Step |
Hyp |
Ref |
Expression |
1 |
|
hoidmvlelem5.l |
⊢ 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
2 |
|
hoidmvlelem5.f |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
3 |
|
hoidmvlelem5.y |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
4 |
|
hoidmvlelem5.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑋 ∖ 𝑌 ) ) |
5 |
|
hoidmvlelem5.w |
⊢ 𝑊 = ( 𝑌 ∪ { 𝑍 } ) |
6 |
|
hoidmvlelem5.a |
⊢ ( 𝜑 → 𝐴 : 𝑊 ⟶ ℝ ) |
7 |
|
hoidmvlelem5.b |
⊢ ( 𝜑 → 𝐵 : 𝑊 ⟶ ℝ ) |
8 |
|
hoidmvlelem5.c |
⊢ ( 𝜑 → 𝐶 : ℕ ⟶ ( ℝ ↑m 𝑊 ) ) |
9 |
|
hoidmvlelem5.d |
⊢ ( 𝜑 → 𝐷 : ℕ ⟶ ( ℝ ↑m 𝑊 ) ) |
10 |
|
hoidmvlelem5.i |
⊢ ( 𝜑 → ∀ 𝑒 ∈ ( ℝ ↑m 𝑌 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑌 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑌 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑌 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑌 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑌 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
11 |
|
hoidmvlelem5.s |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑊 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
12 |
|
hoidmvlelem5.n |
⊢ ( 𝜑 → 𝑌 ≠ ∅ ) |
13 |
|
nfv |
⊢ Ⅎ 𝑠 𝜑 |
14 |
|
nfre1 |
⊢ Ⅎ 𝑠 ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) |
15 |
13 14
|
nfan |
⊢ Ⅎ 𝑠 ( 𝜑 ∧ ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) |
16 |
|
ssfi |
⊢ ( ( 𝑋 ∈ Fin ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 ∈ Fin ) |
17 |
2 3 16
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ Fin ) |
18 |
|
snfi |
⊢ { 𝑍 } ∈ Fin |
19 |
18
|
a1i |
⊢ ( 𝜑 → { 𝑍 } ∈ Fin ) |
20 |
|
unfi |
⊢ ( ( 𝑌 ∈ Fin ∧ { 𝑍 } ∈ Fin ) → ( 𝑌 ∪ { 𝑍 } ) ∈ Fin ) |
21 |
17 19 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ∪ { 𝑍 } ) ∈ Fin ) |
22 |
5 21
|
eqeltrid |
⊢ ( 𝜑 → 𝑊 ∈ Fin ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) → 𝑊 ∈ Fin ) |
24 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) → 𝐴 : 𝑊 ⟶ ℝ ) |
25 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) → 𝐵 : 𝑊 ⟶ ℝ ) |
26 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) → ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) |
27 |
15 1 23 24 25 26
|
hoidmvval0 |
⊢ ( ( 𝜑 ∧ ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) = 0 ) |
28 |
|
nnex |
⊢ ℕ ∈ V |
29 |
28
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
30 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
31 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑊 ∈ Fin ) |
32 |
8
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑊 ) ) |
33 |
|
elmapi |
⊢ ( ( 𝐶 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑊 ) → ( 𝐶 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) |
34 |
32 33
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) |
35 |
9
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑊 ) ) |
36 |
|
elmapi |
⊢ ( ( 𝐷 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑊 ) → ( 𝐷 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) |
37 |
35 36
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) |
38 |
1 31 34 37
|
hoidmvcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ∈ ( 0 [,) +∞ ) ) |
39 |
30 38
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ∈ ( 0 [,] +∞ ) ) |
40 |
39
|
fmpttd |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) : ℕ ⟶ ( 0 [,] +∞ ) ) |
41 |
29 40
|
sge0ge0 |
⊢ ( 𝜑 → 0 ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) → 0 ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
43 |
27 42
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
44 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
45 |
1 22 6 7
|
hoidmvcl |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ∈ ( 0 [,) +∞ ) ) |
46 |
44 45
|
sselid |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ∈ ℝ* ) |
47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = +∞ ) → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ∈ ℝ* ) |
48 |
29 40
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ* ) |
49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = +∞ ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ* ) |
50 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
51 |
50 45
|
sselid |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ∈ ℝ ) |
52 |
|
ltpnf |
⊢ ( ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ∈ ℝ → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) < +∞ ) |
53 |
51 52
|
syl |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) < +∞ ) |
54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = +∞ ) → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) < +∞ ) |
55 |
|
id |
⊢ ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = +∞ → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = +∞ ) |
56 |
55
|
eqcomd |
⊢ ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = +∞ → +∞ = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
57 |
56
|
adantl |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = +∞ ) → +∞ = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
58 |
54 57
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = +∞ ) → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) < ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
59 |
47 49 58
|
xrltled |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = +∞ ) → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
60 |
59
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = +∞ ) → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
61 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ¬ ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) ∧ ¬ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = +∞ ) → 𝜑 ) |
62 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) → ¬ ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) |
63 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑊 ) → ( 𝐴 ‘ 𝑠 ) ∈ ℝ ) |
64 |
7
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑊 ) → ( 𝐵 ‘ 𝑠 ) ∈ ℝ ) |
65 |
63 64
|
ltnled |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑊 ) → ( ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ↔ ¬ ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) ) |
66 |
65
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ↔ ∀ 𝑠 ∈ 𝑊 ¬ ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) ) |
67 |
|
ralnex |
⊢ ( ∀ 𝑠 ∈ 𝑊 ¬ ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ↔ ¬ ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) |
68 |
67
|
a1i |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝑊 ¬ ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ↔ ¬ ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) ) |
69 |
66 68
|
bitrd |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ↔ ¬ ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) ) |
70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) → ( ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ↔ ¬ ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) ) |
71 |
62 70
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) → ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) |
72 |
71
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) ∧ ¬ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = +∞ ) → ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) |
73 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = +∞ ) → ¬ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = +∞ ) |
74 |
28
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = +∞ ) → ℕ ∈ V ) |
75 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = +∞ ) → ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) : ℕ ⟶ ( 0 [,] +∞ ) ) |
76 |
74 75
|
sge0repnf |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = +∞ ) → ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ↔ ¬ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = +∞ ) ) |
77 |
73 76
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = +∞ ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
78 |
77
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) ∧ ¬ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = +∞ ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
79 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ) |
80 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝐶 ‘ 𝑗 ) = ( 𝐶 ‘ 𝑖 ) ) |
81 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝐷 ‘ 𝑗 ) = ( 𝐷 ‘ 𝑖 ) ) |
82 |
80 81
|
oveq12d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) = ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) |
83 |
82
|
cbvmptv |
⊢ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) = ( 𝑖 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) |
84 |
83
|
fveq2i |
⊢ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) ) |
85 |
84
|
eleq1i |
⊢ ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ↔ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) ) ∈ ℝ ) |
86 |
85
|
biimpi |
⊢ ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ → ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) ) ∈ ℝ ) |
87 |
86
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) ) ∈ ℝ ) |
88 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ+ ) |
89 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) ) ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → 𝑋 ∈ Fin ) |
90 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) ) ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → 𝑌 ⊆ 𝑋 ) |
91 |
12
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) ) ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → 𝑌 ≠ ∅ ) |
92 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) ) ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → 𝑍 ∈ ( 𝑋 ∖ 𝑌 ) ) |
93 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) ) ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → 𝐴 : 𝑊 ⟶ ℝ ) |
94 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) ) ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → 𝐵 : 𝑊 ⟶ ℝ ) |
95 |
|
fveq2 |
⊢ ( 𝑠 = 𝑘 → ( 𝐴 ‘ 𝑠 ) = ( 𝐴 ‘ 𝑘 ) ) |
96 |
|
fveq2 |
⊢ ( 𝑠 = 𝑘 → ( 𝐵 ‘ 𝑠 ) = ( 𝐵 ‘ 𝑘 ) ) |
97 |
95 96
|
breq12d |
⊢ ( 𝑠 = 𝑘 → ( ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ↔ ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) ) |
98 |
97
|
cbvralvw |
⊢ ( ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ↔ ∀ 𝑘 ∈ 𝑊 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) |
99 |
98
|
biimpi |
⊢ ( ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) → ∀ 𝑘 ∈ 𝑊 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) |
100 |
99
|
adantr |
⊢ ( ( ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ∧ 𝑘 ∈ 𝑊 ) → ∀ 𝑘 ∈ 𝑊 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) |
101 |
|
simpr |
⊢ ( ( ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ∧ 𝑘 ∈ 𝑊 ) → 𝑘 ∈ 𝑊 ) |
102 |
|
rspa |
⊢ ( ( ∀ 𝑘 ∈ 𝑊 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ∧ 𝑘 ∈ 𝑊 ) → ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) |
103 |
100 101 102
|
syl2anc |
⊢ ( ( ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ∧ 𝑘 ∈ 𝑊 ) → ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) |
104 |
103
|
ad5ant25 |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) ) ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑊 ) → ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) |
105 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) ) ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → 𝐶 : ℕ ⟶ ( ℝ ↑m 𝑊 ) ) |
106 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) ) ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → 𝐷 : ℕ ⟶ ( ℝ ↑m 𝑊 ) ) |
107 |
85
|
biimpri |
⊢ ( ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) ) ∈ ℝ → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
108 |
107
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) ) ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
109 |
|
fveq1 |
⊢ ( 𝑑 = 𝑐 → ( 𝑑 ‘ 𝑖 ) = ( 𝑐 ‘ 𝑖 ) ) |
110 |
109
|
breq1d |
⊢ ( 𝑑 = 𝑐 → ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 ↔ ( 𝑐 ‘ 𝑖 ) ≤ 𝑥 ) ) |
111 |
110 109
|
ifbieq1d |
⊢ ( 𝑑 = 𝑐 → if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) = if ( ( 𝑐 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑖 ) , 𝑥 ) ) |
112 |
109 111
|
ifeq12d |
⊢ ( 𝑑 = 𝑐 → if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) = if ( 𝑖 ∈ 𝑌 , ( 𝑐 ‘ 𝑖 ) , if ( ( 𝑐 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑖 ) , 𝑥 ) ) ) |
113 |
112
|
mpteq2dv |
⊢ ( 𝑑 = 𝑐 → ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) = ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑐 ‘ 𝑖 ) , if ( ( 𝑐 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑖 ) , 𝑥 ) ) ) ) |
114 |
|
eleq1w |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 ∈ 𝑌 ↔ 𝑗 ∈ 𝑌 ) ) |
115 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑐 ‘ 𝑖 ) = ( 𝑐 ‘ 𝑗 ) ) |
116 |
115
|
breq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑐 ‘ 𝑖 ) ≤ 𝑥 ↔ ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 ) ) |
117 |
116 115
|
ifbieq1d |
⊢ ( 𝑖 = 𝑗 → if ( ( 𝑐 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑖 ) , 𝑥 ) = if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) |
118 |
114 115 117
|
ifbieq12d |
⊢ ( 𝑖 = 𝑗 → if ( 𝑖 ∈ 𝑌 , ( 𝑐 ‘ 𝑖 ) , if ( ( 𝑐 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑖 ) , 𝑥 ) ) = if ( 𝑗 ∈ 𝑌 , ( 𝑐 ‘ 𝑗 ) , if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) ) |
119 |
118
|
cbvmptv |
⊢ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑐 ‘ 𝑖 ) , if ( ( 𝑐 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑖 ) , 𝑥 ) ) ) = ( 𝑗 ∈ 𝑊 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑐 ‘ 𝑗 ) , if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) ) |
120 |
119
|
a1i |
⊢ ( 𝑑 = 𝑐 → ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑐 ‘ 𝑖 ) , if ( ( 𝑐 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑖 ) , 𝑥 ) ) ) = ( 𝑗 ∈ 𝑊 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑐 ‘ 𝑗 ) , if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) ) ) |
121 |
113 120
|
eqtrd |
⊢ ( 𝑑 = 𝑐 → ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) = ( 𝑗 ∈ 𝑊 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑐 ‘ 𝑗 ) , if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) ) ) |
122 |
121
|
cbvmptv |
⊢ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) = ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑗 ∈ 𝑊 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑐 ‘ 𝑗 ) , if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) ) ) |
123 |
122
|
mpteq2i |
⊢ ( 𝑥 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑗 ∈ 𝑊 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑐 ‘ 𝑗 ) , if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) ) ) ) |
124 |
|
eqid |
⊢ ( ( 𝐴 ↾ 𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵 ↾ 𝑌 ) ) = ( ( 𝐴 ↾ 𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵 ↾ 𝑌 ) ) |
125 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) ) ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ+ ) |
126 |
|
oveq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 − ( 𝐴 ‘ 𝑍 ) ) = ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) |
127 |
126
|
oveq2d |
⊢ ( 𝑤 = 𝑧 → ( ( ( 𝐴 ↾ 𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵 ↾ 𝑌 ) ) · ( 𝑤 − ( 𝐴 ‘ 𝑍 ) ) ) = ( ( ( 𝐴 ↾ 𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵 ↾ 𝑌 ) ) · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ) |
128 |
|
breq2 |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑤 ↔ ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 ) ) |
129 |
|
eqidd |
⊢ ( 𝑤 = 𝑥 → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑖 ) ) |
130 |
|
id |
⊢ ( 𝑤 = 𝑥 → 𝑤 = 𝑥 ) |
131 |
128 129 130
|
ifbieq12d |
⊢ ( 𝑤 = 𝑥 → if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑤 , ( 𝑑 ‘ 𝑖 ) , 𝑤 ) = if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) |
132 |
131
|
ifeq2d |
⊢ ( 𝑤 = 𝑥 → if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑤 , ( 𝑑 ‘ 𝑖 ) , 𝑤 ) ) = if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) |
133 |
132
|
mpteq2dv |
⊢ ( 𝑤 = 𝑥 → ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑤 , ( 𝑑 ‘ 𝑖 ) , 𝑤 ) ) ) = ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) |
134 |
133
|
mpteq2dv |
⊢ ( 𝑤 = 𝑥 → ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑤 , ( 𝑑 ‘ 𝑖 ) , 𝑤 ) ) ) ) = ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) ) |
135 |
134
|
cbvmptv |
⊢ ( 𝑤 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑤 , ( 𝑑 ‘ 𝑖 ) , 𝑤 ) ) ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) ) |
136 |
135
|
a1i |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑤 , ( 𝑑 ‘ 𝑖 ) , 𝑤 ) ) ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) ) ) |
137 |
|
id |
⊢ ( 𝑤 = 𝑧 → 𝑤 = 𝑧 ) |
138 |
136 137
|
fveq12d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑤 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑤 , ( 𝑑 ‘ 𝑖 ) , 𝑤 ) ) ) ) ) ‘ 𝑤 ) = ( ( 𝑥 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) ) ‘ 𝑧 ) ) |
139 |
138
|
fveq1d |
⊢ ( 𝑤 = 𝑧 → ( ( ( 𝑤 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑤 , ( 𝑑 ‘ 𝑖 ) , 𝑤 ) ) ) ) ) ‘ 𝑤 ) ‘ ( 𝐷 ‘ 𝑙 ) ) = ( ( ( 𝑥 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) ) ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) |
140 |
139
|
oveq2d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝐶 ‘ 𝑙 ) ( 𝐿 ‘ 𝑊 ) ( ( ( 𝑤 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑤 , ( 𝑑 ‘ 𝑖 ) , 𝑤 ) ) ) ) ) ‘ 𝑤 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) = ( ( 𝐶 ‘ 𝑙 ) ( 𝐿 ‘ 𝑊 ) ( ( ( 𝑥 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) ) ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ) |
141 |
140
|
mpteq2dv |
⊢ ( 𝑤 = 𝑧 → ( 𝑙 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑙 ) ( 𝐿 ‘ 𝑊 ) ( ( ( 𝑤 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑤 , ( 𝑑 ‘ 𝑖 ) , 𝑤 ) ) ) ) ) ‘ 𝑤 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ) = ( 𝑙 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑙 ) ( 𝐿 ‘ 𝑊 ) ( ( ( 𝑥 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) ) ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ) ) |
142 |
|
fveq2 |
⊢ ( 𝑙 = 𝑗 → ( 𝐶 ‘ 𝑙 ) = ( 𝐶 ‘ 𝑗 ) ) |
143 |
|
2fveq3 |
⊢ ( 𝑙 = 𝑗 → ( ( ( 𝑥 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) ) ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑙 ) ) = ( ( ( 𝑥 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) ) ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) |
144 |
142 143
|
oveq12d |
⊢ ( 𝑙 = 𝑗 → ( ( 𝐶 ‘ 𝑙 ) ( 𝐿 ‘ 𝑊 ) ( ( ( 𝑥 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) ) ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) = ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( ( 𝑥 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) ) ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) |
145 |
144
|
cbvmptv |
⊢ ( 𝑙 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑙 ) ( 𝐿 ‘ 𝑊 ) ( ( ( 𝑥 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) ) ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( ( 𝑥 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) ) ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) |
146 |
145
|
a1i |
⊢ ( 𝑤 = 𝑧 → ( 𝑙 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑙 ) ( 𝐿 ‘ 𝑊 ) ( ( ( 𝑥 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) ) ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( ( 𝑥 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) ) ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
147 |
141 146
|
eqtrd |
⊢ ( 𝑤 = 𝑧 → ( 𝑙 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑙 ) ( 𝐿 ‘ 𝑊 ) ( ( ( 𝑤 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑤 , ( 𝑑 ‘ 𝑖 ) , 𝑤 ) ) ) ) ) ‘ 𝑤 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( ( 𝑥 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) ) ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
148 |
147
|
fveq2d |
⊢ ( 𝑤 = 𝑧 → ( Σ^ ‘ ( 𝑙 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑙 ) ( 𝐿 ‘ 𝑊 ) ( ( ( 𝑤 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑤 , ( 𝑑 ‘ 𝑖 ) , 𝑤 ) ) ) ) ) ‘ 𝑤 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( ( 𝑥 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) ) ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
149 |
148
|
oveq2d |
⊢ ( 𝑤 = 𝑧 → ( ( 1 + 𝑟 ) · ( Σ^ ‘ ( 𝑙 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑙 ) ( 𝐿 ‘ 𝑊 ) ( ( ( 𝑤 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑤 , ( 𝑑 ‘ 𝑖 ) , 𝑤 ) ) ) ) ) ‘ 𝑤 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ) ) ) = ( ( 1 + 𝑟 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( ( 𝑥 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) ) ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
150 |
127 149
|
breq12d |
⊢ ( 𝑤 = 𝑧 → ( ( ( ( 𝐴 ↾ 𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵 ↾ 𝑌 ) ) · ( 𝑤 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝑟 ) · ( Σ^ ‘ ( 𝑙 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑙 ) ( 𝐿 ‘ 𝑊 ) ( ( ( 𝑤 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑤 , ( 𝑑 ‘ 𝑖 ) , 𝑤 ) ) ) ) ) ‘ 𝑤 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ) ) ) ↔ ( ( ( 𝐴 ↾ 𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵 ↾ 𝑌 ) ) · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝑟 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( ( 𝑥 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) ) ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) |
151 |
150
|
cbvrabv |
⊢ { 𝑤 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∣ ( ( ( 𝐴 ↾ 𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵 ↾ 𝑌 ) ) · ( 𝑤 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝑟 ) · ( Σ^ ‘ ( 𝑙 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑙 ) ( 𝐿 ‘ 𝑊 ) ( ( ( 𝑤 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑤 , ( 𝑑 ‘ 𝑖 ) , 𝑤 ) ) ) ) ) ‘ 𝑤 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ) ) ) } = { 𝑧 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∣ ( ( ( 𝐴 ↾ 𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵 ↾ 𝑌 ) ) · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝑟 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( ( 𝑥 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑥 , ( 𝑑 ‘ 𝑖 ) , 𝑥 ) ) ) ) ) ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } |
152 |
|
eqid |
⊢ sup ( { 𝑤 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∣ ( ( ( 𝐴 ↾ 𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵 ↾ 𝑌 ) ) · ( 𝑤 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝑟 ) · ( Σ^ ‘ ( 𝑙 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑙 ) ( 𝐿 ‘ 𝑊 ) ( ( ( 𝑤 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑤 , ( 𝑑 ‘ 𝑖 ) , 𝑤 ) ) ) ) ) ‘ 𝑤 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ) ) ) } , ℝ , < ) = sup ( { 𝑤 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∣ ( ( ( 𝐴 ↾ 𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵 ↾ 𝑌 ) ) · ( 𝑤 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝑟 ) · ( Σ^ ‘ ( 𝑙 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑙 ) ( 𝐿 ‘ 𝑊 ) ( ( ( 𝑤 ∈ ℝ ↦ ( 𝑑 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑖 ∈ 𝑊 ↦ if ( 𝑖 ∈ 𝑌 , ( 𝑑 ‘ 𝑖 ) , if ( ( 𝑑 ‘ 𝑖 ) ≤ 𝑤 , ( 𝑑 ‘ 𝑖 ) , 𝑤 ) ) ) ) ) ‘ 𝑤 ) ‘ ( 𝐷 ‘ 𝑙 ) ) ) ) ) ) } , ℝ , < ) |
153 |
10
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) ) ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → ∀ 𝑒 ∈ ( ℝ ↑m 𝑌 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑌 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑌 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑌 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑌 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑌 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
154 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) ) ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → X 𝑘 ∈ 𝑊 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
155 |
1 89 90 91 92 5 93 94 104 105 106 108 123 124 125 151 152 153 154
|
hoidmvlelem4 |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) ) ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ≤ ( ( 1 + 𝑟 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
156 |
79 87 88 155
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ≤ ( ( 1 + 𝑟 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
157 |
156
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) → ∀ 𝑟 ∈ ℝ+ ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ≤ ( ( 1 + 𝑟 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
158 |
|
nfv |
⊢ Ⅎ 𝑟 ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
159 |
46
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ∈ ℝ* ) |
160 |
|
0xr |
⊢ 0 ∈ ℝ* |
161 |
160
|
a1i |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) → 0 ∈ ℝ* ) |
162 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
163 |
162
|
a1i |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) → +∞ ∈ ℝ* ) |
164 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ* ) |
165 |
41
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) → 0 ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
166 |
|
ltpnf |
⊢ ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) < +∞ ) |
167 |
166
|
adantl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) < +∞ ) |
168 |
161 163 164 165 167
|
elicod |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ( 0 [,) +∞ ) ) |
169 |
158 159 168
|
xralrple2 |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) → ( ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ↔ ∀ 𝑟 ∈ ℝ+ ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ≤ ( ( 1 + 𝑟 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
170 |
157 169
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑠 ∈ 𝑊 ( 𝐴 ‘ 𝑠 ) < ( 𝐵 ‘ 𝑠 ) ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
171 |
61 72 78 170
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ¬ ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) ∧ ¬ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) = +∞ ) → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
172 |
60 171
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑠 ∈ 𝑊 ( 𝐵 ‘ 𝑠 ) ≤ ( 𝐴 ‘ 𝑠 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
173 |
43 172
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |