|- X_ k e. { z } ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = X_ l e. { z } ( ( ( c ` j ) ` l ) [,) ( ( d ` j ) ` l ) ) |
| 338 |
337
|
a1i |
|- ( j e. NN -> X_ k e. { z } ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = X_ l e. { z } ( ( ( c ` j ) ` l ) [,) ( ( d ` j ) ` l ) ) ) |
| 339 |
338
|
iuneq2i |
|- U_ j e. NN X_ k e. { z } ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = U_ j e. NN X_ l e. { z } ( ( ( c ` j ) ` l ) [,) ( ( d ` j ) ` l ) ) |
| 340 |
333 339
|
eqtr2i |
|- U_ j e. NN X_ l e. { z } ( ( ( c ` j ) ` l ) [,) ( ( d ` j ) ` l ) ) = U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) |
| 341 |
340
|
a1i |
|- ( X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) -> U_ j e. NN X_ l e. { z } ( ( ( c ` j ) ` l ) [,) ( ( d ` j ) ` l ) ) = U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) ) |
| 342 |
331 341
|
sseq12d |
|- ( X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) -> ( X_ l e. { z } ( ( a ` l ) [,) ( b ` l ) ) C_ U_ j e. NN X_ l e. { z } ( ( ( c ` j ) ` l ) [,) ( ( d ` j ) ` l ) ) <-> X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) ) ) |
| 343 |
321 342
|
mpbird |
|- ( X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) -> X_ l e. { z } ( ( a ` l ) [,) ( b ` l ) ) C_ U_ j e. NN X_ l e. { z } ( ( ( c ` j ) ` l ) [,) ( ( d ` j ) ` l ) ) ) |
| 344 |
343
|
adantl |
|- ( ( ( ( ( ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) /\ b e. ( RR ^m { z } ) ) /\ c e. ( ( RR ^m { z } ) ^m NN ) ) /\ d e. ( ( RR ^m { z } ) ^m NN ) ) /\ X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) ) -> X_ l e. { z } ( ( a ` l ) [,) ( b ` l ) ) C_ U_ j e. NN X_ l e. { z } ( ( ( c ` j ) ` l ) [,) ( ( d ` j ) ` l ) ) ) |
| 345 |
307 308 309 312 315 318 320 344
|
hoidmv1le |
|- ( ( ( ( ( ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) /\ b e. ( RR ^m { z } ) ) /\ c e. ( ( RR ^m { z } ) ^m NN ) ) /\ d e. ( ( RR ^m { z } ) ^m NN ) ) /\ X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) ) -> ( a ( L ` { z } ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` { z } ) ( d ` j ) ) ) ) ) |
| 346 |
345
|
adantr |
|- ( ( ( ( ( ( ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) /\ b e. ( RR ^m { z } ) ) /\ c e. ( ( RR ^m { z } ) ^m NN ) ) /\ d e. ( ( RR ^m { z } ) ^m NN ) ) /\ X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) ) /\ y = (/) ) -> ( a ( L ` { z } ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` { z } ) ( d ` j ) ) ) ) ) |
| 347 |
236 238
|
eqtrd |
|- ( y = (/) -> ( y u. { z } ) = { z } ) |
| 348 |
347
|
fveq2d |
|- ( y = (/) -> ( L ` ( y u. { z } ) ) = ( L ` { z } ) ) |
| 349 |
348
|
oveqd |
|- ( y = (/) -> ( a ( L ` ( y u. { z } ) ) b ) = ( a ( L ` { z } ) b ) ) |
| 350 |
349
|
adantl |
|- ( ( ( ( ( ( ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) /\ b e. ( RR ^m { z } ) ) /\ c e. ( ( RR ^m { z } ) ^m NN ) ) /\ d e. ( ( RR ^m { z } ) ^m NN ) ) /\ X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) ) /\ y = (/) ) -> ( a ( L ` ( y u. { z } ) ) b ) = ( a ( L ` { z } ) b ) ) |
| 351 |
348
|
oveqd |
|- ( y = (/) -> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) = ( ( c ` j ) ( L ` { z } ) ( d ` j ) ) ) |
| 352 |
351
|
mpteq2dv |
|- ( y = (/) -> ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) = ( j e. NN |-> ( ( c ` j ) ( L ` { z } ) ( d ` j ) ) ) ) |
| 353 |
352
|
fveq2d |
|- ( y = (/) -> ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` { z } ) ( d ` j ) ) ) ) ) |
| 354 |
353
|
adantl |
|- ( ( ( ( ( ( ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) /\ b e. ( RR ^m { z } ) ) /\ c e. ( ( RR ^m { z } ) ^m NN ) ) /\ d e. ( ( RR ^m { z } ) ^m NN ) ) /\ X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) ) /\ y = (/) ) -> ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` { z } ) ( d ` j ) ) ) ) ) |
| 355 |
350 354
|
breq12d |
|- ( ( ( ( ( ( ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) /\ b e. ( RR ^m { z } ) ) /\ c e. ( ( RR ^m { z } ) ^m NN ) ) /\ d e. ( ( RR ^m { z } ) ^m NN ) ) /\ X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) ) /\ y = (/) ) -> ( ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) <-> ( a ( L ` { z } ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` { z } ) ( d ` j ) ) ) ) ) ) |
| 356 |
346 355
|
mpbird |
|- ( ( ( ( ( ( ( ( ph /\ z e. X ) /\ a e. ( RR ^m { z } ) ) /\ b e. ( RR ^m { z } ) ) /\ c e. ( ( RR ^m { z } ) ^m NN ) ) /\ d e. ( ( RR ^m { z } ) ^m NN ) ) /\ X_ k e. { z } ( ( a ` k ) [,) ( b ` k ) ) C_ U_ i e. NN X_ k e. { z } ( ( ( c ` i ) ` k ) [,) ( ( d ` i ) ` k ) ) ) /\ y = (/) ) -> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) |
| 357 |
286 287 356
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) /\ y = (/) ) -> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) |
| 358 |
2
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) /\ -. y = (/) ) -> X e. Fin ) |
| 359 |
|
simplrl |
|- ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) -> y C_ X ) |
| 360 |
359
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) -> y C_ X ) |
| 361 |
360
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) /\ -. y = (/) ) -> y C_ X ) |
| 362 |
|
simplrr |
|- ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) -> z e. ( X \ y ) ) |
| 363 |
362
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) -> z e. ( X \ y ) ) |
| 364 |
363
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) /\ -. y = (/) ) -> z e. ( X \ y ) ) |
| 365 |
|
eqid |
|- ( y u. { z } ) = ( y u. { z } ) |
| 366 |
|
elmapi |
|- ( a e. ( RR ^m ( y u. { z } ) ) -> a : ( y u. { z } ) --> RR ) |
| 367 |
366
|
adantr |
|- ( ( a e. ( RR ^m ( y u. { z } ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) -> a : ( y u. { z } ) --> RR ) |
| 368 |
367
|
ad4ant23 |
|- ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) -> a : ( y u. { z } ) --> RR ) |
| 369 |
368
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) /\ -. y = (/) ) -> a : ( y u. { z } ) --> RR ) |
| 370 |
|
elmapi |
|- ( b e. ( RR ^m ( y u. { z } ) ) -> b : ( y u. { z } ) --> RR ) |
| 371 |
370
|
adantl |
|- ( ( a e. ( RR ^m ( y u. { z } ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) -> b : ( y u. { z } ) --> RR ) |
| 372 |
371
|
ad4ant23 |
|- ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) -> b : ( y u. { z } ) --> RR ) |
| 373 |
372
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) /\ -. y = (/) ) -> b : ( y u. { z } ) --> RR ) |
| 374 |
|
elmapi |
|- ( c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) -> c : NN --> ( RR ^m ( y u. { z } ) ) ) |
| 375 |
374
|
adantl |
|- ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) -> c : NN --> ( RR ^m ( y u. { z } ) ) ) |
| 376 |
375
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) /\ -. y = (/) ) -> c : NN --> ( RR ^m ( y u. { z } ) ) ) |
| 377 |
|
elmapi |
|- ( d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) -> d : NN --> ( RR ^m ( y u. { z } ) ) ) |
| 378 |
377
|
ad2antrr |
|- ( ( ( d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) /\ X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) /\ -. y = (/) ) -> d : NN --> ( RR ^m ( y u. { z } ) ) ) |
| 379 |
378
|
adantlll |
|- ( ( ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) /\ -. y = (/) ) -> d : NN --> ( RR ^m ( y u. { z } ) ) ) |
| 380 |
|
fveq2 |
|- ( k = l -> ( e ` k ) = ( e ` l ) ) |
| 381 |
|
fveq2 |
|- ( k = l -> ( f ` k ) = ( f ` l ) ) |
| 382 |
380 381
|
oveq12d |
|- ( k = l -> ( ( e ` k ) [,) ( f ` k ) ) = ( ( e ` l ) [,) ( f ` l ) ) ) |
| 383 |
382
|
cbvixpv |
|- X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) = X_ l e. y ( ( e ` l ) [,) ( f ` l ) ) |
| 384 |
383
|
a1i |
|- ( h = o -> X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) = X_ l e. y ( ( e ` l ) [,) ( f ` l ) ) ) |
| 385 |
|
fveq2 |
|- ( j = i -> ( g ` j ) = ( g ` i ) ) |
| 386 |
385
|
fveq1d |
|- ( j = i -> ( ( g ` j ) ` k ) = ( ( g ` i ) ` k ) ) |
| 387 |
|
fveq2 |
|- ( j = i -> ( h ` j ) = ( h ` i ) ) |
| 388 |
387
|
fveq1d |
|- ( j = i -> ( ( h ` j ) ` k ) = ( ( h ` i ) ` k ) ) |
| 389 |
386 388
|
oveq12d |
|- ( j = i -> ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) = ( ( ( g ` i ) ` k ) [,) ( ( h ` i ) ` k ) ) ) |
| 390 |
389
|
ixpeq2dv |
|- ( j = i -> X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) = X_ k e. y ( ( ( g ` i ) ` k ) [,) ( ( h ` i ) ` k ) ) ) |
| 391 |
390
|
cbviunv |
|- U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) = U_ i e. NN X_ k e. y ( ( ( g ` i ) ` k ) [,) ( ( h ` i ) ` k ) ) |
| 392 |
391
|
a1i |
|- ( h = o -> U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) = U_ i e. NN X_ k e. y ( ( ( g ` i ) ` k ) [,) ( ( h ` i ) ` k ) ) ) |
| 393 |
|
fveq2 |
|- ( k = l -> ( ( g ` i ) ` k ) = ( ( g ` i ) ` l ) ) |
| 394 |
|
fveq2 |
|- ( k = l -> ( ( h ` i ) ` k ) = ( ( h ` i ) ` l ) ) |
| 395 |
393 394
|
oveq12d |
|- ( k = l -> ( ( ( g ` i ) ` k ) [,) ( ( h ` i ) ` k ) ) = ( ( ( g ` i ) ` l ) [,) ( ( h ` i ) ` l ) ) ) |
| 396 |
395
|
cbvixpv |
|- X_ k e. y ( ( ( g ` i ) ` k ) [,) ( ( h ` i ) ` k ) ) = X_ l e. y ( ( ( g ` i ) ` l ) [,) ( ( h ` i ) ` l ) ) |
| 397 |
396
|
a1i |
|- ( h = o -> X_ k e. y ( ( ( g ` i ) ` k ) [,) ( ( h ` i ) ` k ) ) = X_ l e. y ( ( ( g ` i ) ` l ) [,) ( ( h ` i ) ` l ) ) ) |
| 398 |
|
fveq1 |
|- ( h = o -> ( h ` i ) = ( o ` i ) ) |
| 399 |
398
|
fveq1d |
|- ( h = o -> ( ( h ` i ) ` l ) = ( ( o ` i ) ` l ) ) |
| 400 |
399
|
oveq2d |
|- ( h = o -> ( ( ( g ` i ) ` l ) [,) ( ( h ` i ) ` l ) ) = ( ( ( g ` i ) ` l ) [,) ( ( o ` i ) ` l ) ) ) |
| 401 |
400
|
ixpeq2dv |
|- ( h = o -> X_ l e. y ( ( ( g ` i ) ` l ) [,) ( ( h ` i ) ` l ) ) = X_ l e. y ( ( ( g ` i ) ` l ) [,) ( ( o ` i ) ` l ) ) ) |
| 402 |
397 401
|
eqtrd |
|- ( h = o -> X_ k e. y ( ( ( g ` i ) ` k ) [,) ( ( h ` i ) ` k ) ) = X_ l e. y ( ( ( g ` i ) ` l ) [,) ( ( o ` i ) ` l ) ) ) |
| 403 |
402
|
adantr |
|- ( ( h = o /\ i e. NN ) -> X_ k e. y ( ( ( g ` i ) ` k ) [,) ( ( h ` i ) ` k ) ) = X_ l e. y ( ( ( g ` i ) ` l ) [,) ( ( o ` i ) ` l ) ) ) |
| 404 |
403
|
iuneq2dv |
|- ( h = o -> U_ i e. NN X_ k e. y ( ( ( g ` i ) ` k ) [,) ( ( h ` i ) ` k ) ) = U_ i e. NN X_ l e. y ( ( ( g ` i ) ` l ) [,) ( ( o ` i ) ` l ) ) ) |
| 405 |
392 404
|
eqtrd |
|- ( h = o -> U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) = U_ i e. NN X_ l e. y ( ( ( g ` i ) ` l ) [,) ( ( o ` i ) ` l ) ) ) |
| 406 |
384 405
|
sseq12d |
|- ( h = o -> ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) <-> X_ l e. y ( ( e ` l ) [,) ( f ` l ) ) C_ U_ i e. NN X_ l e. y ( ( ( g ` i ) ` l ) [,) ( ( o ` i ) ` l ) ) ) ) |
| 407 |
385 387
|
oveq12d |
|- ( j = i -> ( ( g ` j ) ( L ` y ) ( h ` j ) ) = ( ( g ` i ) ( L ` y ) ( h ` i ) ) ) |
| 408 |
407
|
cbvmptv |
|- ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) = ( i e. NN |-> ( ( g ` i ) ( L ` y ) ( h ` i ) ) ) |
| 409 |
408
|
a1i |
|- ( h = o -> ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) = ( i e. NN |-> ( ( g ` i ) ( L ` y ) ( h ` i ) ) ) ) |
| 410 |
398
|
oveq2d |
|- ( h = o -> ( ( g ` i ) ( L ` y ) ( h ` i ) ) = ( ( g ` i ) ( L ` y ) ( o ` i ) ) ) |
| 411 |
410
|
mpteq2dv |
|- ( h = o -> ( i e. NN |-> ( ( g ` i ) ( L ` y ) ( h ` i ) ) ) = ( i e. NN |-> ( ( g ` i ) ( L ` y ) ( o ` i ) ) ) ) |
| 412 |
409 411
|
eqtrd |
|- ( h = o -> ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) = ( i e. NN |-> ( ( g ` i ) ( L ` y ) ( o ` i ) ) ) ) |
| 413 |
412
|
fveq2d |
|- ( h = o -> ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) = ( sum^ ` ( i e. NN |-> ( ( g ` i ) ( L ` y ) ( o ` i ) ) ) ) ) |
| 414 |
413
|
breq2d |
|- ( h = o -> ( ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) <-> ( e ( L ` y ) f ) <_ ( sum^ ` ( i e. NN |-> ( ( g ` i ) ( L ` y ) ( o ` i ) ) ) ) ) ) |
| 415 |
406 414
|
imbi12d |
|- ( h = o -> ( ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) <-> ( X_ l e. y ( ( e ` l ) [,) ( f ` l ) ) C_ U_ i e. NN X_ l e. y ( ( ( g ` i ) ` l ) [,) ( ( o ` i ) ` l ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( i e. NN |-> ( ( g ` i ) ( L ` y ) ( o ` i ) ) ) ) ) ) ) |
| 416 |
415
|
cbvralvw |
|- ( A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) <-> A. o e. ( ( RR ^m y ) ^m NN ) ( X_ l e. y ( ( e ` l ) [,) ( f ` l ) ) C_ U_ i e. NN X_ l e. y ( ( ( g ` i ) ` l ) [,) ( ( o ` i ) ` l ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( i e. NN |-> ( ( g ` i ) ( L ` y ) ( o ` i ) ) ) ) ) ) |
| 417 |
416
|
ralbii |
|- ( A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) <-> A. g e. ( ( RR ^m y ) ^m NN ) A. o e. ( ( RR ^m y ) ^m NN ) ( X_ l e. y ( ( e ` l ) [,) ( f ` l ) ) C_ U_ i e. NN X_ l e. y ( ( ( g ` i ) ` l ) [,) ( ( o ` i ) ` l ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( i e. NN |-> ( ( g ` i ) ( L ` y ) ( o ` i ) ) ) ) ) ) |
| 418 |
417
|
ralbii |
|- ( A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) <-> A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. o e. ( ( RR ^m y ) ^m NN ) ( X_ l e. y ( ( e ` l ) [,) ( f ` l ) ) C_ U_ i e. NN X_ l e. y ( ( ( g ` i ) ` l ) [,) ( ( o ` i ) ` l ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( i e. NN |-> ( ( g ` i ) ( L ` y ) ( o ` i ) ) ) ) ) ) |
| 419 |
418
|
ralbii |
|- ( A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) <-> A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. o e. ( ( RR ^m y ) ^m NN ) ( X_ l e. y ( ( e ` l ) [,) ( f ` l ) ) C_ U_ i e. NN X_ l e. y ( ( ( g ` i ) ` l ) [,) ( ( o ` i ) ` l ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( i e. NN |-> ( ( g ` i ) ( L ` y ) ( o ` i ) ) ) ) ) ) |
| 420 |
419
|
biimpi |
|- ( A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) -> A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. o e. ( ( RR ^m y ) ^m NN ) ( X_ l e. y ( ( e ` l ) [,) ( f ` l ) ) C_ U_ i e. NN X_ l e. y ( ( ( g ` i ) ` l ) [,) ( ( o ` i ) ` l ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( i e. NN |-> ( ( g ` i ) ( L ` y ) ( o ` i ) ) ) ) ) ) |
| 421 |
420
|
adantl |
|- ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) -> A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. o e. ( ( RR ^m y ) ^m NN ) ( X_ l e. y ( ( e ` l ) [,) ( f ` l ) ) C_ U_ i e. NN X_ l e. y ( ( ( g ` i ) ` l ) [,) ( ( o ` i ) ` l ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( i e. NN |-> ( ( g ` i ) ( L ` y ) ( o ` i ) ) ) ) ) ) |
| 422 |
421
|
ad6antr |
|- ( ( ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) /\ -. y = (/) ) -> A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. o e. ( ( RR ^m y ) ^m NN ) ( X_ l e. y ( ( e ` l ) [,) ( f ` l ) ) C_ U_ i e. NN X_ l e. y ( ( ( g ` i ) ` l ) [,) ( ( o ` i ) ` l ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( i e. NN |-> ( ( g ` i ) ( L ` y ) ( o ` i ) ) ) ) ) ) |
| 423 |
323
|
cbvixpv |
|- X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) = X_ l e. ( y u. { z } ) ( ( a ` l ) [,) ( b ` l ) ) |
| 424 |
336
|
cbvixpv |
|- X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = X_ l e. ( y u. { z } ) ( ( ( c ` j ) ` l ) [,) ( ( d ` j ) ` l ) ) |
| 425 |
424
|
a1i |
|- ( j = i -> X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = X_ l e. ( y u. { z } ) ( ( ( c ` j ) ` l ) [,) ( ( d ` j ) ` l ) ) ) |
| 426 |
|
fveq2 |
|- ( j = i -> ( c ` j ) = ( c ` i ) ) |
| 427 |
426
|
fveq1d |
|- ( j = i -> ( ( c ` j ) ` l ) = ( ( c ` i ) ` l ) ) |
| 428 |
|
fveq2 |
|- ( j = i -> ( d ` j ) = ( d ` i ) ) |
| 429 |
428
|
fveq1d |
|- ( j = i -> ( ( d ` j ) ` l ) = ( ( d ` i ) ` l ) ) |
| 430 |
427 429
|
oveq12d |
|- ( j = i -> ( ( ( c ` j ) ` l ) [,) ( ( d ` j ) ` l ) ) = ( ( ( c ` i ) ` l ) [,) ( ( d ` i ) ` l ) ) ) |
| 431 |
430
|
ixpeq2dv |
|- ( j = i -> X_ l e. ( y u. { z } ) ( ( ( c ` j ) ` l ) [,) ( ( d ` j ) ` l ) ) = X_ l e. ( y u. { z } ) ( ( ( c ` i ) ` l ) [,) ( ( d ` i ) ` l ) ) ) |
| 432 |
425 431
|
eqtrd |
|- ( j = i -> X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = X_ l e. ( y u. { z } ) ( ( ( c ` i ) ` l ) [,) ( ( d ` i ) ` l ) ) ) |
| 433 |
432
|
cbviunv |
|- U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = U_ i e. NN X_ l e. ( y u. { z } ) ( ( ( c ` i ) ` l ) [,) ( ( d ` i ) ` l ) ) |
| 434 |
423 433
|
sseq12i |
|- ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) <-> X_ l e. ( y u. { z } ) ( ( a ` l ) [,) ( b ` l ) ) C_ U_ i e. NN X_ l e. ( y u. { z } ) ( ( ( c ` i ) ` l ) [,) ( ( d ` i ) ` l ) ) ) |
| 435 |
434
|
biimpi |
|- ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> X_ l e. ( y u. { z } ) ( ( a ` l ) [,) ( b ` l ) ) C_ U_ i e. NN X_ l e. ( y u. { z } ) ( ( ( c ` i ) ` l ) [,) ( ( d ` i ) ` l ) ) ) |
| 436 |
435
|
ad2antlr |
|- ( ( ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) /\ -. y = (/) ) -> X_ l e. ( y u. { z } ) ( ( a ` l ) [,) ( b ` l ) ) C_ U_ i e. NN X_ l e. ( y u. { z } ) ( ( ( c ` i ) ` l ) [,) ( ( d ` i ) ` l ) ) ) |
| 437 |
|
neqne |
|- ( -. y = (/) -> y =/= (/) ) |
| 438 |
437
|
adantl |
|- ( ( ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) /\ -. y = (/) ) -> y =/= (/) ) |
| 439 |
307 358 361 364 365 369 373 376 379 422 436 438
|
hoidmvlelem5 |
|- ( ( ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) /\ -. y = (/) ) -> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( i e. NN |-> ( ( c ` i ) ( L ` ( y u. { z } ) ) ( d ` i ) ) ) ) ) |
| 440 |
273 275
|
oveq12d |
|- ( i = j -> ( ( c ` i ) ( L ` ( y u. { z } ) ) ( d ` i ) ) = ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) |
| 441 |
440
|
cbvmptv |
|- ( i e. NN |-> ( ( c ` i ) ( L ` ( y u. { z } ) ) ( d ` i ) ) ) = ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) |
| 442 |
441
|
fveq2i |
|- ( sum^ ` ( i e. NN |-> ( ( c ` i ) ( L ` ( y u. { z } ) ) ( d ` i ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) |
| 443 |
442
|
breq2i |
|- ( ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( i e. NN |-> ( ( c ` i ) ( L ` ( y u. { z } ) ) ( d ` i ) ) ) ) <-> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) |
| 444 |
439 443
|
sylib |
|- ( ( ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) /\ -. y = (/) ) -> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) |
| 445 |
357 444
|
pm2.61dan |
|- ( ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) -> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) |
| 446 |
445
|
ex |
|- ( ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) /\ d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) -> ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) ) |
| 447 |
446
|
ralrimiva |
|- ( ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) /\ c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ) -> A. d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) ) |
| 448 |
447
|
ralrimiva |
|- ( ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) /\ b e. ( RR ^m ( y u. { z } ) ) ) -> A. c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) A. d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) ) |
| 449 |
448
|
ralrimiva |
|- ( ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) /\ a e. ( RR ^m ( y u. { z } ) ) ) -> A. b e. ( RR ^m ( y u. { z } ) ) A. c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) A. d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) ) |
| 450 |
449
|
ralrimiva |
|- ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. e e. ( RR ^m y ) A. f e. ( RR ^m y ) A. g e. ( ( RR ^m y ) ^m NN ) A. h e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( e ` k ) [,) ( f ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( g ` j ) ` k ) [,) ( ( h ` j ) ` k ) ) -> ( e ( L ` y ) f ) <_ ( sum^ ` ( j e. NN |-> ( ( g ` j ) ( L ` y ) ( h ` j ) ) ) ) ) ) -> A. a e. ( RR ^m ( y u. { z } ) ) A. b e. ( RR ^m ( y u. { z } ) ) A. c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) A. d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) ) |
| 451 |
177 229 450
|
syl2anc |
|- ( ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) /\ A. a e. ( RR ^m y ) A. b e. ( RR ^m y ) A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) ) -> A. a e. ( RR ^m ( y u. { z } ) ) A. b e. ( RR ^m ( y u. { z } ) ) A. c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) A. d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) ) |
| 452 |
451
|
ex |
|- ( ( ph /\ ( y C_ X /\ z e. ( X \ y ) ) ) -> ( A. a e. ( RR ^m y ) A. b e. ( RR ^m y ) A. c e. ( ( RR ^m y ) ^m NN ) A. d e. ( ( RR ^m y ) ^m NN ) ( X_ k e. y ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. y ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` y ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` y ) ( d ` j ) ) ) ) ) -> A. a e. ( RR ^m ( y u. { z } ) ) A. b e. ( RR ^m ( y u. { z } ) ) A. c e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) A. d e. ( ( RR ^m ( y u. { z } ) ) ^m NN ) ( X_ k e. ( y u. { z } ) ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. ( y u. { z } ) ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` ( y u. { z } ) ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` ( y u. { z } ) ) ( d ` j ) ) ) ) ) ) ) |
| 453 |
51 76 101 126 176 452 2
|
findcard2d |
|- ( ph -> A. a e. ( RR ^m X ) A. b e. ( RR ^m X ) A. c e. ( ( RR ^m X ) ^m NN ) A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) |
| 454 |
|
fveq1 |
|- ( a = A -> ( a ` k ) = ( A ` k ) ) |
| 455 |
454
|
oveq1d |
|- ( a = A -> ( ( a ` k ) [,) ( b ` k ) ) = ( ( A ` k ) [,) ( b ` k ) ) ) |
| 456 |
455
|
ixpeq2dv |
|- ( a = A -> X_ k e. X ( ( a ` k ) [,) ( b ` k ) ) = X_ k e. X ( ( A ` k ) [,) ( b ` k ) ) ) |
| 457 |
456
|
sseq1d |
|- ( a = A -> ( X_ k e. X ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) <-> X_ k e. X ( ( A ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) ) |
| 458 |
|
oveq1 |
|- ( a = A -> ( a ( L ` X ) b ) = ( A ( L ` X ) b ) ) |
| 459 |
458
|
breq1d |
|- ( a = A -> ( ( a ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) <-> ( A ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) |
| 460 |
457 459
|
imbi12d |
|- ( a = A -> ( ( X_ k e. X ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) <-> ( X_ k e. X ( ( A ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) ) |
| 461 |
460
|
ralbidv |
|- ( a = A -> ( A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) <-> A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( A ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) ) |
| 462 |
461
|
ralbidv |
|- ( a = A -> ( A. c e. ( ( RR ^m X ) ^m NN ) A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) <-> A. c e. ( ( RR ^m X ) ^m NN ) A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( A ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) ) |
| 463 |
462
|
ralbidv |
|- ( a = A -> ( A. b e. ( RR ^m X ) A. c e. ( ( RR ^m X ) ^m NN ) A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) <-> A. b e. ( RR ^m X ) A. c e. ( ( RR ^m X ) ^m NN ) A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( A ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) ) |
| 464 |
463
|
rspcva |
|- ( ( A e. ( RR ^m X ) /\ A. a e. ( RR ^m X ) A. b e. ( RR ^m X ) A. c e. ( ( RR ^m X ) ^m NN ) A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( a ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( a ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) -> A. b e. ( RR ^m X ) A. c e. ( ( RR ^m X ) ^m NN ) A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( A ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) |
| 465 |
26 453 464
|
syl2anc |
|- ( ph -> A. b e. ( RR ^m X ) A. c e. ( ( RR ^m X ) ^m NN ) A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( A ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) |
| 466 |
|
fveq1 |
|- ( b = B -> ( b ` k ) = ( B ` k ) ) |
| 467 |
466
|
oveq2d |
|- ( b = B -> ( ( A ` k ) [,) ( b ` k ) ) = ( ( A ` k ) [,) ( B ` k ) ) ) |
| 468 |
467
|
ixpeq2dv |
|- ( b = B -> X_ k e. X ( ( A ` k ) [,) ( b ` k ) ) = X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) |
| 469 |
468
|
sseq1d |
|- ( b = B -> ( X_ k e. X ( ( A ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) <-> X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) ) |
| 470 |
|
oveq2 |
|- ( b = B -> ( A ( L ` X ) b ) = ( A ( L ` X ) B ) ) |
| 471 |
470
|
breq1d |
|- ( b = B -> ( ( A ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) <-> ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) |
| 472 |
469 471
|
imbi12d |
|- ( b = B -> ( ( X_ k e. X ( ( A ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) <-> ( X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) ) |
| 473 |
472
|
ralbidv |
|- ( b = B -> ( A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( A ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) <-> A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) ) |
| 474 |
473
|
ralbidv |
|- ( b = B -> ( A. c e. ( ( RR ^m X ) ^m NN ) A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( A ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) <-> A. c e. ( ( RR ^m X ) ^m NN ) A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) ) |
| 475 |
474
|
rspcva |
|- ( ( B e. ( RR ^m X ) /\ A. b e. ( RR ^m X ) A. c e. ( ( RR ^m X ) ^m NN ) A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( A ` k ) [,) ( b ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) b ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) -> A. c e. ( ( RR ^m X ) ^m NN ) A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) |
| 476 |
23 465 475
|
syl2anc |
|- ( ph -> A. c e. ( ( RR ^m X ) ^m NN ) A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) |
| 477 |
|
fveq1 |
|- ( c = C -> ( c ` j ) = ( C ` j ) ) |
| 478 |
477
|
fveq1d |
|- ( c = C -> ( ( c ` j ) ` k ) = ( ( C ` j ) ` k ) ) |
| 479 |
478
|
oveq1d |
|- ( c = C -> ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = ( ( ( C ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 480 |
479
|
ixpeq2dv |
|- ( c = C -> X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = X_ k e. X ( ( ( C ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 481 |
480
|
adantr |
|- ( ( c = C /\ j e. NN ) -> X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = X_ k e. X ( ( ( C ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 482 |
481
|
iuneq2dv |
|- ( c = C -> U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = U_ j e. NN X_ k e. X ( ( ( C ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) |
| 483 |
482
|
sseq2d |
|- ( c = C -> ( X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) <-> X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( C ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) ) ) |
| 484 |
477
|
oveq1d |
|- ( c = C -> ( ( c ` j ) ( L ` X ) ( d ` j ) ) = ( ( C ` j ) ( L ` X ) ( d ` j ) ) ) |
| 485 |
484
|
mpteq2dv |
|- ( c = C -> ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) = ( j e. NN |-> ( ( C ` j ) ( L ` X ) ( d ` j ) ) ) ) |
| 486 |
485
|
fveq2d |
|- ( c = C -> ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` X ) ( d ` j ) ) ) ) ) |
| 487 |
486
|
breq2d |
|- ( c = C -> ( ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) <-> ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) |
| 488 |
483 487
|
imbi12d |
|- ( c = C -> ( ( X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) <-> ( X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( C ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) ) |
| 489 |
488
|
ralbidv |
|- ( c = C -> ( A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) <-> A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( C ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) ) |
| 490 |
489
|
rspcva |
|- ( ( C e. ( ( RR ^m X ) ^m NN ) /\ A. c e. ( ( RR ^m X ) ^m NN ) A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( c ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( c ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) -> A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( C ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) |
| 491 |
17 476 490
|
syl2anc |
|- ( ph -> A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( C ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) |
| 492 |
|
fveq1 |
|- ( d = D -> ( d ` j ) = ( D ` j ) ) |
| 493 |
492
|
fveq1d |
|- ( d = D -> ( ( d ` j ) ` k ) = ( ( D ` j ) ` k ) ) |
| 494 |
493
|
oveq2d |
|- ( d = D -> ( ( ( C ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) |
| 495 |
494
|
ixpeq2dv |
|- ( d = D -> X_ k e. X ( ( ( C ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = X_ k e. X ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) |
| 496 |
495
|
adantr |
|- ( ( d = D /\ j e. NN ) -> X_ k e. X ( ( ( C ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = X_ k e. X ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) |
| 497 |
496
|
iuneq2dv |
|- ( d = D -> U_ j e. NN X_ k e. X ( ( ( C ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) = U_ j e. NN X_ k e. X ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) |
| 498 |
497
|
sseq2d |
|- ( d = D -> ( X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( C ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) <-> X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) ) |
| 499 |
492
|
oveq2d |
|- ( d = D -> ( ( C ` j ) ( L ` X ) ( d ` j ) ) = ( ( C ` j ) ( L ` X ) ( D ` j ) ) ) |
| 500 |
499
|
mpteq2dv |
|- ( d = D -> ( j e. NN |-> ( ( C ` j ) ( L ` X ) ( d ` j ) ) ) = ( j e. NN |-> ( ( C ` j ) ( L ` X ) ( D ` j ) ) ) ) |
| 501 |
500
|
fveq2d |
|- ( d = D -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` X ) ( d ` j ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` X ) ( D ` j ) ) ) ) ) |
| 502 |
501
|
breq2d |
|- ( d = D -> ( ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` X ) ( d ` j ) ) ) ) <-> ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` X ) ( D ` j ) ) ) ) ) ) |
| 503 |
498 502
|
imbi12d |
|- ( d = D -> ( ( X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( C ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` X ) ( d ` j ) ) ) ) ) <-> ( X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) -> ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` X ) ( D ` j ) ) ) ) ) ) ) |
| 504 |
503
|
rspcva |
|- ( ( D e. ( ( RR ^m X ) ^m NN ) /\ A. d e. ( ( RR ^m X ) ^m NN ) ( X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( C ` j ) ` k ) [,) ( ( d ` j ) ` k ) ) -> ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` X ) ( d ` j ) ) ) ) ) ) -> ( X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) -> ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` X ) ( D ` j ) ) ) ) ) ) |
| 505 |
14 491 504
|
syl2anc |
|- ( ph -> ( X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ U_ j e. NN X_ k e. X ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) -> ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` X ) ( D ` j ) ) ) ) ) ) |
| 506 |
7 505
|
mpd |
|- ( ph -> ( A ( L ` X ) B ) <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` X ) ( D ` j ) ) ) ) ) |