Step |
Hyp |
Ref |
Expression |
1 |
|
hoidmvle.l |
⊢ 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
2 |
|
hoidmvle.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
3 |
|
hoidmvle.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
4 |
|
hoidmvle.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
5 |
|
hoidmvle.c |
⊢ ( 𝜑 → 𝐶 : ℕ ⟶ ( ℝ ↑m 𝑋 ) ) |
6 |
|
hoidmvle.d |
⊢ ( 𝜑 → 𝐷 : ℕ ⟶ ( ℝ ↑m 𝑋 ) ) |
7 |
|
hoidmvle.s |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
8 |
|
ovex |
⊢ ( ℝ ↑m 𝑋 ) ∈ V |
9 |
|
nnex |
⊢ ℕ ∈ V |
10 |
8 9
|
pm3.2i |
⊢ ( ( ℝ ↑m 𝑋 ) ∈ V ∧ ℕ ∈ V ) |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( ( ℝ ↑m 𝑋 ) ∈ V ∧ ℕ ∈ V ) ) |
12 |
|
elmapg |
⊢ ( ( ( ℝ ↑m 𝑋 ) ∈ V ∧ ℕ ∈ V ) → ( 𝐷 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ↔ 𝐷 : ℕ ⟶ ( ℝ ↑m 𝑋 ) ) ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → ( 𝐷 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ↔ 𝐷 : ℕ ⟶ ( ℝ ↑m 𝑋 ) ) ) |
14 |
6 13
|
mpbird |
⊢ ( 𝜑 → 𝐷 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ) |
15 |
|
elmapg |
⊢ ( ( ( ℝ ↑m 𝑋 ) ∈ V ∧ ℕ ∈ V ) → ( 𝐶 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ↔ 𝐶 : ℕ ⟶ ( ℝ ↑m 𝑋 ) ) ) |
16 |
11 15
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ↔ 𝐶 : ℕ ⟶ ( ℝ ↑m 𝑋 ) ) ) |
17 |
5 16
|
mpbird |
⊢ ( 𝜑 → 𝐶 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ) |
18 |
|
reex |
⊢ ℝ ∈ V |
19 |
18
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
20 |
19 2
|
jca |
⊢ ( 𝜑 → ( ℝ ∈ V ∧ 𝑋 ∈ Fin ) ) |
21 |
|
elmapg |
⊢ ( ( ℝ ∈ V ∧ 𝑋 ∈ Fin ) → ( 𝐵 ∈ ( ℝ ↑m 𝑋 ) ↔ 𝐵 : 𝑋 ⟶ ℝ ) ) |
22 |
20 21
|
syl |
⊢ ( 𝜑 → ( 𝐵 ∈ ( ℝ ↑m 𝑋 ) ↔ 𝐵 : 𝑋 ⟶ ℝ ) ) |
23 |
4 22
|
mpbird |
⊢ ( 𝜑 → 𝐵 ∈ ( ℝ ↑m 𝑋 ) ) |
24 |
|
elmapg |
⊢ ( ( ℝ ∈ V ∧ 𝑋 ∈ Fin ) → ( 𝐴 ∈ ( ℝ ↑m 𝑋 ) ↔ 𝐴 : 𝑋 ⟶ ℝ ) ) |
25 |
20 24
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ℝ ↑m 𝑋 ) ↔ 𝐴 : 𝑋 ⟶ ℝ ) ) |
26 |
3 25
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ ( ℝ ↑m 𝑋 ) ) |
27 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( ℝ ↑m 𝑥 ) = ( ℝ ↑m ∅ ) ) |
28 |
27
|
eleq2d |
⊢ ( 𝑥 = ∅ → ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) ↔ 𝑎 ∈ ( ℝ ↑m ∅ ) ) ) |
29 |
27
|
eleq2d |
⊢ ( 𝑥 = ∅ → ( 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↔ 𝑏 ∈ ( ℝ ↑m ∅ ) ) ) |
30 |
27
|
oveq1d |
⊢ ( 𝑥 = ∅ → ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) = ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) |
31 |
30
|
eleq2d |
⊢ ( 𝑥 = ∅ → ( 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ↔ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) ) |
32 |
30
|
eleq2d |
⊢ ( 𝑥 = ∅ → ( 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ↔ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) ) |
33 |
|
ixpeq1 |
⊢ ( 𝑥 = ∅ → X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = X 𝑘 ∈ ∅ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) |
34 |
|
ixpeq1 |
⊢ ( 𝑥 = ∅ → X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑘 ∈ ∅ ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
35 |
34
|
iuneq2d |
⊢ ( 𝑥 = ∅ → ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
36 |
33 35
|
sseq12d |
⊢ ( 𝑥 = ∅ → ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘 ∈ ∅ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
37 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐿 ‘ 𝑥 ) = ( 𝐿 ‘ ∅ ) ) |
38 |
37
|
oveqd |
⊢ ( 𝑥 = ∅ → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) = ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ) |
39 |
37
|
oveqd |
⊢ ( 𝑥 = ∅ → ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) = ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ) |
40 |
39
|
mpteq2dv |
⊢ ( 𝑥 = ∅ → ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ) ) |
41 |
40
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) |
42 |
38 41
|
breq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ↔ ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
43 |
36 42
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ( X 𝑘 ∈ ∅ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
44 |
32 43
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) → ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ↔ ( 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) → ( X 𝑘 ∈ ∅ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) ) |
45 |
44
|
ralbidv2 |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ( X 𝑘 ∈ ∅ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
46 |
31 45
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) → ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ↔ ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) → ∀ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ( X 𝑘 ∈ ∅ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) ) |
47 |
46
|
ralbidv2 |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ( X 𝑘 ∈ ∅ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
48 |
29 47
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑏 ∈ ( ℝ ↑m 𝑥 ) → ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ↔ ( 𝑏 ∈ ( ℝ ↑m ∅ ) → ∀ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ( X 𝑘 ∈ ∅ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) ) |
49 |
48
|
ralbidv2 |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑏 ∈ ( ℝ ↑m ∅ ) ∀ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ( X 𝑘 ∈ ∅ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
50 |
28 49
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) → ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ↔ ( 𝑎 ∈ ( ℝ ↑m ∅ ) → ∀ 𝑏 ∈ ( ℝ ↑m ∅ ) ∀ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ( X 𝑘 ∈ ∅ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) ) |
51 |
50
|
ralbidv2 |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑎 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑎 ∈ ( ℝ ↑m ∅ ) ∀ 𝑏 ∈ ( ℝ ↑m ∅ ) ∀ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ( X 𝑘 ∈ ∅ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
52 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ℝ ↑m 𝑥 ) = ( ℝ ↑m 𝑦 ) ) |
53 |
52
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) ↔ 𝑎 ∈ ( ℝ ↑m 𝑦 ) ) ) |
54 |
52
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↔ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ) ) |
55 |
52
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) = ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ) |
56 |
55
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ↔ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ) ) |
57 |
55
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ↔ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ) ) |
58 |
|
ixpeq1 |
⊢ ( 𝑥 = 𝑦 → X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) |
59 |
|
ixpeq1 |
⊢ ( 𝑥 = 𝑦 → X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
60 |
59
|
iuneq2d |
⊢ ( 𝑥 = 𝑦 → ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
61 |
58 60
|
sseq12d |
⊢ ( 𝑥 = 𝑦 → ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
62 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐿 ‘ 𝑥 ) = ( 𝐿 ‘ 𝑦 ) ) |
63 |
62
|
oveqd |
⊢ ( 𝑥 = 𝑦 → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) = ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ) |
64 |
62
|
oveqd |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) = ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) |
65 |
64
|
mpteq2dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) |
66 |
65
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) |
67 |
63 66
|
breq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ↔ ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
68 |
61 67
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ( X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
69 |
57 68
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) → ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ↔ ( 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) → ( X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) ) |
70 |
69
|
ralbidv2 |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
71 |
56 70
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) → ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ↔ ( 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) → ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) ) |
72 |
71
|
ralbidv2 |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
73 |
54 72
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑏 ∈ ( ℝ ↑m 𝑥 ) → ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ↔ ( 𝑏 ∈ ( ℝ ↑m 𝑦 ) → ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) ) |
74 |
73
|
ralbidv2 |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
75 |
53 74
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) → ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ↔ ( 𝑎 ∈ ( ℝ ↑m 𝑦 ) → ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) ) |
76 |
75
|
ralbidv2 |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑎 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑎 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
77 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ℝ ↑m 𝑥 ) = ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) |
78 |
77
|
eleq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) ↔ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
79 |
77
|
eleq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↔ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
80 |
77
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) = ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) |
81 |
80
|
eleq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ↔ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ) |
82 |
80
|
eleq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ↔ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ) |
83 |
|
ixpeq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) |
84 |
|
ixpeq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
85 |
84
|
iuneq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
86 |
83 85
|
sseq12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
87 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐿 ‘ 𝑥 ) = ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) |
88 |
87
|
oveqd |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) = ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ) |
89 |
87
|
oveqd |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) = ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) |
90 |
89
|
mpteq2dv |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) |
91 |
90
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) |
92 |
88 91
|
breq12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ↔ ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
93 |
86 92
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
94 |
82 93
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) → ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ↔ ( 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) → ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) ) |
95 |
94
|
ralbidv2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
96 |
81 95
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) → ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ↔ ( 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) → ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) ) |
97 |
96
|
ralbidv2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
98 |
79 97
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑏 ∈ ( ℝ ↑m 𝑥 ) → ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ↔ ( 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) → ∀ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) ) |
99 |
98
|
ralbidv2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∀ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
100 |
78 99
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) → ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ↔ ( 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) → ∀ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∀ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) ) |
101 |
100
|
ralbidv2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑎 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∀ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∀ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
102 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( ℝ ↑m 𝑥 ) = ( ℝ ↑m 𝑋 ) ) |
103 |
102
|
eleq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) ↔ 𝑎 ∈ ( ℝ ↑m 𝑋 ) ) ) |
104 |
102
|
eleq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↔ 𝑏 ∈ ( ℝ ↑m 𝑋 ) ) ) |
105 |
102
|
oveq1d |
⊢ ( 𝑥 = 𝑋 → ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) = ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ) |
106 |
105
|
eleq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ↔ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ) ) |
107 |
105
|
eleq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ↔ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ) ) |
108 |
|
ixpeq1 |
⊢ ( 𝑥 = 𝑋 → X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) |
109 |
|
ixpeq1 |
⊢ ( 𝑥 = 𝑋 → X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
110 |
109
|
iuneq2d |
⊢ ( 𝑥 = 𝑋 → ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
111 |
108 110
|
sseq12d |
⊢ ( 𝑥 = 𝑋 → ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘 ∈ 𝑋 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
112 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐿 ‘ 𝑥 ) = ( 𝐿 ‘ 𝑋 ) ) |
113 |
112
|
oveqd |
⊢ ( 𝑥 = 𝑋 → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) = ( 𝑎 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ) |
114 |
112
|
oveqd |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) = ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) |
115 |
114
|
mpteq2dv |
⊢ ( 𝑥 = 𝑋 → ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) |
116 |
115
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) |
117 |
113 116
|
breq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ↔ ( 𝑎 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
118 |
111 117
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ( X 𝑘 ∈ 𝑋 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
119 |
107 118
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) → ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ↔ ( 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) → ( X 𝑘 ∈ 𝑋 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) ) |
120 |
119
|
ralbidv2 |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
121 |
106 120
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) → ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ↔ ( 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) → ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) ) |
122 |
121
|
ralbidv2 |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
123 |
104 122
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑏 ∈ ( ℝ ↑m 𝑥 ) → ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ↔ ( 𝑏 ∈ ( ℝ ↑m 𝑋 ) → ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) ) |
124 |
123
|
ralbidv2 |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑏 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
125 |
103 124
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) → ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ↔ ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) → ∀ 𝑏 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) ) |
126 |
125
|
ralbidv2 |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑎 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑥 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑥 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑎 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
127 |
|
fveq1 |
⊢ ( 𝑎 = 𝑒 → ( 𝑎 ‘ 𝑘 ) = ( 𝑒 ‘ 𝑘 ) ) |
128 |
127
|
oveq1d |
⊢ ( 𝑎 = 𝑒 → ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) |
129 |
128
|
fveq2d |
⊢ ( 𝑎 = 𝑒 → ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) = ( vol ‘ ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) |
130 |
129
|
prodeq2ad |
⊢ ( 𝑎 = 𝑒 → ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) |
131 |
130
|
ifeq2d |
⊢ ( 𝑎 = 𝑒 → if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) = if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) |
132 |
|
fveq1 |
⊢ ( 𝑏 = 𝑓 → ( 𝑏 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑘 ) ) |
133 |
132
|
oveq2d |
⊢ ( 𝑏 = 𝑓 → ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ) |
134 |
133
|
fveq2d |
⊢ ( 𝑏 = 𝑓 → ( vol ‘ ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) = ( vol ‘ ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ) ) |
135 |
134
|
prodeq2ad |
⊢ ( 𝑏 = 𝑓 → ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ) ) |
136 |
135
|
ifeq2d |
⊢ ( 𝑏 = 𝑓 → if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) = if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ) ) ) |
137 |
131 136
|
cbvmpov |
⊢ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) = ( 𝑒 ∈ ( ℝ ↑m 𝑥 ) , 𝑓 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ) ) ) |
138 |
137
|
mpteq2i |
⊢ ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) = ( 𝑥 ∈ Fin ↦ ( 𝑒 ∈ ( ℝ ↑m 𝑥 ) , 𝑓 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) |
139 |
1 138
|
eqtri |
⊢ 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑒 ∈ ( ℝ ↑m 𝑥 ) , 𝑓 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) |
140 |
|
elmapi |
⊢ ( 𝑎 ∈ ( ℝ ↑m ∅ ) → 𝑎 : ∅ ⟶ ℝ ) |
141 |
140
|
adantr |
⊢ ( ( 𝑎 ∈ ( ℝ ↑m ∅ ) ∧ 𝑏 ∈ ( ℝ ↑m ∅ ) ) → 𝑎 : ∅ ⟶ ℝ ) |
142 |
|
elmapi |
⊢ ( 𝑏 ∈ ( ℝ ↑m ∅ ) → 𝑏 : ∅ ⟶ ℝ ) |
143 |
142
|
adantl |
⊢ ( ( 𝑎 ∈ ( ℝ ↑m ∅ ) ∧ 𝑏 ∈ ( ℝ ↑m ∅ ) ) → 𝑏 : ∅ ⟶ ℝ ) |
144 |
139 141 143
|
hoidmv0val |
⊢ ( ( 𝑎 ∈ ( ℝ ↑m ∅ ) ∧ 𝑏 ∈ ( ℝ ↑m ∅ ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) = 0 ) |
145 |
144
|
ad5ant23 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( ℝ ↑m ∅ ) ) ∧ 𝑏 ∈ ( ℝ ↑m ∅ ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) = 0 ) |
146 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) |
147 |
9
|
a1i |
⊢ ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) → ℕ ∈ V ) |
148 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
149 |
|
0fin |
⊢ ∅ ∈ Fin |
150 |
149
|
a1i |
⊢ ( ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) ∧ 𝑗 ∈ ℕ ) → ∅ ∈ Fin ) |
151 |
|
ovexd |
⊢ ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → ( ℝ ↑m ∅ ) ∈ V ) |
152 |
9
|
a1i |
⊢ ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → ℕ ∈ V ) |
153 |
|
simpl |
⊢ ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) |
154 |
|
simpr |
⊢ ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ ) |
155 |
151 152 153 154
|
fvmap |
⊢ ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑐 ‘ 𝑗 ) ∈ ( ℝ ↑m ∅ ) ) |
156 |
|
elmapi |
⊢ ( ( 𝑐 ‘ 𝑗 ) ∈ ( ℝ ↑m ∅ ) → ( 𝑐 ‘ 𝑗 ) : ∅ ⟶ ℝ ) |
157 |
155 156
|
syl |
⊢ ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑐 ‘ 𝑗 ) : ∅ ⟶ ℝ ) |
158 |
157
|
adantlr |
⊢ ( ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑐 ‘ 𝑗 ) : ∅ ⟶ ℝ ) |
159 |
|
ovexd |
⊢ ( ( 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → ( ℝ ↑m ∅ ) ∈ V ) |
160 |
9
|
a1i |
⊢ ( ( 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → ℕ ∈ V ) |
161 |
|
simpl |
⊢ ( ( 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) |
162 |
|
simpr |
⊢ ( ( 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ ) |
163 |
159 160 161 162
|
fvmap |
⊢ ( ( 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑑 ‘ 𝑗 ) ∈ ( ℝ ↑m ∅ ) ) |
164 |
|
elmapi |
⊢ ( ( 𝑑 ‘ 𝑗 ) ∈ ( ℝ ↑m ∅ ) → ( 𝑑 ‘ 𝑗 ) : ∅ ⟶ ℝ ) |
165 |
163 164
|
syl |
⊢ ( ( 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑑 ‘ 𝑗 ) : ∅ ⟶ ℝ ) |
166 |
165
|
adantll |
⊢ ( ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑑 ‘ 𝑗 ) : ∅ ⟶ ℝ ) |
167 |
1 150 158 166
|
hoidmvcl |
⊢ ( ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ∈ ( 0 [,) +∞ ) ) |
168 |
148 167
|
sselid |
⊢ ( ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ∈ ( 0 [,] +∞ ) ) |
169 |
146 147 168
|
sge0ge0mpt |
⊢ ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) → 0 ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) |
170 |
169
|
adantll |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( ℝ ↑m ∅ ) ) ∧ 𝑏 ∈ ( ℝ ↑m ∅ ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) → 0 ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) |
171 |
145 170
|
eqbrtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( ℝ ↑m ∅ ) ) ∧ 𝑏 ∈ ( ℝ ↑m ∅ ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) |
172 |
171
|
a1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( ℝ ↑m ∅ ) ) ∧ 𝑏 ∈ ( ℝ ↑m ∅ ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) → ( X 𝑘 ∈ ∅ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
173 |
172
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( ℝ ↑m ∅ ) ) ∧ 𝑏 ∈ ( ℝ ↑m ∅ ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) → ∀ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ( X 𝑘 ∈ ∅ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
174 |
173
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( ℝ ↑m ∅ ) ) ∧ 𝑏 ∈ ( ℝ ↑m ∅ ) ) → ∀ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ( X 𝑘 ∈ ∅ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
175 |
174
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( ℝ ↑m ∅ ) ) → ∀ 𝑏 ∈ ( ℝ ↑m ∅ ) ∀ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ( X 𝑘 ∈ ∅ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
176 |
175
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( ℝ ↑m ∅ ) ∀ 𝑏 ∈ ( ℝ ↑m ∅ ) ∀ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ( X 𝑘 ∈ ∅ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
177 |
|
simpl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑎 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) → ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ) |
178 |
128
|
ixpeq2dv |
⊢ ( 𝑎 = 𝑒 → X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) |
179 |
178
|
sseq1d |
⊢ ( 𝑎 = 𝑒 → ( X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
180 |
|
oveq1 |
⊢ ( 𝑎 = 𝑒 → ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) = ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ) |
181 |
180
|
breq1d |
⊢ ( 𝑎 = 𝑒 → ( ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ↔ ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
182 |
179 181
|
imbi12d |
⊢ ( 𝑎 = 𝑒 → ( ( X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
183 |
182
|
ralbidv |
⊢ ( 𝑎 = 𝑒 → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
184 |
183
|
ralbidv |
⊢ ( 𝑎 = 𝑒 → ( ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
185 |
184
|
ralbidv |
⊢ ( 𝑎 = 𝑒 → ( ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
186 |
133
|
ixpeq2dv |
⊢ ( 𝑏 = 𝑓 → X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ) |
187 |
186
|
sseq1d |
⊢ ( 𝑏 = 𝑓 → ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
188 |
|
oveq2 |
⊢ ( 𝑏 = 𝑓 → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑏 ) = ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ) |
189 |
188
|
breq1d |
⊢ ( 𝑏 = 𝑓 → ( ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ↔ ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
190 |
187 189
|
imbi12d |
⊢ ( 𝑏 = 𝑓 → ( ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
191 |
190
|
ralbidv |
⊢ ( 𝑏 = 𝑓 → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
192 |
191
|
ralbidv |
⊢ ( 𝑏 = 𝑓 → ( ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
193 |
|
fveq1 |
⊢ ( 𝑐 = 𝑔 → ( 𝑐 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) |
194 |
193
|
fveq1d |
⊢ ( 𝑐 = 𝑔 → ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) = ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) ) |
195 |
194
|
oveq1d |
⊢ ( 𝑐 = 𝑔 → ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
196 |
195
|
ixpeq2dv |
⊢ ( 𝑐 = 𝑔 → X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
197 |
196
|
adantr |
⊢ ( ( 𝑐 = 𝑔 ∧ 𝑗 ∈ ℕ ) → X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
198 |
197
|
iuneq2dv |
⊢ ( 𝑐 = 𝑔 → ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
199 |
198
|
sseq2d |
⊢ ( 𝑐 = 𝑔 → ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
200 |
193
|
oveq1d |
⊢ ( 𝑐 = 𝑔 → ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) = ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) |
201 |
200
|
mpteq2dv |
⊢ ( 𝑐 = 𝑔 → ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) |
202 |
201
|
fveq2d |
⊢ ( 𝑐 = 𝑔 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) |
203 |
202
|
breq2d |
⊢ ( 𝑐 = 𝑔 → ( ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ↔ ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
204 |
199 203
|
imbi12d |
⊢ ( 𝑐 = 𝑔 → ( ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
205 |
204
|
ralbidv |
⊢ ( 𝑐 = 𝑔 → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
206 |
|
fveq1 |
⊢ ( 𝑑 = ℎ → ( 𝑑 ‘ 𝑗 ) = ( ℎ ‘ 𝑗 ) ) |
207 |
206
|
fveq1d |
⊢ ( 𝑑 = ℎ → ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) = ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) |
208 |
207
|
oveq2d |
⊢ ( 𝑑 = ℎ → ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
209 |
208
|
ixpeq2dv |
⊢ ( 𝑑 = ℎ → X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
210 |
209
|
adantr |
⊢ ( ( 𝑑 = ℎ ∧ 𝑗 ∈ ℕ ) → X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
211 |
210
|
iuneq2dv |
⊢ ( 𝑑 = ℎ → ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
212 |
211
|
sseq2d |
⊢ ( 𝑑 = ℎ → ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
213 |
206
|
oveq2d |
⊢ ( 𝑑 = ℎ → ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) = ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) |
214 |
213
|
mpteq2dv |
⊢ ( 𝑑 = ℎ → ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) |
215 |
214
|
fveq2d |
⊢ ( 𝑑 = ℎ → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) |
216 |
215
|
breq2d |
⊢ ( 𝑑 = ℎ → ( ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ↔ ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
217 |
212 216
|
imbi12d |
⊢ ( 𝑑 = ℎ → ( ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ) |
218 |
217
|
cbvralvw |
⊢ ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
219 |
218
|
a1i |
⊢ ( 𝑐 = 𝑔 → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ) |
220 |
205 219
|
bitrd |
⊢ ( 𝑐 = 𝑔 → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ) |
221 |
220
|
cbvralvw |
⊢ ( ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
222 |
221
|
a1i |
⊢ ( 𝑏 = 𝑓 → ( ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ) |
223 |
192 222
|
bitrd |
⊢ ( 𝑏 = 𝑓 → ( ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ) |
224 |
223
|
cbvralvw |
⊢ ( ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
225 |
224
|
a1i |
⊢ ( 𝑎 = 𝑒 → ( ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ) |
226 |
185 225
|
bitrd |
⊢ ( 𝑎 = 𝑒 → ( ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ) |
227 |
226
|
cbvralvw |
⊢ ( ∀ 𝑎 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
228 |
227
|
biimpi |
⊢ ( ∀ 𝑎 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) → ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
229 |
228
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑎 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) → ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
230 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑦 = ∅ ) → 𝜑 ) |
231 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) → 𝑧 ∈ 𝑋 ) |
232 |
231
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) → 𝑧 ∈ 𝑋 ) |
233 |
232
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) → 𝑧 ∈ 𝑋 ) |
234 |
233
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑦 = ∅ ) → 𝑧 ∈ 𝑋 ) |
235 |
|
simpl |
⊢ ( ( 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑦 = ∅ ) → 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) |
236 |
|
uneq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ∪ { 𝑧 } ) = ( ∅ ∪ { 𝑧 } ) ) |
237 |
|
0un |
⊢ ( ∅ ∪ { 𝑧 } ) = { 𝑧 } |
238 |
237
|
a1i |
⊢ ( 𝑦 = ∅ → ( ∅ ∪ { 𝑧 } ) = { 𝑧 } ) |
239 |
236 238
|
eqtr2d |
⊢ ( 𝑦 = ∅ → { 𝑧 } = ( 𝑦 ∪ { 𝑧 } ) ) |
240 |
239
|
eqcomd |
⊢ ( 𝑦 = ∅ → ( 𝑦 ∪ { 𝑧 } ) = { 𝑧 } ) |
241 |
240
|
oveq2d |
⊢ ( 𝑦 = ∅ → ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) = ( ℝ ↑m { 𝑧 } ) ) |
242 |
241
|
adantl |
⊢ ( ( 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑦 = ∅ ) → ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) = ( ℝ ↑m { 𝑧 } ) ) |
243 |
235 242
|
eleqtrd |
⊢ ( ( 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑦 = ∅ ) → 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) |
244 |
243
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑦 = ∅ ) → 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) |
245 |
230 234 244
|
jca31 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑦 = ∅ ) → ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ) |
246 |
245
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑦 = ∅ ) → ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ) |
247 |
246
|
adantlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑦 = ∅ ) → ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ) |
248 |
247
|
adantlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑦 = ∅ ) → ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ) |
249 |
|
simpl |
⊢ ( ( 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑦 = ∅ ) → 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) |
250 |
241
|
adantl |
⊢ ( ( 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑦 = ∅ ) → ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) = ( ℝ ↑m { 𝑧 } ) ) |
251 |
249 250
|
eleqtrd |
⊢ ( ( 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑦 = ∅ ) → 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) |
252 |
251
|
adantlr |
⊢ ( ( ( 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑦 = ∅ ) → 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) |
253 |
252
|
adantlll |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑦 = ∅ ) → 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) |
254 |
|
simpl |
⊢ ( ( 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∧ 𝑦 = ∅ ) → 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) |
255 |
241
|
oveq1d |
⊢ ( 𝑦 = ∅ → ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) = ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) |
256 |
255
|
adantl |
⊢ ( ( 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∧ 𝑦 = ∅ ) → ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) = ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) |
257 |
254 256
|
eleqtrd |
⊢ ( ( 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∧ 𝑦 = ∅ ) → 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) |
258 |
257
|
adantll |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑦 = ∅ ) → 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) |
259 |
248 253 258
|
jca31 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑦 = ∅ ) → ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ) |
260 |
259
|
adantlr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑦 = ∅ ) → ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ) |
261 |
260
|
adantlr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ) |
262 |
|
simpl |
⊢ ( ( 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∧ 𝑦 = ∅ ) → 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) |
263 |
255
|
adantl |
⊢ ( ( 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∧ 𝑦 = ∅ ) → ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) = ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) |
264 |
262 263
|
eleqtrd |
⊢ ( ( 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∧ 𝑦 = ∅ ) → 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) |
265 |
264
|
adantlr |
⊢ ( ( ( 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) |
266 |
265
|
adantlll |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) |
267 |
|
simpl |
⊢ ( ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ∧ 𝑦 = ∅ ) → X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
268 |
239
|
ixpeq1d |
⊢ ( 𝑦 = ∅ → X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) |
269 |
268
|
adantl |
⊢ ( ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ∧ 𝑦 = ∅ ) → X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) |
270 |
239
|
ixpeq1d |
⊢ ( 𝑦 = ∅ → X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) = X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) ) |
271 |
270
|
adantr |
⊢ ( ( 𝑦 = ∅ ∧ 𝑖 ∈ ℕ ) → X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) = X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) ) |
272 |
271
|
iuneq2dv |
⊢ ( 𝑦 = ∅ → ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) = ∪ 𝑖 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) ) |
273 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑐 ‘ 𝑖 ) = ( 𝑐 ‘ 𝑗 ) ) |
274 |
273
|
fveq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) = ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) ) |
275 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑗 ) ) |
276 |
275
|
fveq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) = ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) |
277 |
274 276
|
oveq12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) = ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
278 |
277
|
ixpeq2dv |
⊢ ( 𝑖 = 𝑗 → X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) = X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
279 |
278
|
cbviunv |
⊢ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) |
280 |
279
|
a1i |
⊢ ( 𝑦 = ∅ → ∪ 𝑖 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
281 |
272 280
|
eqtrd |
⊢ ( 𝑦 = ∅ → ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
282 |
281
|
adantl |
⊢ ( ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ∧ 𝑦 = ∅ ) → ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
283 |
269 282
|
sseq12d |
⊢ ( ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ∧ 𝑦 = ∅ ) → ( X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) ↔ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
284 |
267 283
|
mpbird |
⊢ ( ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ∧ 𝑦 = ∅ ) → X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) ) |
285 |
284
|
adantll |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) ) |
286 |
261 266 285
|
jca31 |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) ) ) |
287 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → 𝑦 = ∅ ) |
288 |
|
fveq1 |
⊢ ( 𝑎 = 𝑢 → ( 𝑎 ‘ 𝑘 ) = ( 𝑢 ‘ 𝑘 ) ) |
289 |
288
|
oveq1d |
⊢ ( 𝑎 = 𝑢 → ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = ( ( 𝑢 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) |
290 |
289
|
fveq2d |
⊢ ( 𝑎 = 𝑢 → ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) = ( vol ‘ ( ( 𝑢 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) |
291 |
290
|
prodeq2ad |
⊢ ( 𝑎 = 𝑢 → ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑢 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) |
292 |
291
|
ifeq2d |
⊢ ( 𝑎 = 𝑢 → if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) = if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑢 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) |
293 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( 𝑢 ‘ 𝑘 ) = ( 𝑢 ‘ 𝑙 ) ) |
294 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( 𝑏 ‘ 𝑘 ) = ( 𝑏 ‘ 𝑙 ) ) |
295 |
293 294
|
oveq12d |
⊢ ( 𝑘 = 𝑙 → ( ( 𝑢 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = ( ( 𝑢 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) ) |
296 |
295
|
fveq2d |
⊢ ( 𝑘 = 𝑙 → ( vol ‘ ( ( 𝑢 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) = ( vol ‘ ( ( 𝑢 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) ) ) |
297 |
296
|
cbvprodv |
⊢ ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑢 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) = ∏ 𝑙 ∈ 𝑥 ( vol ‘ ( ( 𝑢 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) ) |
298 |
297
|
a1i |
⊢ ( 𝑏 = 𝑣 → ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑢 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) = ∏ 𝑙 ∈ 𝑥 ( vol ‘ ( ( 𝑢 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) ) ) |
299 |
|
fveq1 |
⊢ ( 𝑏 = 𝑣 → ( 𝑏 ‘ 𝑙 ) = ( 𝑣 ‘ 𝑙 ) ) |
300 |
299
|
oveq2d |
⊢ ( 𝑏 = 𝑣 → ( ( 𝑢 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) = ( ( 𝑢 ‘ 𝑙 ) [,) ( 𝑣 ‘ 𝑙 ) ) ) |
301 |
300
|
fveq2d |
⊢ ( 𝑏 = 𝑣 → ( vol ‘ ( ( 𝑢 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) ) = ( vol ‘ ( ( 𝑢 ‘ 𝑙 ) [,) ( 𝑣 ‘ 𝑙 ) ) ) ) |
302 |
301
|
prodeq2ad |
⊢ ( 𝑏 = 𝑣 → ∏ 𝑙 ∈ 𝑥 ( vol ‘ ( ( 𝑢 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) ) = ∏ 𝑙 ∈ 𝑥 ( vol ‘ ( ( 𝑢 ‘ 𝑙 ) [,) ( 𝑣 ‘ 𝑙 ) ) ) ) |
303 |
298 302
|
eqtrd |
⊢ ( 𝑏 = 𝑣 → ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑢 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) = ∏ 𝑙 ∈ 𝑥 ( vol ‘ ( ( 𝑢 ‘ 𝑙 ) [,) ( 𝑣 ‘ 𝑙 ) ) ) ) |
304 |
303
|
ifeq2d |
⊢ ( 𝑏 = 𝑣 → if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑢 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) = if ( 𝑥 = ∅ , 0 , ∏ 𝑙 ∈ 𝑥 ( vol ‘ ( ( 𝑢 ‘ 𝑙 ) [,) ( 𝑣 ‘ 𝑙 ) ) ) ) ) |
305 |
292 304
|
cbvmpov |
⊢ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) = ( 𝑢 ∈ ( ℝ ↑m 𝑥 ) , 𝑣 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑙 ∈ 𝑥 ( vol ‘ ( ( 𝑢 ‘ 𝑙 ) [,) ( 𝑣 ‘ 𝑙 ) ) ) ) ) |
306 |
305
|
mpteq2i |
⊢ ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) = ( 𝑥 ∈ Fin ↦ ( 𝑢 ∈ ( ℝ ↑m 𝑥 ) , 𝑣 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑙 ∈ 𝑥 ( vol ‘ ( ( 𝑢 ‘ 𝑙 ) [,) ( 𝑣 ‘ 𝑙 ) ) ) ) ) ) |
307 |
1 306
|
eqtri |
⊢ 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑢 ∈ ( ℝ ↑m 𝑥 ) , 𝑣 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑙 ∈ 𝑥 ( vol ‘ ( ( 𝑢 ‘ 𝑙 ) [,) ( 𝑣 ‘ 𝑙 ) ) ) ) ) ) |
308 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) ) → 𝑧 ∈ 𝑋 ) |
309 |
|
eqid |
⊢ { 𝑧 } = { 𝑧 } |
310 |
|
elmapi |
⊢ ( 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) → 𝑎 : { 𝑧 } ⟶ ℝ ) |
311 |
310
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) → 𝑎 : { 𝑧 } ⟶ ℝ ) |
312 |
311
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) ) → 𝑎 : { 𝑧 } ⟶ ℝ ) |
313 |
|
elmapi |
⊢ ( 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) → 𝑏 : { 𝑧 } ⟶ ℝ ) |
314 |
313
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) → 𝑏 : { 𝑧 } ⟶ ℝ ) |
315 |
314
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) ) → 𝑏 : { 𝑧 } ⟶ ℝ ) |
316 |
|
elmapi |
⊢ ( 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) → 𝑐 : ℕ ⟶ ( ℝ ↑m { 𝑧 } ) ) |
317 |
316
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) → 𝑐 : ℕ ⟶ ( ℝ ↑m { 𝑧 } ) ) |
318 |
317
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) ) → 𝑐 : ℕ ⟶ ( ℝ ↑m { 𝑧 } ) ) |
319 |
|
elmapi |
⊢ ( 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) → 𝑑 : ℕ ⟶ ( ℝ ↑m { 𝑧 } ) ) |
320 |
319
|
ad2antlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) ) → 𝑑 : ℕ ⟶ ( ℝ ↑m { 𝑧 } ) ) |
321 |
|
id |
⊢ ( X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) → X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) ) |
322 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( 𝑎 ‘ 𝑘 ) = ( 𝑎 ‘ 𝑙 ) ) |
323 |
322 294
|
oveq12d |
⊢ ( 𝑘 = 𝑙 → ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = ( ( 𝑎 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) ) |
324 |
|
eqcom |
⊢ ( 𝑘 = 𝑙 ↔ 𝑙 = 𝑘 ) |
325 |
324
|
imbi1i |
⊢ ( ( 𝑘 = 𝑙 → ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = ( ( 𝑎 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) ) ↔ ( 𝑙 = 𝑘 → ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = ( ( 𝑎 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) ) ) |
326 |
|
eqcom |
⊢ ( ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = ( ( 𝑎 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) ↔ ( ( 𝑎 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) = ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) |
327 |
326
|
imbi2i |
⊢ ( ( 𝑙 = 𝑘 → ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = ( ( 𝑎 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) ) ↔ ( 𝑙 = 𝑘 → ( ( 𝑎 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) = ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) |
328 |
325 327
|
bitri |
⊢ ( ( 𝑘 = 𝑙 → ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = ( ( 𝑎 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) ) ↔ ( 𝑙 = 𝑘 → ( ( 𝑎 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) = ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) |
329 |
323 328
|
mpbi |
⊢ ( 𝑙 = 𝑘 → ( ( 𝑎 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) = ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) |
330 |
329
|
cbvixpv |
⊢ X 𝑙 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) = X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) |
331 |
330
|
a1i |
⊢ ( X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) → X 𝑙 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) = X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) |
332 |
277
|
ixpeq2dv |
⊢ ( 𝑖 = 𝑗 → X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) = X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
333 |
332
|
cbviunv |
⊢ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) |
334 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) = ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑙 ) ) |
335 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) = ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑙 ) ) |
336 |
334 335
|
oveq12d |
⊢ ( 𝑘 = 𝑙 → ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑙 ) ) ) |
337 |
336
|
cbvixpv |
⊢ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑙 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑙 ) ) |
338 |
337
|
a1i |
⊢ ( 𝑗 ∈ ℕ → X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑙 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑙 ) ) ) |
339 |
338
|
iuneq2i |
⊢ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = ∪ 𝑗 ∈ ℕ X 𝑙 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑙 ) ) |
340 |
333 339
|
eqtr2i |
⊢ ∪ 𝑗 ∈ ℕ X 𝑙 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑙 ) ) = ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) |
341 |
340
|
a1i |
⊢ ( X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) → ∪ 𝑗 ∈ ℕ X 𝑙 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑙 ) ) = ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) ) |
342 |
331 341
|
sseq12d |
⊢ ( X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) → ( X 𝑙 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑙 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑙 ) ) ↔ X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) ) ) |
343 |
321 342
|
mpbird |
⊢ ( X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) → X 𝑙 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑙 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑙 ) ) ) |
344 |
343
|
adantl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) ) → X 𝑙 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑙 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑙 ) ) ) |
345 |
307 308 309 312 315 318 320 344
|
hoidmv1le |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) ) → ( 𝑎 ( 𝐿 ‘ { 𝑧 } ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ { 𝑧 } ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) |
346 |
345
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → ( 𝑎 ( 𝐿 ‘ { 𝑧 } ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ { 𝑧 } ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) |
347 |
236 238
|
eqtrd |
⊢ ( 𝑦 = ∅ → ( 𝑦 ∪ { 𝑧 } ) = { 𝑧 } ) |
348 |
347
|
fveq2d |
⊢ ( 𝑦 = ∅ → ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( 𝐿 ‘ { 𝑧 } ) ) |
349 |
348
|
oveqd |
⊢ ( 𝑦 = ∅ → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) = ( 𝑎 ( 𝐿 ‘ { 𝑧 } ) 𝑏 ) ) |
350 |
349
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) = ( 𝑎 ( 𝐿 ‘ { 𝑧 } ) 𝑏 ) ) |
351 |
348
|
oveqd |
⊢ ( 𝑦 = ∅ → ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) = ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ { 𝑧 } ) ( 𝑑 ‘ 𝑗 ) ) ) |
352 |
351
|
mpteq2dv |
⊢ ( 𝑦 = ∅ → ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ { 𝑧 } ) ( 𝑑 ‘ 𝑗 ) ) ) ) |
353 |
352
|
fveq2d |
⊢ ( 𝑦 = ∅ → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ { 𝑧 } ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) |
354 |
353
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ { 𝑧 } ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) |
355 |
350 354
|
breq12d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → ( ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ↔ ( 𝑎 ( 𝐿 ‘ { 𝑧 } ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ { 𝑧 } ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
356 |
346 355
|
mpbird |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) |
357 |
286 287 356
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) |
358 |
2
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → 𝑋 ∈ Fin ) |
359 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) → 𝑦 ⊆ 𝑋 ) |
360 |
359
|
ad5ant12 |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) → 𝑦 ⊆ 𝑋 ) |
361 |
360
|
ad5ant12 |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → 𝑦 ⊆ 𝑋 ) |
362 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) → 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) |
363 |
362
|
ad5ant12 |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) → 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) |
364 |
363
|
ad5ant12 |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) |
365 |
|
eqid |
⊢ ( 𝑦 ∪ { 𝑧 } ) = ( 𝑦 ∪ { 𝑧 } ) |
366 |
|
elmapi |
⊢ ( 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) → 𝑎 : ( 𝑦 ∪ { 𝑧 } ) ⟶ ℝ ) |
367 |
366
|
adantr |
⊢ ( ( 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → 𝑎 : ( 𝑦 ∪ { 𝑧 } ) ⟶ ℝ ) |
368 |
367
|
ad4ant23 |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) → 𝑎 : ( 𝑦 ∪ { 𝑧 } ) ⟶ ℝ ) |
369 |
368
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → 𝑎 : ( 𝑦 ∪ { 𝑧 } ) ⟶ ℝ ) |
370 |
|
elmapi |
⊢ ( 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 : ( 𝑦 ∪ { 𝑧 } ) ⟶ ℝ ) |
371 |
370
|
adantl |
⊢ ( ( 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → 𝑏 : ( 𝑦 ∪ { 𝑧 } ) ⟶ ℝ ) |
372 |
371
|
ad4ant23 |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) → 𝑏 : ( 𝑦 ∪ { 𝑧 } ) ⟶ ℝ ) |
373 |
372
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → 𝑏 : ( 𝑦 ∪ { 𝑧 } ) ⟶ ℝ ) |
374 |
|
elmapi |
⊢ ( 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) → 𝑐 : ℕ ⟶ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) |
375 |
374
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) → 𝑐 : ℕ ⟶ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) |
376 |
375
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → 𝑐 : ℕ ⟶ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) |
377 |
|
elmapi |
⊢ ( 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) → 𝑑 : ℕ ⟶ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) |
378 |
377
|
ad2antrr |
⊢ ( ( ( 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → 𝑑 : ℕ ⟶ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) |
379 |
378
|
adantlll |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → 𝑑 : ℕ ⟶ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) |
380 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( 𝑒 ‘ 𝑘 ) = ( 𝑒 ‘ 𝑙 ) ) |
381 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑙 ) ) |
382 |
380 381
|
oveq12d |
⊢ ( 𝑘 = 𝑙 → ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) = ( ( 𝑒 ‘ 𝑙 ) [,) ( 𝑓 ‘ 𝑙 ) ) ) |
383 |
382
|
cbvixpv |
⊢ X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) = X 𝑙 ∈ 𝑦 ( ( 𝑒 ‘ 𝑙 ) [,) ( 𝑓 ‘ 𝑙 ) ) |
384 |
383
|
a1i |
⊢ ( ℎ = 𝑜 → X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) = X 𝑙 ∈ 𝑦 ( ( 𝑒 ‘ 𝑙 ) [,) ( 𝑓 ‘ 𝑙 ) ) ) |
385 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑔 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑖 ) ) |
386 |
385
|
fveq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) = ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑘 ) ) |
387 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( ℎ ‘ 𝑗 ) = ( ℎ ‘ 𝑖 ) ) |
388 |
387
|
fveq1d |
⊢ ( 𝑗 = 𝑖 → ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) = ( ( ℎ ‘ 𝑖 ) ‘ 𝑘 ) ) |
389 |
386 388
|
oveq12d |
⊢ ( 𝑗 = 𝑖 → ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) = ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑖 ) ‘ 𝑘 ) ) ) |
390 |
389
|
ixpeq2dv |
⊢ ( 𝑗 = 𝑖 → X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑖 ) ‘ 𝑘 ) ) ) |
391 |
390
|
cbviunv |
⊢ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) = ∪ 𝑖 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑖 ) ‘ 𝑘 ) ) |
392 |
391
|
a1i |
⊢ ( ℎ = 𝑜 → ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) = ∪ 𝑖 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑖 ) ‘ 𝑘 ) ) ) |
393 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑘 ) = ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑙 ) ) |
394 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( ( ℎ ‘ 𝑖 ) ‘ 𝑘 ) = ( ( ℎ ‘ 𝑖 ) ‘ 𝑙 ) ) |
395 |
393 394
|
oveq12d |
⊢ ( 𝑘 = 𝑙 → ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑖 ) ‘ 𝑘 ) ) = ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( ℎ ‘ 𝑖 ) ‘ 𝑙 ) ) ) |
396 |
395
|
cbvixpv |
⊢ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑖 ) ‘ 𝑘 ) ) = X 𝑙 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( ℎ ‘ 𝑖 ) ‘ 𝑙 ) ) |
397 |
396
|
a1i |
⊢ ( ℎ = 𝑜 → X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑖 ) ‘ 𝑘 ) ) = X 𝑙 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( ℎ ‘ 𝑖 ) ‘ 𝑙 ) ) ) |
398 |
|
fveq1 |
⊢ ( ℎ = 𝑜 → ( ℎ ‘ 𝑖 ) = ( 𝑜 ‘ 𝑖 ) ) |
399 |
398
|
fveq1d |
⊢ ( ℎ = 𝑜 → ( ( ℎ ‘ 𝑖 ) ‘ 𝑙 ) = ( ( 𝑜 ‘ 𝑖 ) ‘ 𝑙 ) ) |
400 |
399
|
oveq2d |
⊢ ( ℎ = 𝑜 → ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( ℎ ‘ 𝑖 ) ‘ 𝑙 ) ) = ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜 ‘ 𝑖 ) ‘ 𝑙 ) ) ) |
401 |
400
|
ixpeq2dv |
⊢ ( ℎ = 𝑜 → X 𝑙 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( ℎ ‘ 𝑖 ) ‘ 𝑙 ) ) = X 𝑙 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜 ‘ 𝑖 ) ‘ 𝑙 ) ) ) |
402 |
397 401
|
eqtrd |
⊢ ( ℎ = 𝑜 → X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑖 ) ‘ 𝑘 ) ) = X 𝑙 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜 ‘ 𝑖 ) ‘ 𝑙 ) ) ) |
403 |
402
|
adantr |
⊢ ( ( ℎ = 𝑜 ∧ 𝑖 ∈ ℕ ) → X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑖 ) ‘ 𝑘 ) ) = X 𝑙 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜 ‘ 𝑖 ) ‘ 𝑙 ) ) ) |
404 |
403
|
iuneq2dv |
⊢ ( ℎ = 𝑜 → ∪ 𝑖 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑖 ) ‘ 𝑘 ) ) = ∪ 𝑖 ∈ ℕ X 𝑙 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜 ‘ 𝑖 ) ‘ 𝑙 ) ) ) |
405 |
392 404
|
eqtrd |
⊢ ( ℎ = 𝑜 → ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) = ∪ 𝑖 ∈ ℕ X 𝑙 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜 ‘ 𝑖 ) ‘ 𝑙 ) ) ) |
406 |
384 405
|
sseq12d |
⊢ ( ℎ = 𝑜 → ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑙 ∈ 𝑦 ( ( 𝑒 ‘ 𝑙 ) [,) ( 𝑓 ‘ 𝑙 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑙 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜 ‘ 𝑖 ) ‘ 𝑙 ) ) ) ) |
407 |
385 387
|
oveq12d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) = ( ( 𝑔 ‘ 𝑖 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑖 ) ) ) |
408 |
407
|
cbvmptv |
⊢ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) = ( 𝑖 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑖 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑖 ) ) ) |
409 |
408
|
a1i |
⊢ ( ℎ = 𝑜 → ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) = ( 𝑖 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑖 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑖 ) ) ) ) |
410 |
398
|
oveq2d |
⊢ ( ℎ = 𝑜 → ( ( 𝑔 ‘ 𝑖 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑖 ) ) = ( ( 𝑔 ‘ 𝑖 ) ( 𝐿 ‘ 𝑦 ) ( 𝑜 ‘ 𝑖 ) ) ) |
411 |
410
|
mpteq2dv |
⊢ ( ℎ = 𝑜 → ( 𝑖 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑖 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑖 ) ) ) = ( 𝑖 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑖 ) ( 𝐿 ‘ 𝑦 ) ( 𝑜 ‘ 𝑖 ) ) ) ) |
412 |
409 411
|
eqtrd |
⊢ ( ℎ = 𝑜 → ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) = ( 𝑖 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑖 ) ( 𝐿 ‘ 𝑦 ) ( 𝑜 ‘ 𝑖 ) ) ) ) |
413 |
412
|
fveq2d |
⊢ ( ℎ = 𝑜 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑖 ) ( 𝐿 ‘ 𝑦 ) ( 𝑜 ‘ 𝑖 ) ) ) ) ) |
414 |
413
|
breq2d |
⊢ ( ℎ = 𝑜 → ( ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ↔ ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑖 ) ( 𝐿 ‘ 𝑦 ) ( 𝑜 ‘ 𝑖 ) ) ) ) ) ) |
415 |
406 414
|
imbi12d |
⊢ ( ℎ = 𝑜 → ( ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ↔ ( X 𝑙 ∈ 𝑦 ( ( 𝑒 ‘ 𝑙 ) [,) ( 𝑓 ‘ 𝑙 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑙 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜 ‘ 𝑖 ) ‘ 𝑙 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑖 ) ( 𝐿 ‘ 𝑦 ) ( 𝑜 ‘ 𝑖 ) ) ) ) ) ) ) |
416 |
415
|
cbvralvw |
⊢ ( ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑜 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑙 ∈ 𝑦 ( ( 𝑒 ‘ 𝑙 ) [,) ( 𝑓 ‘ 𝑙 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑙 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜 ‘ 𝑖 ) ‘ 𝑙 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑖 ) ( 𝐿 ‘ 𝑦 ) ( 𝑜 ‘ 𝑖 ) ) ) ) ) ) |
417 |
416
|
ralbii |
⊢ ( ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑜 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑙 ∈ 𝑦 ( ( 𝑒 ‘ 𝑙 ) [,) ( 𝑓 ‘ 𝑙 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑙 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜 ‘ 𝑖 ) ‘ 𝑙 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑖 ) ( 𝐿 ‘ 𝑦 ) ( 𝑜 ‘ 𝑖 ) ) ) ) ) ) |
418 |
417
|
ralbii |
⊢ ( ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑜 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑙 ∈ 𝑦 ( ( 𝑒 ‘ 𝑙 ) [,) ( 𝑓 ‘ 𝑙 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑙 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜 ‘ 𝑖 ) ‘ 𝑙 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑖 ) ( 𝐿 ‘ 𝑦 ) ( 𝑜 ‘ 𝑖 ) ) ) ) ) ) |
419 |
418
|
ralbii |
⊢ ( ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑜 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑙 ∈ 𝑦 ( ( 𝑒 ‘ 𝑙 ) [,) ( 𝑓 ‘ 𝑙 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑙 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜 ‘ 𝑖 ) ‘ 𝑙 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑖 ) ( 𝐿 ‘ 𝑦 ) ( 𝑜 ‘ 𝑖 ) ) ) ) ) ) |
420 |
419
|
biimpi |
⊢ ( ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) → ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑜 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑙 ∈ 𝑦 ( ( 𝑒 ‘ 𝑙 ) [,) ( 𝑓 ‘ 𝑙 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑙 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜 ‘ 𝑖 ) ‘ 𝑙 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑖 ) ( 𝐿 ‘ 𝑦 ) ( 𝑜 ‘ 𝑖 ) ) ) ) ) ) |
421 |
420
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) → ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑜 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑙 ∈ 𝑦 ( ( 𝑒 ‘ 𝑙 ) [,) ( 𝑓 ‘ 𝑙 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑙 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜 ‘ 𝑖 ) ‘ 𝑙 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑖 ) ( 𝐿 ‘ 𝑦 ) ( 𝑜 ‘ 𝑖 ) ) ) ) ) ) |
422 |
421
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑜 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑙 ∈ 𝑦 ( ( 𝑒 ‘ 𝑙 ) [,) ( 𝑓 ‘ 𝑙 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑙 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜 ‘ 𝑖 ) ‘ 𝑙 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑖 ) ( 𝐿 ‘ 𝑦 ) ( 𝑜 ‘ 𝑖 ) ) ) ) ) ) |
423 |
323
|
cbvixpv |
⊢ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) |
424 |
336
|
cbvixpv |
⊢ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑙 ) ) |
425 |
424
|
a1i |
⊢ ( 𝑗 = 𝑖 → X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑙 ) ) ) |
426 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑐 ‘ 𝑗 ) = ( 𝑐 ‘ 𝑖 ) ) |
427 |
426
|
fveq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑙 ) = ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑙 ) ) |
428 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑑 ‘ 𝑗 ) = ( 𝑑 ‘ 𝑖 ) ) |
429 |
428
|
fveq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑙 ) = ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑙 ) ) |
430 |
427 429
|
oveq12d |
⊢ ( 𝑗 = 𝑖 → ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑙 ) ) = ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑙 ) ) ) |
431 |
430
|
ixpeq2dv |
⊢ ( 𝑗 = 𝑖 → X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑙 ) ) = X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑙 ) ) ) |
432 |
425 431
|
eqtrd |
⊢ ( 𝑗 = 𝑖 → X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑙 ) ) ) |
433 |
432
|
cbviunv |
⊢ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = ∪ 𝑖 ∈ ℕ X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑙 ) ) |
434 |
423 433
|
sseq12i |
⊢ ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑙 ) ) ) |
435 |
434
|
biimpi |
⊢ ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑙 ) ) ) |
436 |
435
|
ad2antlr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑙 ) [,) ( 𝑏 ‘ 𝑙 ) ) ⊆ ∪ 𝑖 ∈ ℕ X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑑 ‘ 𝑖 ) ‘ 𝑙 ) ) ) |
437 |
|
neqne |
⊢ ( ¬ 𝑦 = ∅ → 𝑦 ≠ ∅ ) |
438 |
437
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → 𝑦 ≠ ∅ ) |
439 |
307 358 361 364 365 369 373 376 379 422 436 438
|
hoidmvlelem5 |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑖 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑖 ) ) ) ) ) |
440 |
273 275
|
oveq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑐 ‘ 𝑖 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑖 ) ) = ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) |
441 |
440
|
cbvmptv |
⊢ ( 𝑖 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑖 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑖 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) |
442 |
441
|
fveq2i |
⊢ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑖 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑖 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) |
443 |
442
|
breq2i |
⊢ ( ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑖 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑖 ) ) ) ) ↔ ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) |
444 |
439 443
|
sylib |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) |
445 |
357 444
|
pm2.61dan |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) |
446 |
445
|
ex |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) → ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
447 |
446
|
ralrimiva |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) → ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
448 |
447
|
ralrimiva |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ∀ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
449 |
448
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ∀ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∀ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
450 |
449
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) → ∀ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∀ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∀ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
451 |
177 229 450
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ∧ ∀ 𝑎 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) → ∀ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∀ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∀ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
452 |
451
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑋 ∖ 𝑦 ) ) ) → ( ∀ 𝑎 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑦 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑦 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑦 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) → ∀ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∀ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∀ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
453 |
51 76 101 126 176 452 2
|
findcard2d |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
454 |
|
fveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑘 ) ) |
455 |
454
|
oveq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) |
456 |
455
|
ixpeq2dv |
⊢ ( 𝑎 = 𝐴 → X 𝑘 ∈ 𝑋 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) |
457 |
456
|
sseq1d |
⊢ ( 𝑎 = 𝐴 → ( X 𝑘 ∈ 𝑋 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
458 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ( 𝐿 ‘ 𝑋 ) 𝑏 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ) |
459 |
458
|
breq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ↔ ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
460 |
457 459
|
imbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( X 𝑘 ∈ 𝑋 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
461 |
460
|
ralbidv |
⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
462 |
461
|
ralbidv |
⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
463 |
462
|
ralbidv |
⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑏 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑏 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
464 |
463
|
rspcva |
⊢ ( ( 𝐴 ∈ ( ℝ ↑m 𝑋 ) ∧ ∀ 𝑎 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) → ∀ 𝑏 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
465 |
26 453 464
|
syl2anc |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
466 |
|
fveq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) |
467 |
466
|
oveq2d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
468 |
467
|
ixpeq2dv |
⊢ ( 𝑏 = 𝐵 → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
469 |
468
|
sseq1d |
⊢ ( 𝑏 = 𝐵 → ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
470 |
|
oveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝑏 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
471 |
470
|
breq1d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ↔ ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
472 |
469 471
|
imbi12d |
⊢ ( 𝑏 = 𝐵 → ( ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
473 |
472
|
ralbidv |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
474 |
473
|
ralbidv |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
475 |
474
|
rspcva |
⊢ ( ( 𝐵 ∈ ( ℝ ↑m 𝑋 ) ∧ ∀ 𝑏 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) → ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
476 |
23 465 475
|
syl2anc |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
477 |
|
fveq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 ‘ 𝑗 ) = ( 𝐶 ‘ 𝑗 ) ) |
478 |
477
|
fveq1d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) |
479 |
478
|
oveq1d |
⊢ ( 𝑐 = 𝐶 → ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
480 |
479
|
ixpeq2dv |
⊢ ( 𝑐 = 𝐶 → X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
481 |
480
|
adantr |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑗 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
482 |
481
|
iuneq2dv |
⊢ ( 𝑐 = 𝐶 → ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
483 |
482
|
sseq2d |
⊢ ( 𝑐 = 𝐶 → ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
484 |
477
|
oveq1d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) = ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) |
485 |
484
|
mpteq2dv |
⊢ ( 𝑐 = 𝐶 → ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) |
486 |
485
|
fveq2d |
⊢ ( 𝑐 = 𝐶 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) |
487 |
486
|
breq2d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ↔ ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
488 |
483 487
|
imbi12d |
⊢ ( 𝑐 = 𝐶 → ( ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
489 |
488
|
ralbidv |
⊢ ( 𝑐 = 𝐶 → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) ) |
490 |
489
|
rspcva |
⊢ ( ( 𝐶 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∧ ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝑐 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) → ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
491 |
17 476 490
|
syl2anc |
⊢ ( 𝜑 → ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) |
492 |
|
fveq1 |
⊢ ( 𝑑 = 𝐷 → ( 𝑑 ‘ 𝑗 ) = ( 𝐷 ‘ 𝑗 ) ) |
493 |
492
|
fveq1d |
⊢ ( 𝑑 = 𝐷 → ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) = ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) |
494 |
493
|
oveq2d |
⊢ ( 𝑑 = 𝐷 → ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
495 |
494
|
ixpeq2dv |
⊢ ( 𝑑 = 𝐷 → X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
496 |
495
|
adantr |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑗 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
497 |
496
|
iuneq2dv |
⊢ ( 𝑑 = 𝐷 → ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
498 |
497
|
sseq2d |
⊢ ( 𝑑 = 𝐷 → ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
499 |
492
|
oveq2d |
⊢ ( 𝑑 = 𝐷 → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) = ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) |
500 |
499
|
mpteq2dv |
⊢ ( 𝑑 = 𝐷 → ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) |
501 |
500
|
fveq2d |
⊢ ( 𝑑 = 𝐷 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
502 |
501
|
breq2d |
⊢ ( 𝑑 = 𝐷 → ( ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ↔ ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
503 |
498 502
|
imbi12d |
⊢ ( 𝑑 = 𝐷 → ( ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ↔ ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
504 |
503
|
rspcva |
⊢ ( ( 𝐷 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∧ ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝑑 ‘ 𝑗 ) ) ) ) ) ) → ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
505 |
14 491 504
|
syl2anc |
⊢ ( 𝜑 → ( X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
506 |
7 505
|
mpd |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑋 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |