| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoidmvlelem4.l |
⊢ 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
| 2 |
|
hoidmvlelem4.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 3 |
|
hoidmvlelem4.y |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 4 |
|
hoidmvlelem4.n |
⊢ ( 𝜑 → 𝑌 ≠ ∅ ) |
| 5 |
|
hoidmvlelem4.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑋 ∖ 𝑌 ) ) |
| 6 |
|
hoidmvlelem4.w |
⊢ 𝑊 = ( 𝑌 ∪ { 𝑍 } ) |
| 7 |
|
hoidmvlelem4.a |
⊢ ( 𝜑 → 𝐴 : 𝑊 ⟶ ℝ ) |
| 8 |
|
hoidmvlelem4.b |
⊢ ( 𝜑 → 𝐵 : 𝑊 ⟶ ℝ ) |
| 9 |
|
hoidmvlelem4.k |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) |
| 10 |
|
hoidmvlelem4.c |
⊢ ( 𝜑 → 𝐶 : ℕ ⟶ ( ℝ ↑m 𝑊 ) ) |
| 11 |
|
hoidmvlelem4.d |
⊢ ( 𝜑 → 𝐷 : ℕ ⟶ ( ℝ ↑m 𝑊 ) ) |
| 12 |
|
hoidmvlelem4.r |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 13 |
|
hoidmvlelem4.h |
⊢ 𝐻 = ( 𝑥 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑗 ∈ 𝑊 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑐 ‘ 𝑗 ) , if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) ) ) ) |
| 14 |
|
hoidmvlelem4.14 |
⊢ 𝐺 = ( ( 𝐴 ↾ 𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵 ↾ 𝑌 ) ) |
| 15 |
|
hoidmvlelem4.e |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 16 |
|
hoidmvlelem4.u |
⊢ 𝑈 = { 𝑧 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∣ ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } |
| 17 |
|
hoidmvlelem4.s |
⊢ 𝑆 = sup ( 𝑈 , ℝ , < ) |
| 18 |
|
hoidmvlelem4.i |
⊢ ( 𝜑 → ∀ 𝑒 ∈ ( ℝ ↑m 𝑌 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑌 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑌 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑌 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑌 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑌 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
| 19 |
|
hoidmvlelem4.i2 |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑊 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 20 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 21 |
5
|
eldifad |
⊢ ( 𝜑 → 𝑍 ∈ 𝑋 ) |
| 22 |
|
snssi |
⊢ ( 𝑍 ∈ 𝑋 → { 𝑍 } ⊆ 𝑋 ) |
| 23 |
21 22
|
syl |
⊢ ( 𝜑 → { 𝑍 } ⊆ 𝑋 ) |
| 24 |
3 23
|
unssd |
⊢ ( 𝜑 → ( 𝑌 ∪ { 𝑍 } ) ⊆ 𝑋 ) |
| 25 |
6 24
|
eqsstrid |
⊢ ( 𝜑 → 𝑊 ⊆ 𝑋 ) |
| 26 |
|
ssfi |
⊢ ( ( 𝑋 ∈ Fin ∧ 𝑊 ⊆ 𝑋 ) → 𝑊 ∈ Fin ) |
| 27 |
2 25 26
|
syl2anc |
⊢ ( 𝜑 → 𝑊 ∈ Fin ) |
| 28 |
1 27 7 8
|
hoidmvcl |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ∈ ( 0 [,) +∞ ) ) |
| 29 |
20 28
|
sselid |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ∈ ℝ ) |
| 30 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 31 |
15
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 32 |
30 31
|
readdcld |
⊢ ( 𝜑 → ( 1 + 𝐸 ) ∈ ℝ ) |
| 33 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
| 34 |
|
nnex |
⊢ ℕ ∈ V |
| 35 |
34
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
| 36 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
| 37 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑊 ∈ Fin ) |
| 38 |
10
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑊 ) ) |
| 39 |
|
elmapi |
⊢ ( ( 𝐶 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑊 ) → ( 𝐶 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) |
| 40 |
38 39
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) |
| 41 |
|
eleq1 |
⊢ ( 𝑗 = ℎ → ( 𝑗 ∈ 𝑌 ↔ ℎ ∈ 𝑌 ) ) |
| 42 |
|
fveq2 |
⊢ ( 𝑗 = ℎ → ( 𝑐 ‘ 𝑗 ) = ( 𝑐 ‘ ℎ ) ) |
| 43 |
42
|
breq1d |
⊢ ( 𝑗 = ℎ → ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 ↔ ( 𝑐 ‘ ℎ ) ≤ 𝑥 ) ) |
| 44 |
43 42
|
ifbieq1d |
⊢ ( 𝑗 = ℎ → if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) = if ( ( 𝑐 ‘ ℎ ) ≤ 𝑥 , ( 𝑐 ‘ ℎ ) , 𝑥 ) ) |
| 45 |
41 42 44
|
ifbieq12d |
⊢ ( 𝑗 = ℎ → if ( 𝑗 ∈ 𝑌 , ( 𝑐 ‘ 𝑗 ) , if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) = if ( ℎ ∈ 𝑌 , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑥 , ( 𝑐 ‘ ℎ ) , 𝑥 ) ) ) |
| 46 |
45
|
cbvmptv |
⊢ ( 𝑗 ∈ 𝑊 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑐 ‘ 𝑗 ) , if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) ) = ( ℎ ∈ 𝑊 ↦ if ( ℎ ∈ 𝑌 , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑥 , ( 𝑐 ‘ ℎ ) , 𝑥 ) ) ) |
| 47 |
46
|
mpteq2i |
⊢ ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑗 ∈ 𝑊 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑐 ‘ 𝑗 ) , if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) ) ) = ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( ℎ ∈ 𝑊 ↦ if ( ℎ ∈ 𝑌 , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑥 , ( 𝑐 ‘ ℎ ) , 𝑥 ) ) ) ) |
| 48 |
47
|
mpteq2i |
⊢ ( 𝑥 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑗 ∈ 𝑊 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑐 ‘ 𝑗 ) , if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( ℎ ∈ 𝑊 ↦ if ( ℎ ∈ 𝑌 , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑥 , ( 𝑐 ‘ ℎ ) , 𝑥 ) ) ) ) ) |
| 49 |
13 48
|
eqtri |
⊢ 𝐻 = ( 𝑥 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( ℎ ∈ 𝑊 ↦ if ( ℎ ∈ 𝑌 , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑥 , ( 𝑐 ‘ ℎ ) , 𝑥 ) ) ) ) ) |
| 50 |
|
snidg |
⊢ ( 𝑍 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑍 ∈ { 𝑍 } ) |
| 51 |
5 50
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ { 𝑍 } ) |
| 52 |
|
elun2 |
⊢ ( 𝑍 ∈ { 𝑍 } → 𝑍 ∈ ( 𝑌 ∪ { 𝑍 } ) ) |
| 53 |
51 52
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑌 ∪ { 𝑍 } ) ) |
| 54 |
6
|
a1i |
⊢ ( 𝜑 → 𝑊 = ( 𝑌 ∪ { 𝑍 } ) ) |
| 55 |
54
|
eqcomd |
⊢ ( 𝜑 → ( 𝑌 ∪ { 𝑍 } ) = 𝑊 ) |
| 56 |
53 55
|
eleqtrd |
⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) |
| 57 |
8 56
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝑍 ) ∈ ℝ ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐵 ‘ 𝑍 ) ∈ ℝ ) |
| 59 |
11
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑊 ) ) |
| 60 |
|
elmapi |
⊢ ( ( 𝐷 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑊 ) → ( 𝐷 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) |
| 61 |
59 60
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) |
| 62 |
49 58 37 61
|
hsphoif |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) : 𝑊 ⟶ ℝ ) |
| 63 |
1 37 40 62
|
hoidmvcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ∈ ( 0 [,) +∞ ) ) |
| 64 |
36 63
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 65 |
33 35 64
|
sge0clmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 66 |
33 35 64
|
sge0xrclmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ* ) |
| 67 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 68 |
67
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 69 |
12
|
rexrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ* ) |
| 70 |
1 37 40 61
|
hoidmvcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ∈ ( 0 [,) +∞ ) ) |
| 71 |
36 70
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ∈ ( 0 [,] +∞ ) ) |
| 72 |
5
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝑍 ∈ 𝑌 ) |
| 73 |
56 72
|
eldifd |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑊 ∖ 𝑌 ) ) |
| 74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑍 ∈ ( 𝑊 ∖ 𝑌 ) ) |
| 75 |
1 37 74 6 58 49 40 61
|
hsphoidmvle |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ≤ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) |
| 76 |
33 35 64 71 75
|
sge0lempt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
| 77 |
12
|
ltpnfd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) < +∞ ) |
| 78 |
66 69 68 76 77
|
xrlelttrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) < +∞ ) |
| 79 |
66 68 78
|
xrltned |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ≠ +∞ ) |
| 80 |
|
ge0xrre |
⊢ ( ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ≠ +∞ ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ ) |
| 81 |
65 79 80
|
syl2anc |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ ) |
| 82 |
32 81
|
remulcld |
⊢ ( 𝜑 → ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ∈ ℝ ) |
| 83 |
32 12
|
remulcld |
⊢ ( 𝜑 → ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ ) |
| 84 |
56
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ 𝑍 ∈ 𝑊 ) ) |
| 85 |
|
eleq1 |
⊢ ( 𝑘 = 𝑍 → ( 𝑘 ∈ 𝑊 ↔ 𝑍 ∈ 𝑊 ) ) |
| 86 |
85
|
anbi2d |
⊢ ( 𝑘 = 𝑍 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) ↔ ( 𝜑 ∧ 𝑍 ∈ 𝑊 ) ) ) |
| 87 |
|
fveq2 |
⊢ ( 𝑘 = 𝑍 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑍 ) ) |
| 88 |
|
fveq2 |
⊢ ( 𝑘 = 𝑍 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑍 ) ) |
| 89 |
87 88
|
breq12d |
⊢ ( 𝑘 = 𝑍 → ( ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ↔ ( 𝐴 ‘ 𝑍 ) < ( 𝐵 ‘ 𝑍 ) ) ) |
| 90 |
86 89
|
imbi12d |
⊢ ( 𝑘 = 𝑍 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) ↔ ( ( 𝜑 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐴 ‘ 𝑍 ) < ( 𝐵 ‘ 𝑍 ) ) ) ) |
| 91 |
90 9
|
vtoclg |
⊢ ( 𝑍 ∈ 𝑊 → ( ( 𝜑 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐴 ‘ 𝑍 ) < ( 𝐵 ‘ 𝑍 ) ) ) |
| 92 |
56 84 91
|
sylc |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑍 ) < ( 𝐵 ‘ 𝑍 ) ) |
| 93 |
1 2 3 5 6 7 8 10 11 12 13 14 15 16 17 92
|
hoidmvlelem1 |
⊢ ( 𝜑 → 𝑆 ∈ 𝑈 ) |
| 94 |
57
|
rexrd |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝑍 ) ∈ ℝ* ) |
| 95 |
|
iccssxr |
⊢ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ⊆ ℝ* |
| 96 |
|
ssrab2 |
⊢ { 𝑧 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∣ ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } ⊆ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) |
| 97 |
16 96
|
eqsstri |
⊢ 𝑈 ⊆ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) |
| 98 |
97 93
|
sselid |
⊢ ( 𝜑 → 𝑆 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) |
| 99 |
95 98
|
sselid |
⊢ ( 𝜑 → 𝑆 ∈ ℝ* ) |
| 100 |
|
simpl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝑆 ) → 𝜑 ) |
| 101 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝑆 ) → ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝑆 ) |
| 102 |
7 56
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑍 ) ∈ ℝ ) |
| 103 |
102 57
|
iccssred |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ⊆ ℝ ) |
| 104 |
103 98
|
sseldd |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 105 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝑆 ) → 𝑆 ∈ ℝ ) |
| 106 |
100 57
|
syl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝑆 ) → ( 𝐵 ‘ 𝑍 ) ∈ ℝ ) |
| 107 |
105 106
|
ltnled |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝑆 ) → ( 𝑆 < ( 𝐵 ‘ 𝑍 ) ↔ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝑆 ) ) |
| 108 |
101 107
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝑆 ) → 𝑆 < ( 𝐵 ‘ 𝑍 ) ) |
| 109 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐵 ‘ 𝑍 ) ) → 𝑋 ∈ Fin ) |
| 110 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐵 ‘ 𝑍 ) ) → 𝑌 ⊆ 𝑋 ) |
| 111 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐵 ‘ 𝑍 ) ) → 𝑍 ∈ ( 𝑋 ∖ 𝑌 ) ) |
| 112 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐵 ‘ 𝑍 ) ) → 𝐴 : 𝑊 ⟶ ℝ ) |
| 113 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐵 ‘ 𝑍 ) ) → 𝐵 : 𝑊 ⟶ ℝ ) |
| 114 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐵 ‘ 𝑍 ) ) ∧ 𝑘 ∈ 𝑊 ) → ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) |
| 115 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑌 ↦ 0 ) = ( 𝑦 ∈ 𝑌 ↦ 0 ) |
| 116 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐵 ‘ 𝑍 ) ) → 𝐶 : ℕ ⟶ ( ℝ ↑m 𝑊 ) ) |
| 117 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐶 ‘ 𝑖 ) = ( 𝐶 ‘ 𝑗 ) ) |
| 118 |
117
|
fveq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) = ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) |
| 119 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐷 ‘ 𝑖 ) = ( 𝐷 ‘ 𝑗 ) ) |
| 120 |
119
|
fveq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) = ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) |
| 121 |
118 120
|
oveq12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) = ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ) |
| 122 |
121
|
eleq2d |
⊢ ( 𝑖 = 𝑗 → ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ↔ 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ) ) |
| 123 |
117
|
reseq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐶 ‘ 𝑖 ) ↾ 𝑌 ) = ( ( 𝐶 ‘ 𝑗 ) ↾ 𝑌 ) ) |
| 124 |
122 123
|
ifbieq1d |
⊢ ( 𝑖 = 𝑗 → if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐶 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑦 ∈ 𝑌 ↦ 0 ) ) = if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) , ( ( 𝐶 ‘ 𝑗 ) ↾ 𝑌 ) , ( 𝑦 ∈ 𝑌 ↦ 0 ) ) ) |
| 125 |
124
|
cbvmptv |
⊢ ( 𝑖 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐶 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑦 ∈ 𝑌 ↦ 0 ) ) ) = ( 𝑗 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) , ( ( 𝐶 ‘ 𝑗 ) ↾ 𝑌 ) , ( 𝑦 ∈ 𝑌 ↦ 0 ) ) ) |
| 126 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐵 ‘ 𝑍 ) ) → 𝐷 : ℕ ⟶ ( ℝ ↑m 𝑊 ) ) |
| 127 |
119
|
reseq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐷 ‘ 𝑖 ) ↾ 𝑌 ) = ( ( 𝐷 ‘ 𝑗 ) ↾ 𝑌 ) ) |
| 128 |
122 127
|
ifbieq1d |
⊢ ( 𝑖 = 𝑗 → if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐷 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑦 ∈ 𝑌 ↦ 0 ) ) = if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) , ( ( 𝐷 ‘ 𝑗 ) ↾ 𝑌 ) , ( 𝑦 ∈ 𝑌 ↦ 0 ) ) ) |
| 129 |
128
|
cbvmptv |
⊢ ( 𝑖 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐷 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑦 ∈ 𝑌 ↦ 0 ) ) ) = ( 𝑗 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) , ( ( 𝐷 ‘ 𝑗 ) ↾ 𝑌 ) , ( 𝑦 ∈ 𝑌 ↦ 0 ) ) ) |
| 130 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐵 ‘ 𝑍 ) ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 131 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐵 ‘ 𝑍 ) ) → 𝐸 ∈ ℝ+ ) |
| 132 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐵 ‘ 𝑍 ) ) → 𝑆 ∈ 𝑈 ) |
| 133 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐵 ‘ 𝑍 ) ) → 𝑆 < ( 𝐵 ‘ 𝑍 ) ) |
| 134 |
|
biid |
⊢ ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ↔ 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ) |
| 135 |
|
eqidd |
⊢ ( 𝑤 = 𝑦 → 0 = 0 ) |
| 136 |
135
|
cbvmptv |
⊢ ( 𝑤 ∈ 𝑌 ↦ 0 ) = ( 𝑦 ∈ 𝑌 ↦ 0 ) |
| 137 |
134 136
|
ifbieq2i |
⊢ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐶 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑤 ∈ 𝑌 ↦ 0 ) ) = if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐶 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑦 ∈ 𝑌 ↦ 0 ) ) |
| 138 |
137
|
mpteq2i |
⊢ ( 𝑖 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐶 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑤 ∈ 𝑌 ↦ 0 ) ) ) = ( 𝑖 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐶 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑦 ∈ 𝑌 ↦ 0 ) ) ) |
| 139 |
138
|
a1i |
⊢ ( 𝑙 = 𝑗 → ( 𝑖 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐶 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑤 ∈ 𝑌 ↦ 0 ) ) ) = ( 𝑖 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐶 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑦 ∈ 𝑌 ↦ 0 ) ) ) ) |
| 140 |
|
id |
⊢ ( 𝑙 = 𝑗 → 𝑙 = 𝑗 ) |
| 141 |
139 140
|
fveq12d |
⊢ ( 𝑙 = 𝑗 → ( ( 𝑖 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐶 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑤 ∈ 𝑌 ↦ 0 ) ) ) ‘ 𝑙 ) = ( ( 𝑖 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐶 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑦 ∈ 𝑌 ↦ 0 ) ) ) ‘ 𝑗 ) ) |
| 142 |
134 136
|
ifbieq2i |
⊢ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐷 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑤 ∈ 𝑌 ↦ 0 ) ) = if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐷 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑦 ∈ 𝑌 ↦ 0 ) ) |
| 143 |
142
|
mpteq2i |
⊢ ( 𝑖 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐷 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑤 ∈ 𝑌 ↦ 0 ) ) ) = ( 𝑖 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐷 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑦 ∈ 𝑌 ↦ 0 ) ) ) |
| 144 |
143
|
a1i |
⊢ ( 𝑙 = 𝑗 → ( 𝑖 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐷 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑤 ∈ 𝑌 ↦ 0 ) ) ) = ( 𝑖 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐷 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑦 ∈ 𝑌 ↦ 0 ) ) ) ) |
| 145 |
144 140
|
fveq12d |
⊢ ( 𝑙 = 𝑗 → ( ( 𝑖 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐷 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑤 ∈ 𝑌 ↦ 0 ) ) ) ‘ 𝑙 ) = ( ( 𝑖 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐷 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑦 ∈ 𝑌 ↦ 0 ) ) ) ‘ 𝑗 ) ) |
| 146 |
141 145
|
oveq12d |
⊢ ( 𝑙 = 𝑗 → ( ( ( 𝑖 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐶 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑤 ∈ 𝑌 ↦ 0 ) ) ) ‘ 𝑙 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐷 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑤 ∈ 𝑌 ↦ 0 ) ) ) ‘ 𝑙 ) ) = ( ( ( 𝑖 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐶 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑦 ∈ 𝑌 ↦ 0 ) ) ) ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐷 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑦 ∈ 𝑌 ↦ 0 ) ) ) ‘ 𝑗 ) ) ) |
| 147 |
146
|
cbvmptv |
⊢ ( 𝑙 ∈ ℕ ↦ ( ( ( 𝑖 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐶 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑤 ∈ 𝑌 ↦ 0 ) ) ) ‘ 𝑙 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐷 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑤 ∈ 𝑌 ↦ 0 ) ) ) ‘ 𝑙 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( ( 𝑖 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐶 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑦 ∈ 𝑌 ↦ 0 ) ) ) ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖 ∈ ℕ ↦ if ( 𝑆 ∈ ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) , ( ( 𝐷 ‘ 𝑖 ) ↾ 𝑌 ) , ( 𝑦 ∈ 𝑌 ↦ 0 ) ) ) ‘ 𝑗 ) ) ) |
| 148 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐵 ‘ 𝑍 ) ) → ∀ 𝑒 ∈ ( ℝ ↑m 𝑌 ) ∀ 𝑓 ∈ ( ℝ ↑m 𝑌 ) ∀ 𝑔 ∈ ( ( ℝ ↑m 𝑌 ) ↑m ℕ ) ∀ ℎ ∈ ( ( ℝ ↑m 𝑌 ) ↑m ℕ ) ( X 𝑘 ∈ 𝑌 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) → ( 𝑒 ( 𝐿 ‘ 𝑌 ) 𝑓 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
| 149 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐵 ‘ 𝑍 ) ) → X 𝑘 ∈ 𝑊 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
| 150 |
|
eqid |
⊢ ( 𝑥 ∈ X 𝑦 ∈ 𝑌 ( ( 𝐴 ‘ 𝑦 ) [,) ( 𝐵 ‘ 𝑦 ) ) ↦ ( 𝑦 ∈ 𝑊 ↦ if ( 𝑦 ∈ 𝑌 , ( 𝑥 ‘ 𝑦 ) , 𝑆 ) ) ) = ( 𝑥 ∈ X 𝑦 ∈ 𝑌 ( ( 𝐴 ‘ 𝑦 ) [,) ( 𝐵 ‘ 𝑦 ) ) ↦ ( 𝑦 ∈ 𝑊 ↦ if ( 𝑦 ∈ 𝑌 , ( 𝑥 ‘ 𝑦 ) , 𝑆 ) ) ) |
| 151 |
|
fveq2 |
⊢ ( 𝑦 = 𝑘 → ( 𝐴 ‘ 𝑦 ) = ( 𝐴 ‘ 𝑘 ) ) |
| 152 |
|
fveq2 |
⊢ ( 𝑦 = 𝑘 → ( 𝐵 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑘 ) ) |
| 153 |
151 152
|
oveq12d |
⊢ ( 𝑦 = 𝑘 → ( ( 𝐴 ‘ 𝑦 ) [,) ( 𝐵 ‘ 𝑦 ) ) = ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 154 |
153
|
cbvixpv |
⊢ X 𝑦 ∈ 𝑌 ( ( 𝐴 ‘ 𝑦 ) [,) ( 𝐵 ‘ 𝑦 ) ) = X 𝑘 ∈ 𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) |
| 155 |
|
eleq1 |
⊢ ( 𝑦 = 𝑘 → ( 𝑦 ∈ 𝑌 ↔ 𝑘 ∈ 𝑌 ) ) |
| 156 |
|
fveq2 |
⊢ ( 𝑦 = 𝑘 → ( 𝑥 ‘ 𝑦 ) = ( 𝑥 ‘ 𝑘 ) ) |
| 157 |
155 156
|
ifbieq1d |
⊢ ( 𝑦 = 𝑘 → if ( 𝑦 ∈ 𝑌 , ( 𝑥 ‘ 𝑦 ) , 𝑆 ) = if ( 𝑘 ∈ 𝑌 , ( 𝑥 ‘ 𝑘 ) , 𝑆 ) ) |
| 158 |
157
|
cbvmptv |
⊢ ( 𝑦 ∈ 𝑊 ↦ if ( 𝑦 ∈ 𝑌 , ( 𝑥 ‘ 𝑦 ) , 𝑆 ) ) = ( 𝑘 ∈ 𝑊 ↦ if ( 𝑘 ∈ 𝑌 , ( 𝑥 ‘ 𝑘 ) , 𝑆 ) ) |
| 159 |
154 158
|
mpteq12i |
⊢ ( 𝑥 ∈ X 𝑦 ∈ 𝑌 ( ( 𝐴 ‘ 𝑦 ) [,) ( 𝐵 ‘ 𝑦 ) ) ↦ ( 𝑦 ∈ 𝑊 ↦ if ( 𝑦 ∈ 𝑌 , ( 𝑥 ‘ 𝑦 ) , 𝑆 ) ) ) = ( 𝑥 ∈ X 𝑘 ∈ 𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ↦ ( 𝑘 ∈ 𝑊 ↦ if ( 𝑘 ∈ 𝑌 , ( 𝑥 ‘ 𝑘 ) , 𝑆 ) ) ) |
| 160 |
150 159
|
eqtri |
⊢ ( 𝑥 ∈ X 𝑦 ∈ 𝑌 ( ( 𝐴 ‘ 𝑦 ) [,) ( 𝐵 ‘ 𝑦 ) ) ↦ ( 𝑦 ∈ 𝑊 ↦ if ( 𝑦 ∈ 𝑌 , ( 𝑥 ‘ 𝑦 ) , 𝑆 ) ) ) = ( 𝑥 ∈ X 𝑘 ∈ 𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ↦ ( 𝑘 ∈ 𝑊 ↦ if ( 𝑘 ∈ 𝑌 , ( 𝑥 ‘ 𝑘 ) , 𝑆 ) ) ) |
| 161 |
1 109 110 111 6 112 113 114 115 116 125 126 129 130 13 14 131 16 132 133 147 148 149 160
|
hoidmvlelem3 |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐵 ‘ 𝑍 ) ) → ∃ 𝑢 ∈ 𝑈 𝑆 < 𝑢 ) |
| 162 |
100 108 161
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝑆 ) → ∃ 𝑢 ∈ 𝑈 𝑆 < 𝑢 ) |
| 163 |
97
|
a1i |
⊢ ( 𝜑 → 𝑈 ⊆ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) |
| 164 |
163 103
|
sstrd |
⊢ ( 𝜑 → 𝑈 ⊆ ℝ ) |
| 165 |
164
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑈 ⊆ ℝ ) |
| 166 |
|
ne0i |
⊢ ( 𝑢 ∈ 𝑈 → 𝑈 ≠ ∅ ) |
| 167 |
166
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑈 ≠ ∅ ) |
| 168 |
102
|
rexrd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑍 ) ∈ ℝ* ) |
| 169 |
168
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝐴 ‘ 𝑍 ) ∈ ℝ* ) |
| 170 |
94
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝐵 ‘ 𝑍 ) ∈ ℝ* ) |
| 171 |
163
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) |
| 172 |
|
iccleub |
⊢ ( ( ( 𝐴 ‘ 𝑍 ) ∈ ℝ* ∧ ( 𝐵 ‘ 𝑍 ) ∈ ℝ* ∧ 𝑢 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) → 𝑢 ≤ ( 𝐵 ‘ 𝑍 ) ) |
| 173 |
169 170 171 172
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ≤ ( 𝐵 ‘ 𝑍 ) ) |
| 174 |
173
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝑈 𝑢 ≤ ( 𝐵 ‘ 𝑍 ) ) |
| 175 |
|
brralrspcev |
⊢ ( ( ( 𝐵 ‘ 𝑍 ) ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑈 𝑢 ≤ ( 𝐵 ‘ 𝑍 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑢 ∈ 𝑈 𝑢 ≤ 𝑦 ) |
| 176 |
57 174 175
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑢 ∈ 𝑈 𝑢 ≤ 𝑦 ) |
| 177 |
176
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑢 ∈ 𝑈 𝑢 ≤ 𝑦 ) |
| 178 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ∈ 𝑈 ) |
| 179 |
|
suprub |
⊢ ( ( ( 𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑢 ∈ 𝑈 𝑢 ≤ 𝑦 ) ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ≤ sup ( 𝑈 , ℝ , < ) ) |
| 180 |
165 167 177 178 179
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ≤ sup ( 𝑈 , ℝ , < ) ) |
| 181 |
180 17
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ≤ 𝑆 ) |
| 182 |
181
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝑈 𝑢 ≤ 𝑆 ) |
| 183 |
165 178
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ∈ ℝ ) |
| 184 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑆 ∈ ℝ ) |
| 185 |
183 184
|
lenltd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝑢 ≤ 𝑆 ↔ ¬ 𝑆 < 𝑢 ) ) |
| 186 |
185
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝑈 𝑢 ≤ 𝑆 ↔ ∀ 𝑢 ∈ 𝑈 ¬ 𝑆 < 𝑢 ) ) |
| 187 |
182 186
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝑈 ¬ 𝑆 < 𝑢 ) |
| 188 |
|
ralnex |
⊢ ( ∀ 𝑢 ∈ 𝑈 ¬ 𝑆 < 𝑢 ↔ ¬ ∃ 𝑢 ∈ 𝑈 𝑆 < 𝑢 ) |
| 189 |
187 188
|
sylib |
⊢ ( 𝜑 → ¬ ∃ 𝑢 ∈ 𝑈 𝑆 < 𝑢 ) |
| 190 |
189
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐵 ‘ 𝑍 ) ) → ¬ ∃ 𝑢 ∈ 𝑈 𝑆 < 𝑢 ) |
| 191 |
100 108 190
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝑆 ) → ¬ ∃ 𝑢 ∈ 𝑈 𝑆 < 𝑢 ) |
| 192 |
162 191
|
condan |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝑍 ) ≤ 𝑆 ) |
| 193 |
|
iccleub |
⊢ ( ( ( 𝐴 ‘ 𝑍 ) ∈ ℝ* ∧ ( 𝐵 ‘ 𝑍 ) ∈ ℝ* ∧ 𝑆 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) → 𝑆 ≤ ( 𝐵 ‘ 𝑍 ) ) |
| 194 |
168 94 98 193
|
syl3anc |
⊢ ( 𝜑 → 𝑆 ≤ ( 𝐵 ‘ 𝑍 ) ) |
| 195 |
94 99 192 194
|
xrletrid |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝑍 ) = 𝑆 ) |
| 196 |
16
|
eqcomi |
⊢ { 𝑧 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∣ ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } = 𝑈 |
| 197 |
196
|
a1i |
⊢ ( 𝜑 → { 𝑧 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∣ ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } = 𝑈 ) |
| 198 |
195 197
|
eleq12d |
⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝑍 ) ∈ { 𝑧 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∣ ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } ↔ 𝑆 ∈ 𝑈 ) ) |
| 199 |
93 198
|
mpbird |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝑍 ) ∈ { 𝑧 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∣ ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } ) |
| 200 |
|
oveq1 |
⊢ ( 𝑧 = ( 𝐵 ‘ 𝑍 ) → ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) = ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) |
| 201 |
200
|
oveq2d |
⊢ ( 𝑧 = ( 𝐵 ‘ 𝑍 ) → ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) = ( 𝐺 · ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ) |
| 202 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝐵 ‘ 𝑍 ) → ( 𝐻 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ) |
| 203 |
202
|
fveq1d |
⊢ ( 𝑧 = ( 𝐵 ‘ 𝑍 ) → ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) = ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) |
| 204 |
203
|
oveq2d |
⊢ ( 𝑧 = ( 𝐵 ‘ 𝑍 ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) = ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) |
| 205 |
204
|
mpteq2dv |
⊢ ( 𝑧 = ( 𝐵 ‘ 𝑍 ) → ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
| 206 |
205
|
fveq2d |
⊢ ( 𝑧 = ( 𝐵 ‘ 𝑍 ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
| 207 |
206
|
oveq2d |
⊢ ( 𝑧 = ( 𝐵 ‘ 𝑍 ) → ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) = ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
| 208 |
201 207
|
breq12d |
⊢ ( 𝑧 = ( 𝐵 ‘ 𝑍 ) → ( ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ↔ ( 𝐺 · ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) |
| 209 |
208
|
elrab |
⊢ ( ( 𝐵 ‘ 𝑍 ) ∈ { 𝑧 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∣ ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } ↔ ( ( 𝐵 ‘ 𝑍 ) ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∧ ( 𝐺 · ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) |
| 210 |
199 209
|
sylib |
⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝑍 ) ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∧ ( 𝐺 · ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) |
| 211 |
210
|
simprd |
⊢ ( 𝜑 → ( 𝐺 · ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
| 212 |
2 3
|
ssfid |
⊢ ( 𝜑 → 𝑌 ∈ Fin ) |
| 213 |
|
eqid |
⊢ ∏ 𝑘 ∈ 𝑌 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑌 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 214 |
1 212 5 72 6 7 8 213
|
hoiprodp1 |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) = ( ∏ 𝑘 ∈ 𝑌 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) · ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) ) ) |
| 215 |
|
eqidd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑌 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑌 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 216 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → 𝐴 : 𝑊 ⟶ ℝ ) |
| 217 |
|
ssun1 |
⊢ 𝑌 ⊆ ( 𝑌 ∪ { 𝑍 } ) |
| 218 |
6
|
eqcomi |
⊢ ( 𝑌 ∪ { 𝑍 } ) = 𝑊 |
| 219 |
217 218
|
sseqtri |
⊢ 𝑌 ⊆ 𝑊 |
| 220 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → 𝑘 ∈ 𝑌 ) |
| 221 |
219 220
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → 𝑘 ∈ 𝑊 ) |
| 222 |
216 221
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
| 223 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → 𝐵 : 𝑊 ⟶ ℝ ) |
| 224 |
223 221
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
| 225 |
221 9
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) |
| 226 |
222 224 225
|
volicon0 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 227 |
226
|
prodeq2dv |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑌 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑌 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 228 |
14
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( ( 𝐴 ↾ 𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵 ↾ 𝑌 ) ) ) |
| 229 |
219
|
a1i |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑊 ) |
| 230 |
7 229
|
fssresd |
⊢ ( 𝜑 → ( 𝐴 ↾ 𝑌 ) : 𝑌 ⟶ ℝ ) |
| 231 |
8 229
|
fssresd |
⊢ ( 𝜑 → ( 𝐵 ↾ 𝑌 ) : 𝑌 ⟶ ℝ ) |
| 232 |
1 212 4 230 231
|
hoidmvn0val |
⊢ ( 𝜑 → ( ( 𝐴 ↾ 𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵 ↾ 𝑌 ) ) = ∏ 𝑘 ∈ 𝑌 ( vol ‘ ( ( ( 𝐴 ↾ 𝑌 ) ‘ 𝑘 ) [,) ( ( 𝐵 ↾ 𝑌 ) ‘ 𝑘 ) ) ) ) |
| 233 |
|
fvres |
⊢ ( 𝑘 ∈ 𝑌 → ( ( 𝐴 ↾ 𝑌 ) ‘ 𝑘 ) = ( 𝐴 ‘ 𝑘 ) ) |
| 234 |
|
fvres |
⊢ ( 𝑘 ∈ 𝑌 → ( ( 𝐵 ↾ 𝑌 ) ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) |
| 235 |
233 234
|
oveq12d |
⊢ ( 𝑘 ∈ 𝑌 → ( ( ( 𝐴 ↾ 𝑌 ) ‘ 𝑘 ) [,) ( ( 𝐵 ↾ 𝑌 ) ‘ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 236 |
235
|
fveq2d |
⊢ ( 𝑘 ∈ 𝑌 → ( vol ‘ ( ( ( 𝐴 ↾ 𝑌 ) ‘ 𝑘 ) [,) ( ( 𝐵 ↾ 𝑌 ) ‘ 𝑘 ) ) ) = ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 237 |
236
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → ( vol ‘ ( ( ( 𝐴 ↾ 𝑌 ) ‘ 𝑘 ) [,) ( ( 𝐵 ↾ 𝑌 ) ‘ 𝑘 ) ) ) = ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 238 |
|
volico |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = if ( ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) , ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) , 0 ) ) |
| 239 |
222 224 238
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = if ( ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) , ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) , 0 ) ) |
| 240 |
239 226
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → if ( ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) , ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) , 0 ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 241 |
237 239 240
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → ( vol ‘ ( ( ( 𝐴 ↾ 𝑌 ) ‘ 𝑘 ) [,) ( ( 𝐵 ↾ 𝑌 ) ‘ 𝑘 ) ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 242 |
241
|
prodeq2dv |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑌 ( vol ‘ ( ( ( 𝐴 ↾ 𝑌 ) ‘ 𝑘 ) [,) ( ( 𝐵 ↾ 𝑌 ) ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑌 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 243 |
228 232 242
|
3eqtrd |
⊢ ( 𝜑 → 𝐺 = ∏ 𝑘 ∈ 𝑌 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 244 |
215 227 243
|
3eqtr4d |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑌 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = 𝐺 ) |
| 245 |
102 57 92
|
volicon0 |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) = ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) |
| 246 |
244 245
|
oveq12d |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ 𝑌 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) · ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) ) = ( 𝐺 · ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ) |
| 247 |
214 246
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) = ( 𝐺 · ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ) |
| 248 |
247
|
breq1d |
⊢ ( 𝜑 → ( ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ↔ ( 𝐺 · ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) |
| 249 |
211 248
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
| 250 |
|
0le1 |
⊢ 0 ≤ 1 |
| 251 |
250
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
| 252 |
15
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ 𝐸 ) |
| 253 |
30 31 251 252
|
addge0d |
⊢ ( 𝜑 → 0 ≤ ( 1 + 𝐸 ) ) |
| 254 |
81 12 32 253 76
|
lemul2ad |
⊢ ( 𝜑 → ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
| 255 |
29 82 83 249 254
|
letrd |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |