Step |
Hyp |
Ref |
Expression |
1 |
|
hoiprodp1.l |
⊢ 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
2 |
|
hoiprodp1.y |
⊢ ( 𝜑 → 𝑌 ∈ Fin ) |
3 |
|
hoiprodp1.3 |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
4 |
|
hoiprodp1.z |
⊢ ( 𝜑 → ¬ 𝑍 ∈ 𝑌 ) |
5 |
|
hoiprodp1.x |
⊢ 𝑋 = ( 𝑌 ∪ { 𝑍 } ) |
6 |
|
hoiprodp1.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
7 |
|
hoiprodp1.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
8 |
|
hoiprodp1.g |
⊢ 𝐺 = ∏ 𝑘 ∈ 𝑌 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
9 |
|
snfi |
⊢ { 𝑍 } ∈ Fin |
10 |
9
|
a1i |
⊢ ( 𝜑 → { 𝑍 } ∈ Fin ) |
11 |
|
unfi |
⊢ ( ( 𝑌 ∈ Fin ∧ { 𝑍 } ∈ Fin ) → ( 𝑌 ∪ { 𝑍 } ) ∈ Fin ) |
12 |
2 10 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ∪ { 𝑍 } ) ∈ Fin ) |
13 |
5 12
|
eqeltrid |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
14 |
|
snidg |
⊢ ( 𝑍 ∈ 𝑉 → 𝑍 ∈ { 𝑍 } ) |
15 |
3 14
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ { 𝑍 } ) |
16 |
|
elun2 |
⊢ ( 𝑍 ∈ { 𝑍 } → 𝑍 ∈ ( 𝑌 ∪ { 𝑍 } ) ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑌 ∪ { 𝑍 } ) ) |
18 |
17 5
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑍 ∈ 𝑋 ) |
19 |
18
|
ne0d |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
20 |
1 13 19 6 7
|
hoidmvn0val |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
21 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
22 |
7
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
23 |
|
volicore |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ ) |
24 |
21 22 23
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ ) |
25 |
24
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℂ ) |
26 |
|
fveq2 |
⊢ ( 𝑘 = 𝑍 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑍 ) ) |
27 |
|
fveq2 |
⊢ ( 𝑘 = 𝑍 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑍 ) ) |
28 |
26 27
|
oveq12d |
⊢ ( 𝑘 = 𝑍 → ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) |
29 |
28
|
fveq2d |
⊢ ( 𝑘 = 𝑍 → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝑍 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) ) |
31 |
13 25 18 30
|
fprodsplit1 |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) · ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
32 |
5
|
difeq1i |
⊢ ( 𝑋 ∖ { 𝑍 } ) = ( ( 𝑌 ∪ { 𝑍 } ) ∖ { 𝑍 } ) |
33 |
32
|
a1i |
⊢ ( 𝜑 → ( 𝑋 ∖ { 𝑍 } ) = ( ( 𝑌 ∪ { 𝑍 } ) ∖ { 𝑍 } ) ) |
34 |
|
difun2 |
⊢ ( ( 𝑌 ∪ { 𝑍 } ) ∖ { 𝑍 } ) = ( 𝑌 ∖ { 𝑍 } ) |
35 |
34
|
a1i |
⊢ ( 𝜑 → ( ( 𝑌 ∪ { 𝑍 } ) ∖ { 𝑍 } ) = ( 𝑌 ∖ { 𝑍 } ) ) |
36 |
|
difsn |
⊢ ( ¬ 𝑍 ∈ 𝑌 → ( 𝑌 ∖ { 𝑍 } ) = 𝑌 ) |
37 |
4 36
|
syl |
⊢ ( 𝜑 → ( 𝑌 ∖ { 𝑍 } ) = 𝑌 ) |
38 |
33 35 37
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑋 ∖ { 𝑍 } ) = 𝑌 ) |
39 |
38
|
prodeq1d |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑌 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
40 |
8
|
eqcomi |
⊢ ∏ 𝑘 ∈ 𝑌 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = 𝐺 |
41 |
40
|
a1i |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑌 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = 𝐺 ) |
42 |
39 41
|
eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = 𝐺 ) |
43 |
42
|
oveq2d |
⊢ ( 𝜑 → ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) · ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) = ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) · 𝐺 ) ) |
44 |
6 18
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑍 ) ∈ ℝ ) |
45 |
7 18
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝑍 ) ∈ ℝ ) |
46 |
|
volicore |
⊢ ( ( ( 𝐴 ‘ 𝑍 ) ∈ ℝ ∧ ( 𝐵 ‘ 𝑍 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) ∈ ℝ ) |
47 |
44 45 46
|
syl2anc |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) ∈ ℝ ) |
48 |
47
|
recnd |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) ∈ ℂ ) |
49 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → 𝐴 : 𝑋 ⟶ ℝ ) |
50 |
|
ssun1 |
⊢ 𝑌 ⊆ ( 𝑌 ∪ { 𝑍 } ) |
51 |
50 5
|
sseqtrri |
⊢ 𝑌 ⊆ 𝑋 |
52 |
|
id |
⊢ ( 𝑘 ∈ 𝑌 → 𝑘 ∈ 𝑌 ) |
53 |
51 52
|
sselid |
⊢ ( 𝑘 ∈ 𝑌 → 𝑘 ∈ 𝑋 ) |
54 |
53
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → 𝑘 ∈ 𝑋 ) |
55 |
49 54
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
56 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → 𝐵 : 𝑋 ⟶ ℝ ) |
57 |
56 54
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
58 |
55 57 23
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ ) |
59 |
2 58
|
fprodrecl |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑌 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ ) |
60 |
8 59
|
eqeltrid |
⊢ ( 𝜑 → 𝐺 ∈ ℝ ) |
61 |
60
|
recnd |
⊢ ( 𝜑 → 𝐺 ∈ ℂ ) |
62 |
48 61
|
mulcomd |
⊢ ( 𝜑 → ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) · 𝐺 ) = ( 𝐺 · ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) ) ) |
63 |
43 62
|
eqtrd |
⊢ ( 𝜑 → ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) · ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) = ( 𝐺 · ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) ) ) |
64 |
20 31 63
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = ( 𝐺 · ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) ) ) |