| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoidmvlelem4.l | ⊢ 𝐿  =  ( 𝑥  ∈  Fin  ↦  ( 𝑎  ∈  ( ℝ  ↑m  𝑥 ) ,  𝑏  ∈  ( ℝ  ↑m  𝑥 )  ↦  if ( 𝑥  =  ∅ ,  0 ,  ∏ 𝑘  ∈  𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 2 |  | hoidmvlelem4.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 3 |  | hoidmvlelem4.y | ⊢ ( 𝜑  →  𝑌  ⊆  𝑋 ) | 
						
							| 4 |  | hoidmvlelem4.n | ⊢ ( 𝜑  →  𝑌  ≠  ∅ ) | 
						
							| 5 |  | hoidmvlelem4.z | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑋  ∖  𝑌 ) ) | 
						
							| 6 |  | hoidmvlelem4.w | ⊢ 𝑊  =  ( 𝑌  ∪  { 𝑍 } ) | 
						
							| 7 |  | hoidmvlelem4.a | ⊢ ( 𝜑  →  𝐴 : 𝑊 ⟶ ℝ ) | 
						
							| 8 |  | hoidmvlelem4.b | ⊢ ( 𝜑  →  𝐵 : 𝑊 ⟶ ℝ ) | 
						
							| 9 |  | hoidmvlelem4.k | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  →  ( 𝐴 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 10 |  | hoidmvlelem4.c | ⊢ ( 𝜑  →  𝐶 : ℕ ⟶ ( ℝ  ↑m  𝑊 ) ) | 
						
							| 11 |  | hoidmvlelem4.d | ⊢ ( 𝜑  →  𝐷 : ℕ ⟶ ( ℝ  ↑m  𝑊 ) ) | 
						
							| 12 |  | hoidmvlelem4.r | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) )  ∈  ℝ ) | 
						
							| 13 |  | hoidmvlelem4.h | ⊢ 𝐻  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( 𝑗  ∈  𝑊  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) ) ) ) ) | 
						
							| 14 |  | hoidmvlelem4.14 | ⊢ 𝐺  =  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) ) | 
						
							| 15 |  | hoidmvlelem4.e | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 16 |  | hoidmvlelem4.u | ⊢ 𝑈  =  { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } | 
						
							| 17 |  | hoidmvlelem4.s | ⊢ 𝑆  =  sup ( 𝑈 ,  ℝ ,   <  ) | 
						
							| 18 |  | hoidmvlelem4.i | ⊢ ( 𝜑  →  ∀ 𝑒  ∈  ( ℝ  ↑m  𝑌 ) ∀ 𝑓  ∈  ( ℝ  ↑m  𝑌 ) ∀ 𝑔  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( 𝑒 ( 𝐿 ‘ 𝑌 ) 𝑓 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 19 |  | hoidmvlelem4.i2 | ⊢ ( 𝜑  →  X 𝑘  ∈  𝑊 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 20 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 21 | 5 | eldifad | ⊢ ( 𝜑  →  𝑍  ∈  𝑋 ) | 
						
							| 22 |  | snssi | ⊢ ( 𝑍  ∈  𝑋  →  { 𝑍 }  ⊆  𝑋 ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝜑  →  { 𝑍 }  ⊆  𝑋 ) | 
						
							| 24 | 3 23 | unssd | ⊢ ( 𝜑  →  ( 𝑌  ∪  { 𝑍 } )  ⊆  𝑋 ) | 
						
							| 25 | 6 24 | eqsstrid | ⊢ ( 𝜑  →  𝑊  ⊆  𝑋 ) | 
						
							| 26 |  | ssfi | ⊢ ( ( 𝑋  ∈  Fin  ∧  𝑊  ⊆  𝑋 )  →  𝑊  ∈  Fin ) | 
						
							| 27 | 2 25 26 | syl2anc | ⊢ ( 𝜑  →  𝑊  ∈  Fin ) | 
						
							| 28 | 1 27 7 8 | hoidmvcl | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 29 | 20 28 | sselid | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 )  ∈  ℝ ) | 
						
							| 30 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 31 | 15 | rpred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 32 | 30 31 | readdcld | ⊢ ( 𝜑  →  ( 1  +  𝐸 )  ∈  ℝ ) | 
						
							| 33 |  | nfv | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 34 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 35 | 34 | a1i | ⊢ ( 𝜑  →  ℕ  ∈  V ) | 
						
							| 36 |  | icossicc | ⊢ ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) | 
						
							| 37 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑊  ∈  Fin ) | 
						
							| 38 | 10 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐶 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑊 ) ) | 
						
							| 39 |  | elmapi | ⊢ ( ( 𝐶 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑊 )  →  ( 𝐶 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 40 | 38 39 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐶 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 41 |  | eleq1 | ⊢ ( 𝑗  =  ℎ  →  ( 𝑗  ∈  𝑌  ↔  ℎ  ∈  𝑌 ) ) | 
						
							| 42 |  | fveq2 | ⊢ ( 𝑗  =  ℎ  →  ( 𝑐 ‘ 𝑗 )  =  ( 𝑐 ‘ ℎ ) ) | 
						
							| 43 | 42 | breq1d | ⊢ ( 𝑗  =  ℎ  →  ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥  ↔  ( 𝑐 ‘ ℎ )  ≤  𝑥 ) ) | 
						
							| 44 | 43 42 | ifbieq1d | ⊢ ( 𝑗  =  ℎ  →  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 )  =  if ( ( 𝑐 ‘ ℎ )  ≤  𝑥 ,  ( 𝑐 ‘ ℎ ) ,  𝑥 ) ) | 
						
							| 45 | 41 42 44 | ifbieq12d | ⊢ ( 𝑗  =  ℎ  →  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) )  =  if ( ℎ  ∈  𝑌 ,  ( 𝑐 ‘ ℎ ) ,  if ( ( 𝑐 ‘ ℎ )  ≤  𝑥 ,  ( 𝑐 ‘ ℎ ) ,  𝑥 ) ) ) | 
						
							| 46 | 45 | cbvmptv | ⊢ ( 𝑗  ∈  𝑊  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) ) )  =  ( ℎ  ∈  𝑊  ↦  if ( ℎ  ∈  𝑌 ,  ( 𝑐 ‘ ℎ ) ,  if ( ( 𝑐 ‘ ℎ )  ≤  𝑥 ,  ( 𝑐 ‘ ℎ ) ,  𝑥 ) ) ) | 
						
							| 47 | 46 | mpteq2i | ⊢ ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( 𝑗  ∈  𝑊  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) ) ) )  =  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( ℎ  ∈  𝑊  ↦  if ( ℎ  ∈  𝑌 ,  ( 𝑐 ‘ ℎ ) ,  if ( ( 𝑐 ‘ ℎ )  ≤  𝑥 ,  ( 𝑐 ‘ ℎ ) ,  𝑥 ) ) ) ) | 
						
							| 48 | 47 | mpteq2i | ⊢ ( 𝑥  ∈  ℝ  ↦  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( 𝑗  ∈  𝑊  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) ) ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( ℎ  ∈  𝑊  ↦  if ( ℎ  ∈  𝑌 ,  ( 𝑐 ‘ ℎ ) ,  if ( ( 𝑐 ‘ ℎ )  ≤  𝑥 ,  ( 𝑐 ‘ ℎ ) ,  𝑥 ) ) ) ) ) | 
						
							| 49 | 13 48 | eqtri | ⊢ 𝐻  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( ℎ  ∈  𝑊  ↦  if ( ℎ  ∈  𝑌 ,  ( 𝑐 ‘ ℎ ) ,  if ( ( 𝑐 ‘ ℎ )  ≤  𝑥 ,  ( 𝑐 ‘ ℎ ) ,  𝑥 ) ) ) ) ) | 
						
							| 50 |  | snidg | ⊢ ( 𝑍  ∈  ( 𝑋  ∖  𝑌 )  →  𝑍  ∈  { 𝑍 } ) | 
						
							| 51 | 5 50 | syl | ⊢ ( 𝜑  →  𝑍  ∈  { 𝑍 } ) | 
						
							| 52 |  | elun2 | ⊢ ( 𝑍  ∈  { 𝑍 }  →  𝑍  ∈  ( 𝑌  ∪  { 𝑍 } ) ) | 
						
							| 53 | 51 52 | syl | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑌  ∪  { 𝑍 } ) ) | 
						
							| 54 | 6 | a1i | ⊢ ( 𝜑  →  𝑊  =  ( 𝑌  ∪  { 𝑍 } ) ) | 
						
							| 55 | 54 | eqcomd | ⊢ ( 𝜑  →  ( 𝑌  ∪  { 𝑍 } )  =  𝑊 ) | 
						
							| 56 | 53 55 | eleqtrd | ⊢ ( 𝜑  →  𝑍  ∈  𝑊 ) | 
						
							| 57 | 8 56 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐵 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 59 | 11 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐷 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑊 ) ) | 
						
							| 60 |  | elmapi | ⊢ ( ( 𝐷 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑊 )  →  ( 𝐷 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 61 | 59 60 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐷 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 62 | 49 58 37 61 | hsphoif | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) : 𝑊 ⟶ ℝ ) | 
						
							| 63 | 1 37 40 62 | hoidmvcl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 64 | 36 63 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 65 | 33 35 64 | sge0clmpt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 66 | 33 35 64 | sge0xrclmpt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ* ) | 
						
							| 67 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 68 | 67 | a1i | ⊢ ( 𝜑  →  +∞  ∈  ℝ* ) | 
						
							| 69 | 12 | rexrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) )  ∈  ℝ* ) | 
						
							| 70 | 1 37 40 61 | hoidmvcl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 71 | 36 70 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 72 | 5 | eldifbd | ⊢ ( 𝜑  →  ¬  𝑍  ∈  𝑌 ) | 
						
							| 73 | 56 72 | eldifd | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑊  ∖  𝑌 ) ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑍  ∈  ( 𝑊  ∖  𝑌 ) ) | 
						
							| 75 | 1 37 74 6 58 49 40 61 | hsphoidmvle | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ≤  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 76 | 33 35 64 71 75 | sge0lempt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) | 
						
							| 77 | 12 | ltpnfd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) )  <  +∞ ) | 
						
							| 78 | 66 69 68 76 77 | xrlelttrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  <  +∞ ) | 
						
							| 79 | 66 68 78 | xrltned | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ≠  +∞ ) | 
						
							| 80 |  | ge0xrre | ⊢ ( ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ( 0 [,] +∞ )  ∧  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ≠  +∞ )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ ) | 
						
							| 81 | 65 79 80 | syl2anc | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ ) | 
						
							| 82 | 32 81 | remulcld | ⊢ ( 𝜑  →  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  ∈  ℝ ) | 
						
							| 83 | 32 12 | remulcld | ⊢ ( 𝜑  →  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ ) | 
						
							| 84 | 56 | ancli | ⊢ ( 𝜑  →  ( 𝜑  ∧  𝑍  ∈  𝑊 ) ) | 
						
							| 85 |  | eleq1 | ⊢ ( 𝑘  =  𝑍  →  ( 𝑘  ∈  𝑊  ↔  𝑍  ∈  𝑊 ) ) | 
						
							| 86 | 85 | anbi2d | ⊢ ( 𝑘  =  𝑍  →  ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  ↔  ( 𝜑  ∧  𝑍  ∈  𝑊 ) ) ) | 
						
							| 87 |  | fveq2 | ⊢ ( 𝑘  =  𝑍  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑍 ) ) | 
						
							| 88 |  | fveq2 | ⊢ ( 𝑘  =  𝑍  →  ( 𝐵 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 89 | 87 88 | breq12d | ⊢ ( 𝑘  =  𝑍  →  ( ( 𝐴 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑘 )  ↔  ( 𝐴 ‘ 𝑍 )  <  ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 90 | 86 89 | imbi12d | ⊢ ( 𝑘  =  𝑍  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  →  ( 𝐴 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑘 ) )  ↔  ( ( 𝜑  ∧  𝑍  ∈  𝑊 )  →  ( 𝐴 ‘ 𝑍 )  <  ( 𝐵 ‘ 𝑍 ) ) ) ) | 
						
							| 91 | 90 9 | vtoclg | ⊢ ( 𝑍  ∈  𝑊  →  ( ( 𝜑  ∧  𝑍  ∈  𝑊 )  →  ( 𝐴 ‘ 𝑍 )  <  ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 92 | 56 84 91 | sylc | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  <  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 93 | 1 2 3 5 6 7 8 10 11 12 13 14 15 16 17 92 | hoidmvlelem1 | ⊢ ( 𝜑  →  𝑆  ∈  𝑈 ) | 
						
							| 94 | 57 | rexrd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑍 )  ∈  ℝ* ) | 
						
							| 95 |  | iccssxr | ⊢ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ⊆  ℝ* | 
						
							| 96 |  | ssrab2 | ⊢ { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) }  ⊆  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 97 | 16 96 | eqsstri | ⊢ 𝑈  ⊆  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 98 | 97 93 | sselid | ⊢ ( 𝜑  →  𝑆  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 99 | 95 98 | sselid | ⊢ ( 𝜑  →  𝑆  ∈  ℝ* ) | 
						
							| 100 |  | simpl | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝑆 )  →  𝜑 ) | 
						
							| 101 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝑆 )  →  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝑆 ) | 
						
							| 102 | 7 56 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 103 | 102 57 | iccssred | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ⊆  ℝ ) | 
						
							| 104 | 103 98 | sseldd | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 105 | 104 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝑆 )  →  𝑆  ∈  ℝ ) | 
						
							| 106 | 100 57 | syl | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝑆 )  →  ( 𝐵 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 107 | 105 106 | ltnled | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝑆 )  →  ( 𝑆  <  ( 𝐵 ‘ 𝑍 )  ↔  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝑆 ) ) | 
						
							| 108 | 101 107 | mpbird | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝑆 )  →  𝑆  <  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 109 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐵 ‘ 𝑍 ) )  →  𝑋  ∈  Fin ) | 
						
							| 110 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐵 ‘ 𝑍 ) )  →  𝑌  ⊆  𝑋 ) | 
						
							| 111 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐵 ‘ 𝑍 ) )  →  𝑍  ∈  ( 𝑋  ∖  𝑌 ) ) | 
						
							| 112 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐵 ‘ 𝑍 ) )  →  𝐴 : 𝑊 ⟶ ℝ ) | 
						
							| 113 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐵 ‘ 𝑍 ) )  →  𝐵 : 𝑊 ⟶ ℝ ) | 
						
							| 114 | 9 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐵 ‘ 𝑍 ) )  ∧  𝑘  ∈  𝑊 )  →  ( 𝐴 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 115 |  | eqid | ⊢ ( 𝑦  ∈  𝑌  ↦  0 )  =  ( 𝑦  ∈  𝑌  ↦  0 ) | 
						
							| 116 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐵 ‘ 𝑍 ) )  →  𝐶 : ℕ ⟶ ( ℝ  ↑m  𝑊 ) ) | 
						
							| 117 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐶 ‘ 𝑖 )  =  ( 𝐶 ‘ 𝑗 ) ) | 
						
							| 118 | 117 | fveq1d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 )  =  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) | 
						
							| 119 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐷 ‘ 𝑖 )  =  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 120 | 119 | fveq1d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 )  =  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) | 
						
							| 121 | 118 120 | oveq12d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) )  =  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ) | 
						
							| 122 | 121 | eleq2d | ⊢ ( 𝑖  =  𝑗  →  ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) )  ↔  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ) ) | 
						
							| 123 | 117 | reseq1d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 )  =  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ) | 
						
							| 124 | 122 123 | ifbieq1d | ⊢ ( 𝑖  =  𝑗  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) | 
						
							| 125 | 124 | cbvmptv | ⊢ ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) )  =  ( 𝑗  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) | 
						
							| 126 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐵 ‘ 𝑍 ) )  →  𝐷 : ℕ ⟶ ( ℝ  ↑m  𝑊 ) ) | 
						
							| 127 | 119 | reseq1d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 )  =  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ) | 
						
							| 128 | 122 127 | ifbieq1d | ⊢ ( 𝑖  =  𝑗  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) | 
						
							| 129 | 128 | cbvmptv | ⊢ ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) )  =  ( 𝑗  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) | 
						
							| 130 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐵 ‘ 𝑍 ) )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) )  ∈  ℝ ) | 
						
							| 131 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐵 ‘ 𝑍 ) )  →  𝐸  ∈  ℝ+ ) | 
						
							| 132 | 93 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐵 ‘ 𝑍 ) )  →  𝑆  ∈  𝑈 ) | 
						
							| 133 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐵 ‘ 𝑍 ) )  →  𝑆  <  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 134 |  | biid | ⊢ ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) )  ↔  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ) | 
						
							| 135 |  | eqidd | ⊢ ( 𝑤  =  𝑦  →  0  =  0 ) | 
						
							| 136 | 135 | cbvmptv | ⊢ ( 𝑤  ∈  𝑌  ↦  0 )  =  ( 𝑦  ∈  𝑌  ↦  0 ) | 
						
							| 137 | 134 136 | ifbieq2i | ⊢ if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑤  ∈  𝑌  ↦  0 ) )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) | 
						
							| 138 | 137 | mpteq2i | ⊢ ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑤  ∈  𝑌  ↦  0 ) ) )  =  ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) | 
						
							| 139 | 138 | a1i | ⊢ ( 𝑙  =  𝑗  →  ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑤  ∈  𝑌  ↦  0 ) ) )  =  ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ) | 
						
							| 140 |  | id | ⊢ ( 𝑙  =  𝑗  →  𝑙  =  𝑗 ) | 
						
							| 141 | 139 140 | fveq12d | ⊢ ( 𝑙  =  𝑗  →  ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑤  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑙 )  =  ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑗 ) ) | 
						
							| 142 | 134 136 | ifbieq2i | ⊢ if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑤  ∈  𝑌  ↦  0 ) )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) | 
						
							| 143 | 142 | mpteq2i | ⊢ ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑤  ∈  𝑌  ↦  0 ) ) )  =  ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) | 
						
							| 144 | 143 | a1i | ⊢ ( 𝑙  =  𝑗  →  ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑤  ∈  𝑌  ↦  0 ) ) )  =  ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ) | 
						
							| 145 | 144 140 | fveq12d | ⊢ ( 𝑙  =  𝑗  →  ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑤  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑙 )  =  ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑗 ) ) | 
						
							| 146 | 141 145 | oveq12d | ⊢ ( 𝑙  =  𝑗  →  ( ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑤  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑙 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑤  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑙 ) )  =  ( ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑗 ) ) ) | 
						
							| 147 | 146 | cbvmptv | ⊢ ( 𝑙  ∈  ℕ  ↦  ( ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑤  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑙 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑤  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑙 ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑗 ) ) ) | 
						
							| 148 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐵 ‘ 𝑍 ) )  →  ∀ 𝑒  ∈  ( ℝ  ↑m  𝑌 ) ∀ 𝑓  ∈  ( ℝ  ↑m  𝑌 ) ∀ 𝑔  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( 𝑒 ( 𝐿 ‘ 𝑌 ) 𝑓 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 149 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐵 ‘ 𝑍 ) )  →  X 𝑘  ∈  𝑊 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 150 |  | eqid | ⊢ ( 𝑥  ∈  X 𝑦  ∈  𝑌 ( ( 𝐴 ‘ 𝑦 ) [,) ( 𝐵 ‘ 𝑦 ) )  ↦  ( 𝑦  ∈  𝑊  ↦  if ( 𝑦  ∈  𝑌 ,  ( 𝑥 ‘ 𝑦 ) ,  𝑆 ) ) )  =  ( 𝑥  ∈  X 𝑦  ∈  𝑌 ( ( 𝐴 ‘ 𝑦 ) [,) ( 𝐵 ‘ 𝑦 ) )  ↦  ( 𝑦  ∈  𝑊  ↦  if ( 𝑦  ∈  𝑌 ,  ( 𝑥 ‘ 𝑦 ) ,  𝑆 ) ) ) | 
						
							| 151 |  | fveq2 | ⊢ ( 𝑦  =  𝑘  →  ( 𝐴 ‘ 𝑦 )  =  ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 152 |  | fveq2 | ⊢ ( 𝑦  =  𝑘  →  ( 𝐵 ‘ 𝑦 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 153 | 151 152 | oveq12d | ⊢ ( 𝑦  =  𝑘  →  ( ( 𝐴 ‘ 𝑦 ) [,) ( 𝐵 ‘ 𝑦 ) )  =  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 154 | 153 | cbvixpv | ⊢ X 𝑦  ∈  𝑌 ( ( 𝐴 ‘ 𝑦 ) [,) ( 𝐵 ‘ 𝑦 ) )  =  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 155 |  | eleq1 | ⊢ ( 𝑦  =  𝑘  →  ( 𝑦  ∈  𝑌  ↔  𝑘  ∈  𝑌 ) ) | 
						
							| 156 |  | fveq2 | ⊢ ( 𝑦  =  𝑘  →  ( 𝑥 ‘ 𝑦 )  =  ( 𝑥 ‘ 𝑘 ) ) | 
						
							| 157 | 155 156 | ifbieq1d | ⊢ ( 𝑦  =  𝑘  →  if ( 𝑦  ∈  𝑌 ,  ( 𝑥 ‘ 𝑦 ) ,  𝑆 )  =  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) | 
						
							| 158 | 157 | cbvmptv | ⊢ ( 𝑦  ∈  𝑊  ↦  if ( 𝑦  ∈  𝑌 ,  ( 𝑥 ‘ 𝑦 ) ,  𝑆 ) )  =  ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) | 
						
							| 159 | 154 158 | mpteq12i | ⊢ ( 𝑥  ∈  X 𝑦  ∈  𝑌 ( ( 𝐴 ‘ 𝑦 ) [,) ( 𝐵 ‘ 𝑦 ) )  ↦  ( 𝑦  ∈  𝑊  ↦  if ( 𝑦  ∈  𝑌 ,  ( 𝑥 ‘ 𝑦 ) ,  𝑆 ) ) )  =  ( 𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ↦  ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) ) | 
						
							| 160 | 150 159 | eqtri | ⊢ ( 𝑥  ∈  X 𝑦  ∈  𝑌 ( ( 𝐴 ‘ 𝑦 ) [,) ( 𝐵 ‘ 𝑦 ) )  ↦  ( 𝑦  ∈  𝑊  ↦  if ( 𝑦  ∈  𝑌 ,  ( 𝑥 ‘ 𝑦 ) ,  𝑆 ) ) )  =  ( 𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ↦  ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) ) | 
						
							| 161 | 1 109 110 111 6 112 113 114 115 116 125 126 129 130 13 14 131 16 132 133 147 148 149 160 | hoidmvlelem3 | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐵 ‘ 𝑍 ) )  →  ∃ 𝑢  ∈  𝑈 𝑆  <  𝑢 ) | 
						
							| 162 | 100 108 161 | syl2anc | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝑆 )  →  ∃ 𝑢  ∈  𝑈 𝑆  <  𝑢 ) | 
						
							| 163 | 97 | a1i | ⊢ ( 𝜑  →  𝑈  ⊆  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 164 | 163 103 | sstrd | ⊢ ( 𝜑  →  𝑈  ⊆  ℝ ) | 
						
							| 165 | 164 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑈  ⊆  ℝ ) | 
						
							| 166 |  | ne0i | ⊢ ( 𝑢  ∈  𝑈  →  𝑈  ≠  ∅ ) | 
						
							| 167 | 166 | adantl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑈  ≠  ∅ ) | 
						
							| 168 | 102 | rexrd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  ∈  ℝ* ) | 
						
							| 169 | 168 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( 𝐴 ‘ 𝑍 )  ∈  ℝ* ) | 
						
							| 170 | 94 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( 𝐵 ‘ 𝑍 )  ∈  ℝ* ) | 
						
							| 171 | 163 | sselda | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑢  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 172 |  | iccleub | ⊢ ( ( ( 𝐴 ‘ 𝑍 )  ∈  ℝ*  ∧  ( 𝐵 ‘ 𝑍 )  ∈  ℝ*  ∧  𝑢  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) )  →  𝑢  ≤  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 173 | 169 170 171 172 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑢  ≤  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 174 | 173 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑢  ∈  𝑈 𝑢  ≤  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 175 |  | brralrspcev | ⊢ ( ( ( 𝐵 ‘ 𝑍 )  ∈  ℝ  ∧  ∀ 𝑢  ∈  𝑈 𝑢  ≤  ( 𝐵 ‘ 𝑍 ) )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑢  ∈  𝑈 𝑢  ≤  𝑦 ) | 
						
							| 176 | 57 174 175 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ∀ 𝑢  ∈  𝑈 𝑢  ≤  𝑦 ) | 
						
							| 177 | 176 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑢  ∈  𝑈 𝑢  ≤  𝑦 ) | 
						
							| 178 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑢  ∈  𝑈 ) | 
						
							| 179 |  | suprub | ⊢ ( ( ( 𝑈  ⊆  ℝ  ∧  𝑈  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑢  ∈  𝑈 𝑢  ≤  𝑦 )  ∧  𝑢  ∈  𝑈 )  →  𝑢  ≤  sup ( 𝑈 ,  ℝ ,   <  ) ) | 
						
							| 180 | 165 167 177 178 179 | syl31anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑢  ≤  sup ( 𝑈 ,  ℝ ,   <  ) ) | 
						
							| 181 | 180 17 | breqtrrdi | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑢  ≤  𝑆 ) | 
						
							| 182 | 181 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑢  ∈  𝑈 𝑢  ≤  𝑆 ) | 
						
							| 183 | 165 178 | sseldd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑢  ∈  ℝ ) | 
						
							| 184 | 104 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑆  ∈  ℝ ) | 
						
							| 185 | 183 184 | lenltd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( 𝑢  ≤  𝑆  ↔  ¬  𝑆  <  𝑢 ) ) | 
						
							| 186 | 185 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑢  ∈  𝑈 𝑢  ≤  𝑆  ↔  ∀ 𝑢  ∈  𝑈 ¬  𝑆  <  𝑢 ) ) | 
						
							| 187 | 182 186 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑢  ∈  𝑈 ¬  𝑆  <  𝑢 ) | 
						
							| 188 |  | ralnex | ⊢ ( ∀ 𝑢  ∈  𝑈 ¬  𝑆  <  𝑢  ↔  ¬  ∃ 𝑢  ∈  𝑈 𝑆  <  𝑢 ) | 
						
							| 189 | 187 188 | sylib | ⊢ ( 𝜑  →  ¬  ∃ 𝑢  ∈  𝑈 𝑆  <  𝑢 ) | 
						
							| 190 | 189 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐵 ‘ 𝑍 ) )  →  ¬  ∃ 𝑢  ∈  𝑈 𝑆  <  𝑢 ) | 
						
							| 191 | 100 108 190 | syl2anc | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝑆 )  →  ¬  ∃ 𝑢  ∈  𝑈 𝑆  <  𝑢 ) | 
						
							| 192 | 162 191 | condan | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑍 )  ≤  𝑆 ) | 
						
							| 193 |  | iccleub | ⊢ ( ( ( 𝐴 ‘ 𝑍 )  ∈  ℝ*  ∧  ( 𝐵 ‘ 𝑍 )  ∈  ℝ*  ∧  𝑆  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) )  →  𝑆  ≤  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 194 | 168 94 98 193 | syl3anc | ⊢ ( 𝜑  →  𝑆  ≤  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 195 | 94 99 192 194 | xrletrid | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑍 )  =  𝑆 ) | 
						
							| 196 | 16 | eqcomi | ⊢ { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) }  =  𝑈 | 
						
							| 197 | 196 | a1i | ⊢ ( 𝜑  →  { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) }  =  𝑈 ) | 
						
							| 198 | 195 197 | eleq12d | ⊢ ( 𝜑  →  ( ( 𝐵 ‘ 𝑍 )  ∈  { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) }  ↔  𝑆  ∈  𝑈 ) ) | 
						
							| 199 | 93 198 | mpbird | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑍 )  ∈  { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } ) | 
						
							| 200 |  | oveq1 | ⊢ ( 𝑧  =  ( 𝐵 ‘ 𝑍 )  →  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) )  =  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 201 | 200 | oveq2d | ⊢ ( 𝑧  =  ( 𝐵 ‘ 𝑍 )  →  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  =  ( 𝐺  ·  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 202 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝐵 ‘ 𝑍 )  →  ( 𝐻 ‘ 𝑧 )  =  ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 203 | 202 | fveq1d | ⊢ ( 𝑧  =  ( 𝐵 ‘ 𝑍 )  →  ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) )  =  ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 204 | 203 | oveq2d | ⊢ ( 𝑧  =  ( 𝐵 ‘ 𝑍 )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  =  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 205 | 204 | mpteq2dv | ⊢ ( 𝑧  =  ( 𝐵 ‘ 𝑍 )  →  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) | 
						
							| 206 | 205 | fveq2d | ⊢ ( 𝑧  =  ( 𝐵 ‘ 𝑍 )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  =  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 207 | 206 | oveq2d | ⊢ ( 𝑧  =  ( 𝐵 ‘ 𝑍 )  →  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  =  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 208 | 201 207 | breq12d | ⊢ ( 𝑧  =  ( 𝐵 ‘ 𝑍 )  →  ( ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  ↔  ( 𝐺  ·  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 209 | 208 | elrab | ⊢ ( ( 𝐵 ‘ 𝑍 )  ∈  { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) }  ↔  ( ( 𝐵 ‘ 𝑍 )  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∧  ( 𝐺  ·  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 210 | 199 209 | sylib | ⊢ ( 𝜑  →  ( ( 𝐵 ‘ 𝑍 )  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∧  ( 𝐺  ·  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 211 | 210 | simprd | ⊢ ( 𝜑  →  ( 𝐺  ·  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 212 | 2 3 | ssfid | ⊢ ( 𝜑  →  𝑌  ∈  Fin ) | 
						
							| 213 |  | eqid | ⊢ ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 214 | 1 212 5 72 6 7 8 213 | hoiprodp1 | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 )  =  ( ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ·  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) ) ) | 
						
							| 215 |  | eqidd | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑌 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  =  ∏ 𝑘  ∈  𝑌 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 216 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  𝐴 : 𝑊 ⟶ ℝ ) | 
						
							| 217 |  | ssun1 | ⊢ 𝑌  ⊆  ( 𝑌  ∪  { 𝑍 } ) | 
						
							| 218 | 6 | eqcomi | ⊢ ( 𝑌  ∪  { 𝑍 } )  =  𝑊 | 
						
							| 219 | 217 218 | sseqtri | ⊢ 𝑌  ⊆  𝑊 | 
						
							| 220 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  𝑘  ∈  𝑌 ) | 
						
							| 221 | 219 220 | sselid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  𝑘  ∈  𝑊 ) | 
						
							| 222 | 216 221 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 223 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  𝐵 : 𝑊 ⟶ ℝ ) | 
						
							| 224 | 223 221 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 225 | 221 9 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  ( 𝐴 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 226 | 222 224 225 | volicon0 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 227 | 226 | prodeq2dv | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  ∏ 𝑘  ∈  𝑌 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 228 | 14 | a1i | ⊢ ( 𝜑  →  𝐺  =  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) ) ) | 
						
							| 229 | 219 | a1i | ⊢ ( 𝜑  →  𝑌  ⊆  𝑊 ) | 
						
							| 230 | 7 229 | fssresd | ⊢ ( 𝜑  →  ( 𝐴  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) | 
						
							| 231 | 8 229 | fssresd | ⊢ ( 𝜑  →  ( 𝐵  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) | 
						
							| 232 | 1 212 4 230 231 | hoidmvn0val | ⊢ ( 𝜑  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  =  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐴  ↾  𝑌 ) ‘ 𝑘 ) [,) ( ( 𝐵  ↾  𝑌 ) ‘ 𝑘 ) ) ) ) | 
						
							| 233 |  | fvres | ⊢ ( 𝑘  ∈  𝑌  →  ( ( 𝐴  ↾  𝑌 ) ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 234 |  | fvres | ⊢ ( 𝑘  ∈  𝑌  →  ( ( 𝐵  ↾  𝑌 ) ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 235 | 233 234 | oveq12d | ⊢ ( 𝑘  ∈  𝑌  →  ( ( ( 𝐴  ↾  𝑌 ) ‘ 𝑘 ) [,) ( ( 𝐵  ↾  𝑌 ) ‘ 𝑘 ) )  =  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 236 | 235 | fveq2d | ⊢ ( 𝑘  ∈  𝑌  →  ( vol ‘ ( ( ( 𝐴  ↾  𝑌 ) ‘ 𝑘 ) [,) ( ( 𝐵  ↾  𝑌 ) ‘ 𝑘 ) ) )  =  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 237 | 236 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  ( vol ‘ ( ( ( 𝐴  ↾  𝑌 ) ‘ 𝑘 ) [,) ( ( 𝐵  ↾  𝑌 ) ‘ 𝑘 ) ) )  =  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 238 |  | volico | ⊢ ( ( ( 𝐴 ‘ 𝑘 )  ∈  ℝ  ∧  ( 𝐵 ‘ 𝑘 )  ∈  ℝ )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  if ( ( 𝐴 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑘 ) ,  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ,  0 ) ) | 
						
							| 239 | 222 224 238 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  if ( ( 𝐴 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑘 ) ,  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ,  0 ) ) | 
						
							| 240 | 239 226 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  if ( ( 𝐴 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑘 ) ,  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ,  0 )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 241 | 237 239 240 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  ( vol ‘ ( ( ( 𝐴  ↾  𝑌 ) ‘ 𝑘 ) [,) ( ( 𝐵  ↾  𝑌 ) ‘ 𝑘 ) ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 242 | 241 | prodeq2dv | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐴  ↾  𝑌 ) ‘ 𝑘 ) [,) ( ( 𝐵  ↾  𝑌 ) ‘ 𝑘 ) ) )  =  ∏ 𝑘  ∈  𝑌 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 243 | 228 232 242 | 3eqtrd | ⊢ ( 𝜑  →  𝐺  =  ∏ 𝑘  ∈  𝑌 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 244 | 215 227 243 | 3eqtr4d | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  𝐺 ) | 
						
							| 245 | 102 57 92 | volicon0 | ⊢ ( 𝜑  →  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) )  =  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 246 | 244 245 | oveq12d | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ·  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) )  =  ( 𝐺  ·  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 247 | 214 246 | eqtrd | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 )  =  ( 𝐺  ·  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 248 | 247 | breq1d | ⊢ ( 𝜑  →  ( ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  ↔  ( 𝐺  ·  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 249 | 211 248 | mpbird | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 250 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 251 | 250 | a1i | ⊢ ( 𝜑  →  0  ≤  1 ) | 
						
							| 252 | 15 | rpge0d | ⊢ ( 𝜑  →  0  ≤  𝐸 ) | 
						
							| 253 | 30 31 251 252 | addge0d | ⊢ ( 𝜑  →  0  ≤  ( 1  +  𝐸 ) ) | 
						
							| 254 | 81 12 32 253 76 | lemul2ad | ⊢ ( 𝜑  →  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐵 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 255 | 29 82 83 249 254 | letrd | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐿 ‘ 𝑊 ) 𝐵 )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |