Metamath Proof Explorer


Theorem hoidmvle

Description: The dimensional volume of a n-dimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. Lemma 115B of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoidmvle.l 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) )
hoidmvle.x ( 𝜑𝑋 ∈ Fin )
hoidmvle.a ( 𝜑𝐴 : 𝑋 ⟶ ℝ )
hoidmvle.b ( 𝜑𝐵 : 𝑋 ⟶ ℝ )
hoidmvle.c ( 𝜑𝐶 : ℕ ⟶ ( ℝ ↑m 𝑋 ) )
hoidmvle.d ( 𝜑𝐷 : ℕ ⟶ ( ℝ ↑m 𝑋 ) )
hoidmvle.s ( 𝜑X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷𝑗 ) ‘ 𝑘 ) ) )
Assertion hoidmvle ( 𝜑 → ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝐷𝑗 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 hoidmvle.l 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) )
2 hoidmvle.x ( 𝜑𝑋 ∈ Fin )
3 hoidmvle.a ( 𝜑𝐴 : 𝑋 ⟶ ℝ )
4 hoidmvle.b ( 𝜑𝐵 : 𝑋 ⟶ ℝ )
5 hoidmvle.c ( 𝜑𝐶 : ℕ ⟶ ( ℝ ↑m 𝑋 ) )
6 hoidmvle.d ( 𝜑𝐷 : ℕ ⟶ ( ℝ ↑m 𝑋 ) )
7 hoidmvle.s ( 𝜑X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷𝑗 ) ‘ 𝑘 ) ) )
8 ovex ( ℝ ↑m 𝑋 ) ∈ V
9 nnex ℕ ∈ V
10 8 9 pm3.2i ( ( ℝ ↑m 𝑋 ) ∈ V ∧ ℕ ∈ V )
11 10 a1i ( 𝜑 → ( ( ℝ ↑m 𝑋 ) ∈ V ∧ ℕ ∈ V ) )
12 elmapg ( ( ( ℝ ↑m 𝑋 ) ∈ V ∧ ℕ ∈ V ) → ( 𝐷 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ↔ 𝐷 : ℕ ⟶ ( ℝ ↑m 𝑋 ) ) )
13 11 12 syl ( 𝜑 → ( 𝐷 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ↔ 𝐷 : ℕ ⟶ ( ℝ ↑m 𝑋 ) ) )
14 6 13 mpbird ( 𝜑𝐷 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) )
15 elmapg ( ( ( ℝ ↑m 𝑋 ) ∈ V ∧ ℕ ∈ V ) → ( 𝐶 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ↔ 𝐶 : ℕ ⟶ ( ℝ ↑m 𝑋 ) ) )
16 11 15 syl ( 𝜑 → ( 𝐶 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ↔ 𝐶 : ℕ ⟶ ( ℝ ↑m 𝑋 ) ) )
17 5 16 mpbird ( 𝜑𝐶 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) )
18 reex ℝ ∈ V
19 18 a1i ( 𝜑 → ℝ ∈ V )
20 19 2 jca ( 𝜑 → ( ℝ ∈ V ∧ 𝑋 ∈ Fin ) )
21 elmapg ( ( ℝ ∈ V ∧ 𝑋 ∈ Fin ) → ( 𝐵 ∈ ( ℝ ↑m 𝑋 ) ↔ 𝐵 : 𝑋 ⟶ ℝ ) )
22 20 21 syl ( 𝜑 → ( 𝐵 ∈ ( ℝ ↑m 𝑋 ) ↔ 𝐵 : 𝑋 ⟶ ℝ ) )
23 4 22 mpbird ( 𝜑𝐵 ∈ ( ℝ ↑m 𝑋 ) )
24 elmapg ( ( ℝ ∈ V ∧ 𝑋 ∈ Fin ) → ( 𝐴 ∈ ( ℝ ↑m 𝑋 ) ↔ 𝐴 : 𝑋 ⟶ ℝ ) )
25 20 24 syl ( 𝜑 → ( 𝐴 ∈ ( ℝ ↑m 𝑋 ) ↔ 𝐴 : 𝑋 ⟶ ℝ ) )
26 3 25 mpbird ( 𝜑𝐴 ∈ ( ℝ ↑m 𝑋 ) )
27 oveq2 ( 𝑥 = ∅ → ( ℝ ↑m 𝑥 ) = ( ℝ ↑m ∅ ) )
28 27 eleq2d ( 𝑥 = ∅ → ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) ↔ 𝑎 ∈ ( ℝ ↑m ∅ ) ) )
29 27 eleq2d ( 𝑥 = ∅ → ( 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↔ 𝑏 ∈ ( ℝ ↑m ∅ ) ) )
30 27 oveq1d ( 𝑥 = ∅ → ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) = ( ( ℝ ↑m ∅ ) ↑m ℕ ) )
31 30 eleq2d ( 𝑥 = ∅ → ( 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ↔ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) )
32 30 eleq2d ( 𝑥 = ∅ → ( 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ↔ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) )
33 ixpeq1 ( 𝑥 = ∅ → X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) = X 𝑘 ∈ ∅ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) )
34 ixpeq1 ( 𝑥 = ∅ → X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = X 𝑘 ∈ ∅ ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
35 34 iuneq2d ( 𝑥 = ∅ → 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
36 33 35 sseq12d ( 𝑥 = ∅ → ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘 ∈ ∅ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) )
37 fveq2 ( 𝑥 = ∅ → ( 𝐿𝑥 ) = ( 𝐿 ‘ ∅ ) )
38 37 oveqd ( 𝑥 = ∅ → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) = ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) )
39 37 oveqd ( 𝑥 = ∅ → ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) = ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) )
40 39 mpteq2dv ( 𝑥 = ∅ → ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) ) )
41 40 fveq2d ( 𝑥 = ∅ → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) ) ) )
42 38 41 breq12d ( 𝑥 = ∅ → ( ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ↔ ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) ) ) ) )
43 36 42 imbi12d ( 𝑥 = ∅ → ( ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ( X 𝑘 ∈ ∅ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) ) ) ) ) )
44 32 43 imbi12d ( 𝑥 = ∅ → ( ( 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) → ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ) ↔ ( 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) → ( X 𝑘 ∈ ∅ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) ) ) ) ) ) )
45 44 ralbidv2 ( 𝑥 = ∅ → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ( X 𝑘 ∈ ∅ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) ) ) ) ) )
46 31 45 imbi12d ( 𝑥 = ∅ → ( ( 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) → ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ) ↔ ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) → ∀ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ( X 𝑘 ∈ ∅ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) ) ) ) ) ) )
47 46 ralbidv2 ( 𝑥 = ∅ → ( ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ( X 𝑘 ∈ ∅ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) ) ) ) ) )
48 29 47 imbi12d ( 𝑥 = ∅ → ( ( 𝑏 ∈ ( ℝ ↑m 𝑥 ) → ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ) ↔ ( 𝑏 ∈ ( ℝ ↑m ∅ ) → ∀ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ( X 𝑘 ∈ ∅ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) ) ) ) ) ) )
49 48 ralbidv2 ( 𝑥 = ∅ → ( ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑏 ∈ ( ℝ ↑m ∅ ) ∀ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ( X 𝑘 ∈ ∅ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) ) ) ) ) )
50 28 49 imbi12d ( 𝑥 = ∅ → ( ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) → ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ) ↔ ( 𝑎 ∈ ( ℝ ↑m ∅ ) → ∀ 𝑏 ∈ ( ℝ ↑m ∅ ) ∀ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ( X 𝑘 ∈ ∅ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) ) ) ) ) ) )
51 50 ralbidv2 ( 𝑥 = ∅ → ( ∀ 𝑎 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑎 ∈ ( ℝ ↑m ∅ ) ∀ 𝑏 ∈ ( ℝ ↑m ∅ ) ∀ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ( X 𝑘 ∈ ∅ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) ) ) ) ) )
52 oveq2 ( 𝑥 = 𝑦 → ( ℝ ↑m 𝑥 ) = ( ℝ ↑m 𝑦 ) )
53 52 eleq2d ( 𝑥 = 𝑦 → ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) ↔ 𝑎 ∈ ( ℝ ↑m 𝑦 ) ) )
54 52 eleq2d ( 𝑥 = 𝑦 → ( 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↔ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ) )
55 52 oveq1d ( 𝑥 = 𝑦 → ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) = ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) )
56 55 eleq2d ( 𝑥 = 𝑦 → ( 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ↔ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ) )
57 55 eleq2d ( 𝑥 = 𝑦 → ( 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ↔ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ) )
58 ixpeq1 ( 𝑥 = 𝑦X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) = X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) )
59 ixpeq1 ( 𝑥 = 𝑦X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
60 59 iuneq2d ( 𝑥 = 𝑦 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
61 58 60 sseq12d ( 𝑥 = 𝑦 → ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) )
62 fveq2 ( 𝑥 = 𝑦 → ( 𝐿𝑥 ) = ( 𝐿𝑦 ) )
63 62 oveqd ( 𝑥 = 𝑦 → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) = ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) )
64 62 oveqd ( 𝑥 = 𝑦 → ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) = ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) )
65 64 mpteq2dv ( 𝑥 = 𝑦 → ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) )
66 65 fveq2d ( 𝑥 = 𝑦 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) )
67 63 66 breq12d ( 𝑥 = 𝑦 → ( ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ↔ ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) )
68 61 67 imbi12d ( 𝑥 = 𝑦 → ( ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ( X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ) )
69 57 68 imbi12d ( 𝑥 = 𝑦 → ( ( 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) → ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ) ↔ ( 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) → ( X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ) ) )
70 69 ralbidv2 ( 𝑥 = 𝑦 → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ) )
71 56 70 imbi12d ( 𝑥 = 𝑦 → ( ( 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) → ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ) ↔ ( 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) → ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ) ) )
72 71 ralbidv2 ( 𝑥 = 𝑦 → ( ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ) )
73 54 72 imbi12d ( 𝑥 = 𝑦 → ( ( 𝑏 ∈ ( ℝ ↑m 𝑥 ) → ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ) ↔ ( 𝑏 ∈ ( ℝ ↑m 𝑦 ) → ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ) ) )
74 73 ralbidv2 ( 𝑥 = 𝑦 → ( ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ) )
75 53 74 imbi12d ( 𝑥 = 𝑦 → ( ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) → ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ) ↔ ( 𝑎 ∈ ( ℝ ↑m 𝑦 ) → ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ) ) )
76 75 ralbidv2 ( 𝑥 = 𝑦 → ( ∀ 𝑎 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑎 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ) )
77 oveq2 ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ℝ ↑m 𝑥 ) = ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) )
78 77 eleq2d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) ↔ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) )
79 77 eleq2d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↔ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) )
80 77 oveq1d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) = ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) )
81 80 eleq2d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ↔ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) )
82 80 eleq2d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ↔ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) )
83 ixpeq1 ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) = X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) )
84 ixpeq1 ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
85 84 iuneq2d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
86 83 85 sseq12d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) )
87 fveq2 ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐿𝑥 ) = ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) )
88 87 oveqd ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) = ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) )
89 87 oveqd ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) = ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) )
90 89 mpteq2dv ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) )
91 90 fveq2d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) )
92 88 91 breq12d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ↔ ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) ) )
93 86 92 imbi12d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) ) ) )
94 82 93 imbi12d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) → ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ) ↔ ( 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) → ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) ) ) ) )
95 94 ralbidv2 ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) ) ) )
96 81 95 imbi12d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) → ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ) ↔ ( 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) → ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) ) ) ) )
97 96 ralbidv2 ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) ) ) )
98 79 97 imbi12d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑏 ∈ ( ℝ ↑m 𝑥 ) → ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ) ↔ ( 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) → ∀ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) ) ) ) )
99 98 ralbidv2 ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∀ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) ) ) )
100 78 99 imbi12d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) → ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ) ↔ ( 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) → ∀ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∀ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) ) ) ) )
101 100 ralbidv2 ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑎 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∀ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∀ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) ) ) )
102 oveq2 ( 𝑥 = 𝑋 → ( ℝ ↑m 𝑥 ) = ( ℝ ↑m 𝑋 ) )
103 102 eleq2d ( 𝑥 = 𝑋 → ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) ↔ 𝑎 ∈ ( ℝ ↑m 𝑋 ) ) )
104 102 eleq2d ( 𝑥 = 𝑋 → ( 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↔ 𝑏 ∈ ( ℝ ↑m 𝑋 ) ) )
105 102 oveq1d ( 𝑥 = 𝑋 → ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) = ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) )
106 105 eleq2d ( 𝑥 = 𝑋 → ( 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ↔ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ) )
107 105 eleq2d ( 𝑥 = 𝑋 → ( 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ↔ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ) )
108 ixpeq1 ( 𝑥 = 𝑋X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) = X 𝑘𝑋 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) )
109 ixpeq1 ( 𝑥 = 𝑋X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
110 109 iuneq2d ( 𝑥 = 𝑋 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
111 108 110 sseq12d ( 𝑥 = 𝑋 → ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘𝑋 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) )
112 fveq2 ( 𝑥 = 𝑋 → ( 𝐿𝑥 ) = ( 𝐿𝑋 ) )
113 112 oveqd ( 𝑥 = 𝑋 → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) = ( 𝑎 ( 𝐿𝑋 ) 𝑏 ) )
114 112 oveqd ( 𝑥 = 𝑋 → ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) = ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) )
115 114 mpteq2dv ( 𝑥 = 𝑋 → ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) )
116 115 fveq2d ( 𝑥 = 𝑋 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) )
117 113 116 breq12d ( 𝑥 = 𝑋 → ( ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ↔ ( 𝑎 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) )
118 111 117 imbi12d ( 𝑥 = 𝑋 → ( ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ( X 𝑘𝑋 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ) )
119 107 118 imbi12d ( 𝑥 = 𝑋 → ( ( 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) → ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ) ↔ ( 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) → ( X 𝑘𝑋 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ) ) )
120 119 ralbidv2 ( 𝑥 = 𝑋 → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ) )
121 106 120 imbi12d ( 𝑥 = 𝑋 → ( ( 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) → ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ) ↔ ( 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) → ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ) ) )
122 121 ralbidv2 ( 𝑥 = 𝑋 → ( ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ) )
123 104 122 imbi12d ( 𝑥 = 𝑋 → ( ( 𝑏 ∈ ( ℝ ↑m 𝑥 ) → ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ) ↔ ( 𝑏 ∈ ( ℝ ↑m 𝑋 ) → ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ) ) )
124 123 ralbidv2 ( 𝑥 = 𝑋 → ( ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑏 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ) )
125 103 124 imbi12d ( 𝑥 = 𝑋 → ( ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) → ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ) ↔ ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) → ∀ 𝑏 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ) ) )
126 125 ralbidv2 ( 𝑥 = 𝑋 → ( ∀ 𝑎 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑥 ) ↑m ℕ ) ( X 𝑘𝑥 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑥 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑥 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑥 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑎 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ) )
127 fveq1 ( 𝑎 = 𝑒 → ( 𝑎𝑘 ) = ( 𝑒𝑘 ) )
128 127 oveq1d ( 𝑎 = 𝑒 → ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) = ( ( 𝑒𝑘 ) [,) ( 𝑏𝑘 ) ) )
129 128 fveq2d ( 𝑎 = 𝑒 → ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) = ( vol ‘ ( ( 𝑒𝑘 ) [,) ( 𝑏𝑘 ) ) ) )
130 129 prodeq2ad ( 𝑎 = 𝑒 → ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) = ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑒𝑘 ) [,) ( 𝑏𝑘 ) ) ) )
131 130 ifeq2d ( 𝑎 = 𝑒 → if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) = if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑒𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) )
132 fveq1 ( 𝑏 = 𝑓 → ( 𝑏𝑘 ) = ( 𝑓𝑘 ) )
133 132 oveq2d ( 𝑏 = 𝑓 → ( ( 𝑒𝑘 ) [,) ( 𝑏𝑘 ) ) = ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) )
134 133 fveq2d ( 𝑏 = 𝑓 → ( vol ‘ ( ( 𝑒𝑘 ) [,) ( 𝑏𝑘 ) ) ) = ( vol ‘ ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ) )
135 134 prodeq2ad ( 𝑏 = 𝑓 → ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑒𝑘 ) [,) ( 𝑏𝑘 ) ) ) = ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ) )
136 135 ifeq2d ( 𝑏 = 𝑓 → if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑒𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) = if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ) ) )
137 131 136 cbvmpov ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) = ( 𝑒 ∈ ( ℝ ↑m 𝑥 ) , 𝑓 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ) ) )
138 137 mpteq2i ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) ) = ( 𝑥 ∈ Fin ↦ ( 𝑒 ∈ ( ℝ ↑m 𝑥 ) , 𝑓 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ) ) ) )
139 1 138 eqtri 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑒 ∈ ( ℝ ↑m 𝑥 ) , 𝑓 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ) ) ) )
140 elmapi ( 𝑎 ∈ ( ℝ ↑m ∅ ) → 𝑎 : ∅ ⟶ ℝ )
141 140 adantr ( ( 𝑎 ∈ ( ℝ ↑m ∅ ) ∧ 𝑏 ∈ ( ℝ ↑m ∅ ) ) → 𝑎 : ∅ ⟶ ℝ )
142 elmapi ( 𝑏 ∈ ( ℝ ↑m ∅ ) → 𝑏 : ∅ ⟶ ℝ )
143 142 adantl ( ( 𝑎 ∈ ( ℝ ↑m ∅ ) ∧ 𝑏 ∈ ( ℝ ↑m ∅ ) ) → 𝑏 : ∅ ⟶ ℝ )
144 139 141 143 hoidmv0val ( ( 𝑎 ∈ ( ℝ ↑m ∅ ) ∧ 𝑏 ∈ ( ℝ ↑m ∅ ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) = 0 )
145 144 ad5ant23 ( ( ( ( ( 𝜑𝑎 ∈ ( ℝ ↑m ∅ ) ) ∧ 𝑏 ∈ ( ℝ ↑m ∅ ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) = 0 )
146 nfv 𝑗 ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) )
147 9 a1i ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) → ℕ ∈ V )
148 icossicc ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ )
149 0fin ∅ ∈ Fin
150 149 a1i ( ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) ∧ 𝑗 ∈ ℕ ) → ∅ ∈ Fin )
151 ovexd ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → ( ℝ ↑m ∅ ) ∈ V )
152 9 a1i ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → ℕ ∈ V )
153 simpl ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) )
154 simpr ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ )
155 151 152 153 154 fvmap ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑐𝑗 ) ∈ ( ℝ ↑m ∅ ) )
156 elmapi ( ( 𝑐𝑗 ) ∈ ( ℝ ↑m ∅ ) → ( 𝑐𝑗 ) : ∅ ⟶ ℝ )
157 155 156 syl ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑐𝑗 ) : ∅ ⟶ ℝ )
158 157 adantlr ( ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑐𝑗 ) : ∅ ⟶ ℝ )
159 ovexd ( ( 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → ( ℝ ↑m ∅ ) ∈ V )
160 9 a1i ( ( 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → ℕ ∈ V )
161 simpl ( ( 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) )
162 simpr ( ( 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ )
163 159 160 161 162 fvmap ( ( 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑑𝑗 ) ∈ ( ℝ ↑m ∅ ) )
164 elmapi ( ( 𝑑𝑗 ) ∈ ( ℝ ↑m ∅ ) → ( 𝑑𝑗 ) : ∅ ⟶ ℝ )
165 163 164 syl ( ( 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑑𝑗 ) : ∅ ⟶ ℝ )
166 165 adantll ( ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑑𝑗 ) : ∅ ⟶ ℝ )
167 1 150 158 166 hoidmvcl ( ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) ∈ ( 0 [,) +∞ ) )
168 148 167 sseldi ( ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) ∈ ( 0 [,] +∞ ) )
169 146 147 168 sge0ge0mpt ( ( 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) → 0 ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) ) ) )
170 169 adantll ( ( ( ( ( 𝜑𝑎 ∈ ( ℝ ↑m ∅ ) ) ∧ 𝑏 ∈ ( ℝ ↑m ∅ ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) → 0 ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) ) ) )
171 145 170 eqbrtrd ( ( ( ( ( 𝜑𝑎 ∈ ( ℝ ↑m ∅ ) ) ∧ 𝑏 ∈ ( ℝ ↑m ∅ ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) ) ) )
172 171 a1d ( ( ( ( ( 𝜑𝑎 ∈ ( ℝ ↑m ∅ ) ) ∧ 𝑏 ∈ ( ℝ ↑m ∅ ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) → ( X 𝑘 ∈ ∅ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) ) ) ) )
173 172 ralrimiva ( ( ( ( 𝜑𝑎 ∈ ( ℝ ↑m ∅ ) ) ∧ 𝑏 ∈ ( ℝ ↑m ∅ ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ) → ∀ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ( X 𝑘 ∈ ∅ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) ) ) ) )
174 173 ralrimiva ( ( ( 𝜑𝑎 ∈ ( ℝ ↑m ∅ ) ) ∧ 𝑏 ∈ ( ℝ ↑m ∅ ) ) → ∀ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ( X 𝑘 ∈ ∅ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) ) ) ) )
175 174 ralrimiva ( ( 𝜑𝑎 ∈ ( ℝ ↑m ∅ ) ) → ∀ 𝑏 ∈ ( ℝ ↑m ∅ ) ∀ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ( X 𝑘 ∈ ∅ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) ) ) ) )
176 175 ralrimiva ( 𝜑 → ∀ 𝑎 ∈ ( ℝ ↑m ∅ ) ∀ 𝑏 ∈ ( ℝ ↑m ∅ ) ∀ 𝑐 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ∅ ) ↑m ℕ ) ( X 𝑘 ∈ ∅ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ∅ ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝑑𝑗 ) ) ) ) ) )
177 simpl ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑎 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ) → ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) )
178 128 ixpeq2dv ( 𝑎 = 𝑒X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) = X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑏𝑘 ) ) )
179 178 sseq1d ( 𝑎 = 𝑒 → ( X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) )
180 oveq1 ( 𝑎 = 𝑒 → ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) = ( 𝑒 ( 𝐿𝑦 ) 𝑏 ) )
181 180 breq1d ( 𝑎 = 𝑒 → ( ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ↔ ( 𝑒 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) )
182 179 181 imbi12d ( 𝑎 = 𝑒 → ( ( X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ) )
183 182 ralbidv ( 𝑎 = 𝑒 → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ) )
184 183 ralbidv ( 𝑎 = 𝑒 → ( ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ) )
185 184 ralbidv ( 𝑎 = 𝑒 → ( ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ) )
186 133 ixpeq2dv ( 𝑏 = 𝑓X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑏𝑘 ) ) = X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) )
187 186 sseq1d ( 𝑏 = 𝑓 → ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) )
188 oveq2 ( 𝑏 = 𝑓 → ( 𝑒 ( 𝐿𝑦 ) 𝑏 ) = ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) )
189 188 breq1d ( 𝑏 = 𝑓 → ( ( 𝑒 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ↔ ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) )
190 187 189 imbi12d ( 𝑏 = 𝑓 → ( ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ) )
191 190 ralbidv ( 𝑏 = 𝑓 → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ) )
192 191 ralbidv ( 𝑏 = 𝑓 → ( ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ) )
193 fveq1 ( 𝑐 = 𝑔 → ( 𝑐𝑗 ) = ( 𝑔𝑗 ) )
194 193 fveq1d ( 𝑐 = 𝑔 → ( ( 𝑐𝑗 ) ‘ 𝑘 ) = ( ( 𝑔𝑗 ) ‘ 𝑘 ) )
195 194 oveq1d ( 𝑐 = 𝑔 → ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
196 195 ixpeq2dv ( 𝑐 = 𝑔X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
197 196 adantr ( ( 𝑐 = 𝑔𝑗 ∈ ℕ ) → X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
198 197 iuneq2dv ( 𝑐 = 𝑔 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
199 198 sseq2d ( 𝑐 = 𝑔 → ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) )
200 193 oveq1d ( 𝑐 = 𝑔 → ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) = ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) )
201 200 mpteq2dv ( 𝑐 = 𝑔 → ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) )
202 201 fveq2d ( 𝑐 = 𝑔 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) )
203 202 breq2d ( 𝑐 = 𝑔 → ( ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ↔ ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) )
204 199 203 imbi12d ( 𝑐 = 𝑔 → ( ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ) )
205 204 ralbidv ( 𝑐 = 𝑔 → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ) )
206 fveq1 ( 𝑑 = → ( 𝑑𝑗 ) = ( 𝑗 ) )
207 206 fveq1d ( 𝑑 = → ( ( 𝑑𝑗 ) ‘ 𝑘 ) = ( ( 𝑗 ) ‘ 𝑘 ) )
208 207 oveq2d ( 𝑑 = → ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) )
209 208 ixpeq2dv ( 𝑑 = X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) )
210 209 adantr ( ( 𝑑 = 𝑗 ∈ ℕ ) → X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) )
211 210 iuneq2dv ( 𝑑 = 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) )
212 211 sseq2d ( 𝑑 = → ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) ) )
213 206 oveq2d ( 𝑑 = → ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) = ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) )
214 213 mpteq2dv ( 𝑑 = → ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) )
215 214 fveq2d ( 𝑑 = → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) )
216 215 breq2d ( 𝑑 = → ( ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ↔ ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) )
217 212 216 imbi12d ( 𝑑 = → ( ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) )
218 217 cbvralvw ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) )
219 218 a1i ( 𝑐 = 𝑔 → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) )
220 205 219 bitrd ( 𝑐 = 𝑔 → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) )
221 220 cbvralvw ( ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) )
222 221 a1i ( 𝑏 = 𝑓 → ( ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) )
223 192 222 bitrd ( 𝑏 = 𝑓 → ( ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) )
224 223 cbvralvw ( ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) )
225 224 a1i ( 𝑎 = 𝑒 → ( ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) )
226 185 225 bitrd ( 𝑎 = 𝑒 → ( ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) )
227 226 cbvralvw ( ∀ 𝑎 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) )
228 227 biimpi ( ∀ 𝑎 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) → ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) )
229 228 adantl ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑎 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ) → ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) )
230 simplll ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑦 = ∅ ) → 𝜑 )
231 eldifi ( 𝑧 ∈ ( 𝑋𝑦 ) → 𝑧𝑋 )
232 231 adantl ( ( 𝜑𝑧 ∈ ( 𝑋𝑦 ) ) → 𝑧𝑋 )
233 232 adantrl ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) → 𝑧𝑋 )
234 233 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑦 = ∅ ) → 𝑧𝑋 )
235 simpl ( ( 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑦 = ∅ ) → 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) )
236 uneq1 ( 𝑦 = ∅ → ( 𝑦 ∪ { 𝑧 } ) = ( ∅ ∪ { 𝑧 } ) )
237 0un ( ∅ ∪ { 𝑧 } ) = { 𝑧 }
238 237 a1i ( 𝑦 = ∅ → ( ∅ ∪ { 𝑧 } ) = { 𝑧 } )
239 236 238 eqtr2d ( 𝑦 = ∅ → { 𝑧 } = ( 𝑦 ∪ { 𝑧 } ) )
240 239 eqcomd ( 𝑦 = ∅ → ( 𝑦 ∪ { 𝑧 } ) = { 𝑧 } )
241 240 oveq2d ( 𝑦 = ∅ → ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) = ( ℝ ↑m { 𝑧 } ) )
242 241 adantl ( ( 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑦 = ∅ ) → ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) = ( ℝ ↑m { 𝑧 } ) )
243 235 242 eleqtrd ( ( 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑦 = ∅ ) → 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) )
244 243 adantll ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑦 = ∅ ) → 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) )
245 230 234 244 jca31 ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑦 = ∅ ) → ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) )
246 245 adantllr ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑦 = ∅ ) → ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) )
247 246 adantlr ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑦 = ∅ ) → ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) )
248 247 adantlr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑦 = ∅ ) → ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) )
249 simpl ( ( 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑦 = ∅ ) → 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) )
250 241 adantl ( ( 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑦 = ∅ ) → ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) = ( ℝ ↑m { 𝑧 } ) )
251 249 250 eleqtrd ( ( 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑦 = ∅ ) → 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) )
252 251 adantlr ( ( ( 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑦 = ∅ ) → 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) )
253 252 adantlll ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑦 = ∅ ) → 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) )
254 simpl ( ( 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∧ 𝑦 = ∅ ) → 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) )
255 241 oveq1d ( 𝑦 = ∅ → ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) = ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) )
256 255 adantl ( ( 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∧ 𝑦 = ∅ ) → ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) = ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) )
257 254 256 eleqtrd ( ( 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∧ 𝑦 = ∅ ) → 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) )
258 257 adantll ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑦 = ∅ ) → 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) )
259 248 253 258 jca31 ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑦 = ∅ ) → ( ( ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) )
260 259 adantlr ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑦 = ∅ ) → ( ( ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) )
261 260 adantlr ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → ( ( ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) )
262 simpl ( ( 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∧ 𝑦 = ∅ ) → 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) )
263 255 adantl ( ( 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∧ 𝑦 = ∅ ) → ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) = ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) )
264 262 263 eleqtrd ( ( 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∧ 𝑦 = ∅ ) → 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) )
265 264 adantlr ( ( ( 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) )
266 265 adantlll ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) )
267 simpl ( ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ∧ 𝑦 = ∅ ) → X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
268 239 ixpeq1d ( 𝑦 = ∅ → X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) = X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) )
269 268 adantl ( ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ∧ 𝑦 = ∅ ) → X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) = X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) )
270 239 ixpeq1d ( 𝑦 = ∅ → X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) = X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) )
271 270 adantr ( ( 𝑦 = ∅ ∧ 𝑖 ∈ ℕ ) → X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) = X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) )
272 271 iuneq2dv ( 𝑦 = ∅ → 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) = 𝑖 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) )
273 fveq2 ( 𝑖 = 𝑗 → ( 𝑐𝑖 ) = ( 𝑐𝑗 ) )
274 273 fveq1d ( 𝑖 = 𝑗 → ( ( 𝑐𝑖 ) ‘ 𝑘 ) = ( ( 𝑐𝑗 ) ‘ 𝑘 ) )
275 fveq2 ( 𝑖 = 𝑗 → ( 𝑑𝑖 ) = ( 𝑑𝑗 ) )
276 275 fveq1d ( 𝑖 = 𝑗 → ( ( 𝑑𝑖 ) ‘ 𝑘 ) = ( ( 𝑑𝑗 ) ‘ 𝑘 ) )
277 274 276 oveq12d ( 𝑖 = 𝑗 → ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) = ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
278 277 ixpeq2dv ( 𝑖 = 𝑗X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) = X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
279 278 cbviunv 𝑖 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) = 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) )
280 279 a1i ( 𝑦 = ∅ → 𝑖 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) = 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
281 272 280 eqtrd ( 𝑦 = ∅ → 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) = 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
282 281 adantl ( ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ∧ 𝑦 = ∅ ) → 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) = 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
283 269 282 sseq12d ( ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ∧ 𝑦 = ∅ ) → ( X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) ↔ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) )
284 267 283 mpbird ( ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ∧ 𝑦 = ∅ ) → X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) )
285 284 adantll ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) )
286 261 266 285 jca31 ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → ( ( ( ( ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) ) )
287 simpr ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → 𝑦 = ∅ )
288 fveq1 ( 𝑎 = 𝑢 → ( 𝑎𝑘 ) = ( 𝑢𝑘 ) )
289 288 oveq1d ( 𝑎 = 𝑢 → ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) = ( ( 𝑢𝑘 ) [,) ( 𝑏𝑘 ) ) )
290 289 fveq2d ( 𝑎 = 𝑢 → ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) = ( vol ‘ ( ( 𝑢𝑘 ) [,) ( 𝑏𝑘 ) ) ) )
291 290 prodeq2ad ( 𝑎 = 𝑢 → ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) = ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑢𝑘 ) [,) ( 𝑏𝑘 ) ) ) )
292 291 ifeq2d ( 𝑎 = 𝑢 → if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) = if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑢𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) )
293 fveq2 ( 𝑘 = 𝑙 → ( 𝑢𝑘 ) = ( 𝑢𝑙 ) )
294 fveq2 ( 𝑘 = 𝑙 → ( 𝑏𝑘 ) = ( 𝑏𝑙 ) )
295 293 294 oveq12d ( 𝑘 = 𝑙 → ( ( 𝑢𝑘 ) [,) ( 𝑏𝑘 ) ) = ( ( 𝑢𝑙 ) [,) ( 𝑏𝑙 ) ) )
296 295 fveq2d ( 𝑘 = 𝑙 → ( vol ‘ ( ( 𝑢𝑘 ) [,) ( 𝑏𝑘 ) ) ) = ( vol ‘ ( ( 𝑢𝑙 ) [,) ( 𝑏𝑙 ) ) ) )
297 296 cbvprodv 𝑘𝑥 ( vol ‘ ( ( 𝑢𝑘 ) [,) ( 𝑏𝑘 ) ) ) = ∏ 𝑙𝑥 ( vol ‘ ( ( 𝑢𝑙 ) [,) ( 𝑏𝑙 ) ) )
298 297 a1i ( 𝑏 = 𝑣 → ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑢𝑘 ) [,) ( 𝑏𝑘 ) ) ) = ∏ 𝑙𝑥 ( vol ‘ ( ( 𝑢𝑙 ) [,) ( 𝑏𝑙 ) ) ) )
299 fveq1 ( 𝑏 = 𝑣 → ( 𝑏𝑙 ) = ( 𝑣𝑙 ) )
300 299 oveq2d ( 𝑏 = 𝑣 → ( ( 𝑢𝑙 ) [,) ( 𝑏𝑙 ) ) = ( ( 𝑢𝑙 ) [,) ( 𝑣𝑙 ) ) )
301 300 fveq2d ( 𝑏 = 𝑣 → ( vol ‘ ( ( 𝑢𝑙 ) [,) ( 𝑏𝑙 ) ) ) = ( vol ‘ ( ( 𝑢𝑙 ) [,) ( 𝑣𝑙 ) ) ) )
302 301 prodeq2ad ( 𝑏 = 𝑣 → ∏ 𝑙𝑥 ( vol ‘ ( ( 𝑢𝑙 ) [,) ( 𝑏𝑙 ) ) ) = ∏ 𝑙𝑥 ( vol ‘ ( ( 𝑢𝑙 ) [,) ( 𝑣𝑙 ) ) ) )
303 298 302 eqtrd ( 𝑏 = 𝑣 → ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑢𝑘 ) [,) ( 𝑏𝑘 ) ) ) = ∏ 𝑙𝑥 ( vol ‘ ( ( 𝑢𝑙 ) [,) ( 𝑣𝑙 ) ) ) )
304 303 ifeq2d ( 𝑏 = 𝑣 → if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑢𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) = if ( 𝑥 = ∅ , 0 , ∏ 𝑙𝑥 ( vol ‘ ( ( 𝑢𝑙 ) [,) ( 𝑣𝑙 ) ) ) ) )
305 292 304 cbvmpov ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) = ( 𝑢 ∈ ( ℝ ↑m 𝑥 ) , 𝑣 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑙𝑥 ( vol ‘ ( ( 𝑢𝑙 ) [,) ( 𝑣𝑙 ) ) ) ) )
306 305 mpteq2i ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) ) = ( 𝑥 ∈ Fin ↦ ( 𝑢 ∈ ( ℝ ↑m 𝑥 ) , 𝑣 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑙𝑥 ( vol ‘ ( ( 𝑢𝑙 ) [,) ( 𝑣𝑙 ) ) ) ) ) )
307 1 306 eqtri 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑢 ∈ ( ℝ ↑m 𝑥 ) , 𝑣 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑙𝑥 ( vol ‘ ( ( 𝑢𝑙 ) [,) ( 𝑣𝑙 ) ) ) ) ) )
308 simp-6r ( ( ( ( ( ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) ) → 𝑧𝑋 )
309 eqid { 𝑧 } = { 𝑧 }
310 elmapi ( 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) → 𝑎 : { 𝑧 } ⟶ ℝ )
311 310 ad2antlr ( ( ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) → 𝑎 : { 𝑧 } ⟶ ℝ )
312 311 ad3antrrr ( ( ( ( ( ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) ) → 𝑎 : { 𝑧 } ⟶ ℝ )
313 elmapi ( 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) → 𝑏 : { 𝑧 } ⟶ ℝ )
314 313 adantl ( ( ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) → 𝑏 : { 𝑧 } ⟶ ℝ )
315 314 ad3antrrr ( ( ( ( ( ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) ) → 𝑏 : { 𝑧 } ⟶ ℝ )
316 elmapi ( 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) → 𝑐 : ℕ ⟶ ( ℝ ↑m { 𝑧 } ) )
317 316 adantl ( ( ( ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) → 𝑐 : ℕ ⟶ ( ℝ ↑m { 𝑧 } ) )
318 317 ad2antrr ( ( ( ( ( ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) ) → 𝑐 : ℕ ⟶ ( ℝ ↑m { 𝑧 } ) )
319 elmapi ( 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) → 𝑑 : ℕ ⟶ ( ℝ ↑m { 𝑧 } ) )
320 319 ad2antlr ( ( ( ( ( ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) ) → 𝑑 : ℕ ⟶ ( ℝ ↑m { 𝑧 } ) )
321 id ( X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) → X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) )
322 fveq2 ( 𝑘 = 𝑙 → ( 𝑎𝑘 ) = ( 𝑎𝑙 ) )
323 322 294 oveq12d ( 𝑘 = 𝑙 → ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) = ( ( 𝑎𝑙 ) [,) ( 𝑏𝑙 ) ) )
324 eqcom ( 𝑘 = 𝑙𝑙 = 𝑘 )
325 324 imbi1i ( ( 𝑘 = 𝑙 → ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) = ( ( 𝑎𝑙 ) [,) ( 𝑏𝑙 ) ) ) ↔ ( 𝑙 = 𝑘 → ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) = ( ( 𝑎𝑙 ) [,) ( 𝑏𝑙 ) ) ) )
326 eqcom ( ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) = ( ( 𝑎𝑙 ) [,) ( 𝑏𝑙 ) ) ↔ ( ( 𝑎𝑙 ) [,) ( 𝑏𝑙 ) ) = ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) )
327 326 imbi2i ( ( 𝑙 = 𝑘 → ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) = ( ( 𝑎𝑙 ) [,) ( 𝑏𝑙 ) ) ) ↔ ( 𝑙 = 𝑘 → ( ( 𝑎𝑙 ) [,) ( 𝑏𝑙 ) ) = ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) )
328 325 327 bitri ( ( 𝑘 = 𝑙 → ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) = ( ( 𝑎𝑙 ) [,) ( 𝑏𝑙 ) ) ) ↔ ( 𝑙 = 𝑘 → ( ( 𝑎𝑙 ) [,) ( 𝑏𝑙 ) ) = ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) )
329 323 328 mpbi ( 𝑙 = 𝑘 → ( ( 𝑎𝑙 ) [,) ( 𝑏𝑙 ) ) = ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) )
330 329 cbvixpv X 𝑙 ∈ { 𝑧 } ( ( 𝑎𝑙 ) [,) ( 𝑏𝑙 ) ) = X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) )
331 330 a1i ( X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) → X 𝑙 ∈ { 𝑧 } ( ( 𝑎𝑙 ) [,) ( 𝑏𝑙 ) ) = X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) )
332 277 ixpeq2dv ( 𝑖 = 𝑗X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) = X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
333 332 cbviunv 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) = 𝑗 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) )
334 fveq2 ( 𝑘 = 𝑙 → ( ( 𝑐𝑗 ) ‘ 𝑘 ) = ( ( 𝑐𝑗 ) ‘ 𝑙 ) )
335 fveq2 ( 𝑘 = 𝑙 → ( ( 𝑑𝑗 ) ‘ 𝑘 ) = ( ( 𝑑𝑗 ) ‘ 𝑙 ) )
336 334 335 oveq12d ( 𝑘 = 𝑙 → ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = ( ( ( 𝑐𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑙 ) ) )
337 336 cbvixpv X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = X 𝑙 ∈ { 𝑧 } ( ( ( 𝑐𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑙 ) )
338 337 a1i ( 𝑗 ∈ ℕ → X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = X 𝑙 ∈ { 𝑧 } ( ( ( 𝑐𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑙 ) ) )
339 338 iuneq2i 𝑗 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = 𝑗 ∈ ℕ X 𝑙 ∈ { 𝑧 } ( ( ( 𝑐𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑙 ) )
340 333 339 eqtr2i 𝑗 ∈ ℕ X 𝑙 ∈ { 𝑧 } ( ( ( 𝑐𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑙 ) ) = 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) )
341 340 a1i ( X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) → 𝑗 ∈ ℕ X 𝑙 ∈ { 𝑧 } ( ( ( 𝑐𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑙 ) ) = 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) )
342 331 341 sseq12d ( X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) → ( X 𝑙 ∈ { 𝑧 } ( ( 𝑎𝑙 ) [,) ( 𝑏𝑙 ) ) ⊆ 𝑗 ∈ ℕ X 𝑙 ∈ { 𝑧 } ( ( ( 𝑐𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑙 ) ) ↔ X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) ) )
343 321 342 mpbird ( X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) → X 𝑙 ∈ { 𝑧 } ( ( 𝑎𝑙 ) [,) ( 𝑏𝑙 ) ) ⊆ 𝑗 ∈ ℕ X 𝑙 ∈ { 𝑧 } ( ( ( 𝑐𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑙 ) ) )
344 343 adantl ( ( ( ( ( ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) ) → X 𝑙 ∈ { 𝑧 } ( ( 𝑎𝑙 ) [,) ( 𝑏𝑙 ) ) ⊆ 𝑗 ∈ ℕ X 𝑙 ∈ { 𝑧 } ( ( ( 𝑐𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑙 ) ) )
345 307 308 309 312 315 318 320 344 hoidmv1le ( ( ( ( ( ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) ) → ( 𝑎 ( 𝐿 ‘ { 𝑧 } ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ { 𝑧 } ) ( 𝑑𝑗 ) ) ) ) )
346 345 adantr ( ( ( ( ( ( ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → ( 𝑎 ( 𝐿 ‘ { 𝑧 } ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ { 𝑧 } ) ( 𝑑𝑗 ) ) ) ) )
347 236 238 eqtrd ( 𝑦 = ∅ → ( 𝑦 ∪ { 𝑧 } ) = { 𝑧 } )
348 347 fveq2d ( 𝑦 = ∅ → ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( 𝐿 ‘ { 𝑧 } ) )
349 348 oveqd ( 𝑦 = ∅ → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) = ( 𝑎 ( 𝐿 ‘ { 𝑧 } ) 𝑏 ) )
350 349 adantl ( ( ( ( ( ( ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) = ( 𝑎 ( 𝐿 ‘ { 𝑧 } ) 𝑏 ) )
351 348 oveqd ( 𝑦 = ∅ → ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) = ( ( 𝑐𝑗 ) ( 𝐿 ‘ { 𝑧 } ) ( 𝑑𝑗 ) ) )
352 351 mpteq2dv ( 𝑦 = ∅ → ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ { 𝑧 } ) ( 𝑑𝑗 ) ) ) )
353 352 fveq2d ( 𝑦 = ∅ → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ { 𝑧 } ) ( 𝑑𝑗 ) ) ) ) )
354 353 adantl ( ( ( ( ( ( ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ { 𝑧 } ) ( 𝑑𝑗 ) ) ) ) )
355 350 354 breq12d ( ( ( ( ( ( ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → ( ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) ↔ ( 𝑎 ( 𝐿 ‘ { 𝑧 } ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ { 𝑧 } ) ( 𝑑𝑗 ) ) ) ) ) )
356 346 355 mpbird ( ( ( ( ( ( ( ( 𝜑𝑧𝑋 ) ∧ 𝑎 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m { 𝑧 } ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m { 𝑧 } ) ↑m ℕ ) ) ∧ X 𝑘 ∈ { 𝑧 } ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑖 ∈ ℕ X 𝑘 ∈ { 𝑧 } ( ( ( 𝑐𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) )
357 286 287 356 syl2anc ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) ∧ 𝑦 = ∅ ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) )
358 2 ad8antr ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → 𝑋 ∈ Fin )
359 simplrl ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) → 𝑦𝑋 )
360 359 ad5ant12 ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) → 𝑦𝑋 )
361 360 ad5ant12 ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → 𝑦𝑋 )
362 simplrr ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) → 𝑧 ∈ ( 𝑋𝑦 ) )
363 362 ad5ant12 ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) → 𝑧 ∈ ( 𝑋𝑦 ) )
364 363 ad5ant12 ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → 𝑧 ∈ ( 𝑋𝑦 ) )
365 eqid ( 𝑦 ∪ { 𝑧 } ) = ( 𝑦 ∪ { 𝑧 } )
366 elmapi ( 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) → 𝑎 : ( 𝑦 ∪ { 𝑧 } ) ⟶ ℝ )
367 366 adantr ( ( 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → 𝑎 : ( 𝑦 ∪ { 𝑧 } ) ⟶ ℝ )
368 367 ad4ant23 ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) → 𝑎 : ( 𝑦 ∪ { 𝑧 } ) ⟶ ℝ )
369 368 ad3antrrr ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → 𝑎 : ( 𝑦 ∪ { 𝑧 } ) ⟶ ℝ )
370 elmapi ( 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 : ( 𝑦 ∪ { 𝑧 } ) ⟶ ℝ )
371 370 adantl ( ( 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → 𝑏 : ( 𝑦 ∪ { 𝑧 } ) ⟶ ℝ )
372 371 ad4ant23 ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) → 𝑏 : ( 𝑦 ∪ { 𝑧 } ) ⟶ ℝ )
373 372 ad3antrrr ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → 𝑏 : ( 𝑦 ∪ { 𝑧 } ) ⟶ ℝ )
374 elmapi ( 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) → 𝑐 : ℕ ⟶ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) )
375 374 adantl ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) → 𝑐 : ℕ ⟶ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) )
376 375 ad3antrrr ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → 𝑐 : ℕ ⟶ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) )
377 elmapi ( 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) → 𝑑 : ℕ ⟶ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) )
378 377 ad2antrr ( ( ( 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → 𝑑 : ℕ ⟶ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) )
379 378 adantlll ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → 𝑑 : ℕ ⟶ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) )
380 fveq2 ( 𝑘 = 𝑙 → ( 𝑒𝑘 ) = ( 𝑒𝑙 ) )
381 fveq2 ( 𝑘 = 𝑙 → ( 𝑓𝑘 ) = ( 𝑓𝑙 ) )
382 380 381 oveq12d ( 𝑘 = 𝑙 → ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) = ( ( 𝑒𝑙 ) [,) ( 𝑓𝑙 ) ) )
383 382 cbvixpv X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) = X 𝑙𝑦 ( ( 𝑒𝑙 ) [,) ( 𝑓𝑙 ) )
384 383 a1i ( = 𝑜X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) = X 𝑙𝑦 ( ( 𝑒𝑙 ) [,) ( 𝑓𝑙 ) ) )
385 fveq2 ( 𝑗 = 𝑖 → ( 𝑔𝑗 ) = ( 𝑔𝑖 ) )
386 385 fveq1d ( 𝑗 = 𝑖 → ( ( 𝑔𝑗 ) ‘ 𝑘 ) = ( ( 𝑔𝑖 ) ‘ 𝑘 ) )
387 fveq2 ( 𝑗 = 𝑖 → ( 𝑗 ) = ( 𝑖 ) )
388 387 fveq1d ( 𝑗 = 𝑖 → ( ( 𝑗 ) ‘ 𝑘 ) = ( ( 𝑖 ) ‘ 𝑘 ) )
389 386 388 oveq12d ( 𝑗 = 𝑖 → ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) = ( ( ( 𝑔𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑖 ) ‘ 𝑘 ) ) )
390 389 ixpeq2dv ( 𝑗 = 𝑖X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) = X 𝑘𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑖 ) ‘ 𝑘 ) ) )
391 390 cbviunv 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) = 𝑖 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑖 ) ‘ 𝑘 ) )
392 391 a1i ( = 𝑜 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) = 𝑖 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑖 ) ‘ 𝑘 ) ) )
393 fveq2 ( 𝑘 = 𝑙 → ( ( 𝑔𝑖 ) ‘ 𝑘 ) = ( ( 𝑔𝑖 ) ‘ 𝑙 ) )
394 fveq2 ( 𝑘 = 𝑙 → ( ( 𝑖 ) ‘ 𝑘 ) = ( ( 𝑖 ) ‘ 𝑙 ) )
395 393 394 oveq12d ( 𝑘 = 𝑙 → ( ( ( 𝑔𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑖 ) ‘ 𝑘 ) ) = ( ( ( 𝑔𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑖 ) ‘ 𝑙 ) ) )
396 395 cbvixpv X 𝑘𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑖 ) ‘ 𝑘 ) ) = X 𝑙𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑖 ) ‘ 𝑙 ) )
397 396 a1i ( = 𝑜X 𝑘𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑖 ) ‘ 𝑘 ) ) = X 𝑙𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑖 ) ‘ 𝑙 ) ) )
398 fveq1 ( = 𝑜 → ( 𝑖 ) = ( 𝑜𝑖 ) )
399 398 fveq1d ( = 𝑜 → ( ( 𝑖 ) ‘ 𝑙 ) = ( ( 𝑜𝑖 ) ‘ 𝑙 ) )
400 399 oveq2d ( = 𝑜 → ( ( ( 𝑔𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑖 ) ‘ 𝑙 ) ) = ( ( ( 𝑔𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜𝑖 ) ‘ 𝑙 ) ) )
401 400 ixpeq2dv ( = 𝑜X 𝑙𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑖 ) ‘ 𝑙 ) ) = X 𝑙𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜𝑖 ) ‘ 𝑙 ) ) )
402 397 401 eqtrd ( = 𝑜X 𝑘𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑖 ) ‘ 𝑘 ) ) = X 𝑙𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜𝑖 ) ‘ 𝑙 ) ) )
403 402 adantr ( ( = 𝑜𝑖 ∈ ℕ ) → X 𝑘𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑖 ) ‘ 𝑘 ) ) = X 𝑙𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜𝑖 ) ‘ 𝑙 ) ) )
404 403 iuneq2dv ( = 𝑜 𝑖 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑘 ) [,) ( ( 𝑖 ) ‘ 𝑘 ) ) = 𝑖 ∈ ℕ X 𝑙𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜𝑖 ) ‘ 𝑙 ) ) )
405 392 404 eqtrd ( = 𝑜 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) = 𝑖 ∈ ℕ X 𝑙𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜𝑖 ) ‘ 𝑙 ) ) )
406 384 405 sseq12d ( = 𝑜 → ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑙𝑦 ( ( 𝑒𝑙 ) [,) ( 𝑓𝑙 ) ) ⊆ 𝑖 ∈ ℕ X 𝑙𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜𝑖 ) ‘ 𝑙 ) ) ) )
407 385 387 oveq12d ( 𝑗 = 𝑖 → ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) = ( ( 𝑔𝑖 ) ( 𝐿𝑦 ) ( 𝑖 ) ) )
408 407 cbvmptv ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) = ( 𝑖 ∈ ℕ ↦ ( ( 𝑔𝑖 ) ( 𝐿𝑦 ) ( 𝑖 ) ) )
409 408 a1i ( = 𝑜 → ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) = ( 𝑖 ∈ ℕ ↦ ( ( 𝑔𝑖 ) ( 𝐿𝑦 ) ( 𝑖 ) ) ) )
410 398 oveq2d ( = 𝑜 → ( ( 𝑔𝑖 ) ( 𝐿𝑦 ) ( 𝑖 ) ) = ( ( 𝑔𝑖 ) ( 𝐿𝑦 ) ( 𝑜𝑖 ) ) )
411 410 mpteq2dv ( = 𝑜 → ( 𝑖 ∈ ℕ ↦ ( ( 𝑔𝑖 ) ( 𝐿𝑦 ) ( 𝑖 ) ) ) = ( 𝑖 ∈ ℕ ↦ ( ( 𝑔𝑖 ) ( 𝐿𝑦 ) ( 𝑜𝑖 ) ) ) )
412 409 411 eqtrd ( = 𝑜 → ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) = ( 𝑖 ∈ ℕ ↦ ( ( 𝑔𝑖 ) ( 𝐿𝑦 ) ( 𝑜𝑖 ) ) ) )
413 412 fveq2d ( = 𝑜 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑔𝑖 ) ( 𝐿𝑦 ) ( 𝑜𝑖 ) ) ) ) )
414 413 breq2d ( = 𝑜 → ( ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ↔ ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑔𝑖 ) ( 𝐿𝑦 ) ( 𝑜𝑖 ) ) ) ) ) )
415 406 414 imbi12d ( = 𝑜 → ( ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ↔ ( X 𝑙𝑦 ( ( 𝑒𝑙 ) [,) ( 𝑓𝑙 ) ) ⊆ 𝑖 ∈ ℕ X 𝑙𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜𝑖 ) ‘ 𝑙 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑔𝑖 ) ( 𝐿𝑦 ) ( 𝑜𝑖 ) ) ) ) ) ) )
416 415 cbvralvw ( ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ↔ ∀ 𝑜 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑙𝑦 ( ( 𝑒𝑙 ) [,) ( 𝑓𝑙 ) ) ⊆ 𝑖 ∈ ℕ X 𝑙𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜𝑖 ) ‘ 𝑙 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑔𝑖 ) ( 𝐿𝑦 ) ( 𝑜𝑖 ) ) ) ) ) )
417 416 ralbii ( ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ↔ ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑜 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑙𝑦 ( ( 𝑒𝑙 ) [,) ( 𝑓𝑙 ) ) ⊆ 𝑖 ∈ ℕ X 𝑙𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜𝑖 ) ‘ 𝑙 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑔𝑖 ) ( 𝐿𝑦 ) ( 𝑜𝑖 ) ) ) ) ) )
418 417 ralbii ( ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ↔ ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑜 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑙𝑦 ( ( 𝑒𝑙 ) [,) ( 𝑓𝑙 ) ) ⊆ 𝑖 ∈ ℕ X 𝑙𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜𝑖 ) ‘ 𝑙 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑔𝑖 ) ( 𝐿𝑦 ) ( 𝑜𝑖 ) ) ) ) ) )
419 418 ralbii ( ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ↔ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑜 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑙𝑦 ( ( 𝑒𝑙 ) [,) ( 𝑓𝑙 ) ) ⊆ 𝑖 ∈ ℕ X 𝑙𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜𝑖 ) ‘ 𝑙 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑔𝑖 ) ( 𝐿𝑦 ) ( 𝑜𝑖 ) ) ) ) ) )
420 419 biimpi ( ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) → ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑜 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑙𝑦 ( ( 𝑒𝑙 ) [,) ( 𝑓𝑙 ) ) ⊆ 𝑖 ∈ ℕ X 𝑙𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜𝑖 ) ‘ 𝑙 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑔𝑖 ) ( 𝐿𝑦 ) ( 𝑜𝑖 ) ) ) ) ) )
421 420 adantl ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) → ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑜 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑙𝑦 ( ( 𝑒𝑙 ) [,) ( 𝑓𝑙 ) ) ⊆ 𝑖 ∈ ℕ X 𝑙𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜𝑖 ) ‘ 𝑙 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑔𝑖 ) ( 𝐿𝑦 ) ( 𝑜𝑖 ) ) ) ) ) )
422 421 ad6antr ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑜 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑙𝑦 ( ( 𝑒𝑙 ) [,) ( 𝑓𝑙 ) ) ⊆ 𝑖 ∈ ℕ X 𝑙𝑦 ( ( ( 𝑔𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑜𝑖 ) ‘ 𝑙 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑔𝑖 ) ( 𝐿𝑦 ) ( 𝑜𝑖 ) ) ) ) ) )
423 323 cbvixpv X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) = X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑙 ) [,) ( 𝑏𝑙 ) )
424 336 cbvixpv X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑙 ) )
425 424 a1i ( 𝑗 = 𝑖X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑙 ) ) )
426 fveq2 ( 𝑗 = 𝑖 → ( 𝑐𝑗 ) = ( 𝑐𝑖 ) )
427 426 fveq1d ( 𝑗 = 𝑖 → ( ( 𝑐𝑗 ) ‘ 𝑙 ) = ( ( 𝑐𝑖 ) ‘ 𝑙 ) )
428 fveq2 ( 𝑗 = 𝑖 → ( 𝑑𝑗 ) = ( 𝑑𝑖 ) )
429 428 fveq1d ( 𝑗 = 𝑖 → ( ( 𝑑𝑗 ) ‘ 𝑙 ) = ( ( 𝑑𝑖 ) ‘ 𝑙 ) )
430 427 429 oveq12d ( 𝑗 = 𝑖 → ( ( ( 𝑐𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑙 ) ) = ( ( ( 𝑐𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑙 ) ) )
431 430 ixpeq2dv ( 𝑗 = 𝑖X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑙 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑙 ) ) = X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑙 ) ) )
432 425 431 eqtrd ( 𝑗 = 𝑖X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑙 ) ) )
433 432 cbviunv 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = 𝑖 ∈ ℕ X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑙 ) )
434 423 433 sseq12i ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑙 ) [,) ( 𝑏𝑙 ) ) ⊆ 𝑖 ∈ ℕ X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑙 ) ) )
435 434 biimpi ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑙 ) [,) ( 𝑏𝑙 ) ) ⊆ 𝑖 ∈ ℕ X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑙 ) ) )
436 435 ad2antlr ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑙 ) [,) ( 𝑏𝑙 ) ) ⊆ 𝑖 ∈ ℕ X 𝑙 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑖 ) ‘ 𝑙 ) [,) ( ( 𝑑𝑖 ) ‘ 𝑙 ) ) )
437 neqne ( ¬ 𝑦 = ∅ → 𝑦 ≠ ∅ )
438 437 adantl ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → 𝑦 ≠ ∅ )
439 307 358 361 364 365 369 373 376 379 422 436 438 hoidmvlelem5 ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑐𝑖 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑖 ) ) ) ) )
440 273 275 oveq12d ( 𝑖 = 𝑗 → ( ( 𝑐𝑖 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑖 ) ) = ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) )
441 440 cbvmptv ( 𝑖 ∈ ℕ ↦ ( ( 𝑐𝑖 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑖 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) )
442 441 fveq2i ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑐𝑖 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑖 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) )
443 442 breq2i ( ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝑐𝑖 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑖 ) ) ) ) ↔ ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) )
444 439 443 sylib ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) ∧ ¬ 𝑦 = ∅ ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) )
445 357 444 pm2.61dan ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) )
446 445 ex ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) ∧ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) → ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) ) )
447 446 ralrimiva ( ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ) → ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) ) )
448 447 ralrimiva ( ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ∀ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) ) )
449 448 ralrimiva ( ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) ∧ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ∀ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∀ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) ) )
450 449 ralrimiva ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑒 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑒𝑘 ) [,) ( 𝑓𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑔𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿𝑦 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔𝑗 ) ( 𝐿𝑦 ) ( 𝑗 ) ) ) ) ) ) → ∀ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∀ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∀ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) ) )
451 177 229 450 syl2anc ( ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) ∧ ∀ 𝑎 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) ) → ∀ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∀ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∀ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) ) )
452 451 ex ( ( 𝜑 ∧ ( 𝑦𝑋𝑧 ∈ ( 𝑋𝑦 ) ) ) → ( ∀ 𝑎 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑦 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑦 ) ↑m ℕ ) ( X 𝑘𝑦 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑦 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑦 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑦 ) ( 𝑑𝑗 ) ) ) ) ) → ∀ 𝑎 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∀ 𝑏 ∈ ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∀ 𝑐 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↑m ℕ ) ( X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ( 𝑑𝑗 ) ) ) ) ) ) )
453 51 76 101 126 176 452 2 findcard2d ( 𝜑 → ∀ 𝑎 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) )
454 fveq1 ( 𝑎 = 𝐴 → ( 𝑎𝑘 ) = ( 𝐴𝑘 ) )
455 454 oveq1d ( 𝑎 = 𝐴 → ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) = ( ( 𝐴𝑘 ) [,) ( 𝑏𝑘 ) ) )
456 455 ixpeq2dv ( 𝑎 = 𝐴X 𝑘𝑋 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) = X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝑏𝑘 ) ) )
457 456 sseq1d ( 𝑎 = 𝐴 → ( X 𝑘𝑋 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) )
458 oveq1 ( 𝑎 = 𝐴 → ( 𝑎 ( 𝐿𝑋 ) 𝑏 ) = ( 𝐴 ( 𝐿𝑋 ) 𝑏 ) )
459 458 breq1d ( 𝑎 = 𝐴 → ( ( 𝑎 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ↔ ( 𝐴 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) )
460 457 459 imbi12d ( 𝑎 = 𝐴 → ( ( X 𝑘𝑋 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ) )
461 460 ralbidv ( 𝑎 = 𝐴 → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ) )
462 461 ralbidv ( 𝑎 = 𝐴 → ( ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ) )
463 462 ralbidv ( 𝑎 = 𝐴 → ( ∀ 𝑏 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑏 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ) )
464 463 rspcva ( ( 𝐴 ∈ ( ℝ ↑m 𝑋 ) ∧ ∀ 𝑎 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑏 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝑎 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ) → ∀ 𝑏 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) )
465 26 453 464 syl2anc ( 𝜑 → ∀ 𝑏 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) )
466 fveq1 ( 𝑏 = 𝐵 → ( 𝑏𝑘 ) = ( 𝐵𝑘 ) )
467 466 oveq2d ( 𝑏 = 𝐵 → ( ( 𝐴𝑘 ) [,) ( 𝑏𝑘 ) ) = ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) )
468 467 ixpeq2dv ( 𝑏 = 𝐵X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝑏𝑘 ) ) = X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) )
469 468 sseq1d ( 𝑏 = 𝐵 → ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) )
470 oveq2 ( 𝑏 = 𝐵 → ( 𝐴 ( 𝐿𝑋 ) 𝑏 ) = ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) )
471 470 breq1d ( 𝑏 = 𝐵 → ( ( 𝐴 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ↔ ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) )
472 469 471 imbi12d ( 𝑏 = 𝐵 → ( ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ) )
473 472 ralbidv ( 𝑏 = 𝐵 → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ) )
474 473 ralbidv ( 𝑏 = 𝐵 → ( ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ) )
475 474 rspcva ( ( 𝐵 ∈ ( ℝ ↑m 𝑋 ) ∧ ∀ 𝑏 ∈ ( ℝ ↑m 𝑋 ) ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝑏𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝑏 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ) → ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) )
476 23 465 475 syl2anc ( 𝜑 → ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) )
477 fveq1 ( 𝑐 = 𝐶 → ( 𝑐𝑗 ) = ( 𝐶𝑗 ) )
478 477 fveq1d ( 𝑐 = 𝐶 → ( ( 𝑐𝑗 ) ‘ 𝑘 ) = ( ( 𝐶𝑗 ) ‘ 𝑘 ) )
479 478 oveq1d ( 𝑐 = 𝐶 → ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
480 479 ixpeq2dv ( 𝑐 = 𝐶X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
481 480 adantr ( ( 𝑐 = 𝐶𝑗 ∈ ℕ ) → X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
482 481 iuneq2dv ( 𝑐 = 𝐶 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) )
483 482 sseq2d ( 𝑐 = 𝐶 → ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ) )
484 477 oveq1d ( 𝑐 = 𝐶 → ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) = ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) )
485 484 mpteq2dv ( 𝑐 = 𝐶 → ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) )
486 485 fveq2d ( 𝑐 = 𝐶 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) )
487 486 breq2d ( 𝑐 = 𝐶 → ( ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ↔ ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) )
488 483 487 imbi12d ( 𝑐 = 𝐶 → ( ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ) )
489 488 ralbidv ( 𝑐 = 𝐶 → ( ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ) )
490 489 rspcva ( ( 𝐶 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∧ ∀ 𝑐 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝑐𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑐𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ) → ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) )
491 17 476 490 syl2anc ( 𝜑 → ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) )
492 fveq1 ( 𝑑 = 𝐷 → ( 𝑑𝑗 ) = ( 𝐷𝑗 ) )
493 492 fveq1d ( 𝑑 = 𝐷 → ( ( 𝑑𝑗 ) ‘ 𝑘 ) = ( ( 𝐷𝑗 ) ‘ 𝑘 ) )
494 493 oveq2d ( 𝑑 = 𝐷 → ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷𝑗 ) ‘ 𝑘 ) ) )
495 494 ixpeq2dv ( 𝑑 = 𝐷X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷𝑗 ) ‘ 𝑘 ) ) )
496 495 adantr ( ( 𝑑 = 𝐷𝑗 ∈ ℕ ) → X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷𝑗 ) ‘ 𝑘 ) ) )
497 496 iuneq2dv ( 𝑑 = 𝐷 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) = 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷𝑗 ) ‘ 𝑘 ) ) )
498 497 sseq2d ( 𝑑 = 𝐷 → ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) ↔ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷𝑗 ) ‘ 𝑘 ) ) ) )
499 492 oveq2d ( 𝑑 = 𝐷 → ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) = ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝐷𝑗 ) ) )
500 499 mpteq2dv ( 𝑑 = 𝐷 → ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝐷𝑗 ) ) ) )
501 500 fveq2d ( 𝑑 = 𝐷 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝐷𝑗 ) ) ) ) )
502 501 breq2d ( 𝑑 = 𝐷 → ( ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ↔ ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝐷𝑗 ) ) ) ) ) )
503 498 502 imbi12d ( 𝑑 = 𝐷 → ( ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ↔ ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝐷𝑗 ) ) ) ) ) ) )
504 503 rspcva ( ( 𝐷 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ∧ ∀ 𝑑 ∈ ( ( ℝ ↑m 𝑋 ) ↑m ℕ ) ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝑑𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝑑𝑗 ) ) ) ) ) ) → ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝐷𝑗 ) ) ) ) ) )
505 14 491 504 syl2anc ( 𝜑 → ( X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ 𝑗 ∈ ℕ X 𝑘𝑋 ( ( ( 𝐶𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷𝑗 ) ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝐷𝑗 ) ) ) ) ) )
506 7 505 mpd ( 𝜑 → ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑋 ) ( 𝐷𝑗 ) ) ) ) )