| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoiprodp1.l | ⊢ 𝐿  =  ( 𝑥  ∈  Fin  ↦  ( 𝑎  ∈  ( ℝ  ↑m  𝑥 ) ,  𝑏  ∈  ( ℝ  ↑m  𝑥 )  ↦  if ( 𝑥  =  ∅ ,  0 ,  ∏ 𝑘  ∈  𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 2 |  | hoiprodp1.y | ⊢ ( 𝜑  →  𝑌  ∈  Fin ) | 
						
							| 3 |  | hoiprodp1.3 | ⊢ ( 𝜑  →  𝑍  ∈  𝑉 ) | 
						
							| 4 |  | hoiprodp1.z | ⊢ ( 𝜑  →  ¬  𝑍  ∈  𝑌 ) | 
						
							| 5 |  | hoiprodp1.x | ⊢ 𝑋  =  ( 𝑌  ∪  { 𝑍 } ) | 
						
							| 6 |  | hoiprodp1.a | ⊢ ( 𝜑  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 7 |  | hoiprodp1.b | ⊢ ( 𝜑  →  𝐵 : 𝑋 ⟶ ℝ ) | 
						
							| 8 |  | hoiprodp1.g | ⊢ 𝐺  =  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 9 |  | snfi | ⊢ { 𝑍 }  ∈  Fin | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  { 𝑍 }  ∈  Fin ) | 
						
							| 11 |  | unfi | ⊢ ( ( 𝑌  ∈  Fin  ∧  { 𝑍 }  ∈  Fin )  →  ( 𝑌  ∪  { 𝑍 } )  ∈  Fin ) | 
						
							| 12 | 2 10 11 | syl2anc | ⊢ ( 𝜑  →  ( 𝑌  ∪  { 𝑍 } )  ∈  Fin ) | 
						
							| 13 | 5 12 | eqeltrid | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 14 |  | snidg | ⊢ ( 𝑍  ∈  𝑉  →  𝑍  ∈  { 𝑍 } ) | 
						
							| 15 | 3 14 | syl | ⊢ ( 𝜑  →  𝑍  ∈  { 𝑍 } ) | 
						
							| 16 |  | elun2 | ⊢ ( 𝑍  ∈  { 𝑍 }  →  𝑍  ∈  ( 𝑌  ∪  { 𝑍 } ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑌  ∪  { 𝑍 } ) ) | 
						
							| 18 | 17 5 | eleqtrrdi | ⊢ ( 𝜑  →  𝑍  ∈  𝑋 ) | 
						
							| 19 | 18 | ne0d | ⊢ ( 𝜑  →  𝑋  ≠  ∅ ) | 
						
							| 20 | 1 13 19 6 7 | hoidmvn0val | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 )  =  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 21 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 22 | 7 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 23 |  | volicore | ⊢ ( ( ( 𝐴 ‘ 𝑘 )  ∈  ℝ  ∧  ( 𝐵 ‘ 𝑘 )  ∈  ℝ )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 24 | 21 22 23 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 25 | 24 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℂ ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑘  =  𝑍  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑍 ) ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑘  =  𝑍  →  ( 𝐵 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 28 | 26 27 | oveq12d | ⊢ ( 𝑘  =  𝑍  →  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  =  ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 29 | 28 | fveq2d | ⊢ ( 𝑘  =  𝑍  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  =  𝑍 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) ) | 
						
							| 31 | 13 25 18 30 | fprodsplit1 | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) )  ·  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ) | 
						
							| 32 | 5 | difeq1i | ⊢ ( 𝑋  ∖  { 𝑍 } )  =  ( ( 𝑌  ∪  { 𝑍 } )  ∖  { 𝑍 } ) | 
						
							| 33 | 32 | a1i | ⊢ ( 𝜑  →  ( 𝑋  ∖  { 𝑍 } )  =  ( ( 𝑌  ∪  { 𝑍 } )  ∖  { 𝑍 } ) ) | 
						
							| 34 |  | difun2 | ⊢ ( ( 𝑌  ∪  { 𝑍 } )  ∖  { 𝑍 } )  =  ( 𝑌  ∖  { 𝑍 } ) | 
						
							| 35 | 34 | a1i | ⊢ ( 𝜑  →  ( ( 𝑌  ∪  { 𝑍 } )  ∖  { 𝑍 } )  =  ( 𝑌  ∖  { 𝑍 } ) ) | 
						
							| 36 |  | difsn | ⊢ ( ¬  𝑍  ∈  𝑌  →  ( 𝑌  ∖  { 𝑍 } )  =  𝑌 ) | 
						
							| 37 | 4 36 | syl | ⊢ ( 𝜑  →  ( 𝑌  ∖  { 𝑍 } )  =  𝑌 ) | 
						
							| 38 | 33 35 37 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝑋  ∖  { 𝑍 } )  =  𝑌 ) | 
						
							| 39 | 38 | prodeq1d | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 40 | 8 | eqcomi | ⊢ ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  𝐺 | 
						
							| 41 | 40 | a1i | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  𝐺 ) | 
						
							| 42 | 39 41 | eqtrd | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  𝐺 ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( 𝜑  →  ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) )  ·  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) )  =  ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) )  ·  𝐺 ) ) | 
						
							| 44 | 6 18 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 45 | 7 18 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 46 |  | volicore | ⊢ ( ( ( 𝐴 ‘ 𝑍 )  ∈  ℝ  ∧  ( 𝐵 ‘ 𝑍 )  ∈  ℝ )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) )  ∈  ℝ ) | 
						
							| 47 | 44 45 46 | syl2anc | ⊢ ( 𝜑  →  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) )  ∈  ℝ ) | 
						
							| 48 | 47 | recnd | ⊢ ( 𝜑  →  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) )  ∈  ℂ ) | 
						
							| 49 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 50 |  | ssun1 | ⊢ 𝑌  ⊆  ( 𝑌  ∪  { 𝑍 } ) | 
						
							| 51 | 50 5 | sseqtrri | ⊢ 𝑌  ⊆  𝑋 | 
						
							| 52 |  | id | ⊢ ( 𝑘  ∈  𝑌  →  𝑘  ∈  𝑌 ) | 
						
							| 53 | 51 52 | sselid | ⊢ ( 𝑘  ∈  𝑌  →  𝑘  ∈  𝑋 ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  𝑘  ∈  𝑋 ) | 
						
							| 55 | 49 54 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 56 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  𝐵 : 𝑋 ⟶ ℝ ) | 
						
							| 57 | 56 54 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 58 | 55 57 23 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 59 | 2 58 | fprodrecl | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 60 | 8 59 | eqeltrid | ⊢ ( 𝜑  →  𝐺  ∈  ℝ ) | 
						
							| 61 | 60 | recnd | ⊢ ( 𝜑  →  𝐺  ∈  ℂ ) | 
						
							| 62 | 48 61 | mulcomd | ⊢ ( 𝜑  →  ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) )  ·  𝐺 )  =  ( 𝐺  ·  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) ) ) | 
						
							| 63 | 43 62 | eqtrd | ⊢ ( 𝜑  →  ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) )  ·  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) )  =  ( 𝐺  ·  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) ) ) | 
						
							| 64 | 20 31 63 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 )  =  ( 𝐺  ·  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) ) ) |