| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoiprodp1.l |  |-  L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) | 
						
							| 2 |  | hoiprodp1.y |  |-  ( ph -> Y e. Fin ) | 
						
							| 3 |  | hoiprodp1.3 |  |-  ( ph -> Z e. V ) | 
						
							| 4 |  | hoiprodp1.z |  |-  ( ph -> -. Z e. Y ) | 
						
							| 5 |  | hoiprodp1.x |  |-  X = ( Y u. { Z } ) | 
						
							| 6 |  | hoiprodp1.a |  |-  ( ph -> A : X --> RR ) | 
						
							| 7 |  | hoiprodp1.b |  |-  ( ph -> B : X --> RR ) | 
						
							| 8 |  | hoiprodp1.g |  |-  G = prod_ k e. Y ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) | 
						
							| 9 |  | snfi |  |-  { Z } e. Fin | 
						
							| 10 | 9 | a1i |  |-  ( ph -> { Z } e. Fin ) | 
						
							| 11 |  | unfi |  |-  ( ( Y e. Fin /\ { Z } e. Fin ) -> ( Y u. { Z } ) e. Fin ) | 
						
							| 12 | 2 10 11 | syl2anc |  |-  ( ph -> ( Y u. { Z } ) e. Fin ) | 
						
							| 13 | 5 12 | eqeltrid |  |-  ( ph -> X e. Fin ) | 
						
							| 14 |  | snidg |  |-  ( Z e. V -> Z e. { Z } ) | 
						
							| 15 | 3 14 | syl |  |-  ( ph -> Z e. { Z } ) | 
						
							| 16 |  | elun2 |  |-  ( Z e. { Z } -> Z e. ( Y u. { Z } ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( ph -> Z e. ( Y u. { Z } ) ) | 
						
							| 18 | 17 5 | eleqtrrdi |  |-  ( ph -> Z e. X ) | 
						
							| 19 | 18 | ne0d |  |-  ( ph -> X =/= (/) ) | 
						
							| 20 | 1 13 19 6 7 | hoidmvn0val |  |-  ( ph -> ( A ( L ` X ) B ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) | 
						
							| 21 | 6 | ffvelcdmda |  |-  ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) | 
						
							| 22 | 7 | ffvelcdmda |  |-  ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) | 
						
							| 23 |  | volicore |  |-  ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) | 
						
							| 24 | 21 22 23 | syl2anc |  |-  ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) | 
						
							| 25 | 24 | recnd |  |-  ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. CC ) | 
						
							| 26 |  | fveq2 |  |-  ( k = Z -> ( A ` k ) = ( A ` Z ) ) | 
						
							| 27 |  | fveq2 |  |-  ( k = Z -> ( B ` k ) = ( B ` Z ) ) | 
						
							| 28 | 26 27 | oveq12d |  |-  ( k = Z -> ( ( A ` k ) [,) ( B ` k ) ) = ( ( A ` Z ) [,) ( B ` Z ) ) ) | 
						
							| 29 | 28 | fveq2d |  |-  ( k = Z -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) ) | 
						
							| 30 | 29 | adantl |  |-  ( ( ph /\ k = Z ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) ) | 
						
							| 31 | 13 25 18 30 | fprodsplit1 |  |-  ( ph -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) x. prod_ k e. ( X \ { Z } ) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) ) | 
						
							| 32 | 5 | difeq1i |  |-  ( X \ { Z } ) = ( ( Y u. { Z } ) \ { Z } ) | 
						
							| 33 | 32 | a1i |  |-  ( ph -> ( X \ { Z } ) = ( ( Y u. { Z } ) \ { Z } ) ) | 
						
							| 34 |  | difun2 |  |-  ( ( Y u. { Z } ) \ { Z } ) = ( Y \ { Z } ) | 
						
							| 35 | 34 | a1i |  |-  ( ph -> ( ( Y u. { Z } ) \ { Z } ) = ( Y \ { Z } ) ) | 
						
							| 36 |  | difsn |  |-  ( -. Z e. Y -> ( Y \ { Z } ) = Y ) | 
						
							| 37 | 4 36 | syl |  |-  ( ph -> ( Y \ { Z } ) = Y ) | 
						
							| 38 | 33 35 37 | 3eqtrd |  |-  ( ph -> ( X \ { Z } ) = Y ) | 
						
							| 39 | 38 | prodeq1d |  |-  ( ph -> prod_ k e. ( X \ { Z } ) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = prod_ k e. Y ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) | 
						
							| 40 | 8 | eqcomi |  |-  prod_ k e. Y ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = G | 
						
							| 41 | 40 | a1i |  |-  ( ph -> prod_ k e. Y ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = G ) | 
						
							| 42 | 39 41 | eqtrd |  |-  ( ph -> prod_ k e. ( X \ { Z } ) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = G ) | 
						
							| 43 | 42 | oveq2d |  |-  ( ph -> ( ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) x. prod_ k e. ( X \ { Z } ) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) = ( ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) x. G ) ) | 
						
							| 44 | 6 18 | ffvelcdmd |  |-  ( ph -> ( A ` Z ) e. RR ) | 
						
							| 45 | 7 18 | ffvelcdmd |  |-  ( ph -> ( B ` Z ) e. RR ) | 
						
							| 46 |  | volicore |  |-  ( ( ( A ` Z ) e. RR /\ ( B ` Z ) e. RR ) -> ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) e. RR ) | 
						
							| 47 | 44 45 46 | syl2anc |  |-  ( ph -> ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) e. RR ) | 
						
							| 48 | 47 | recnd |  |-  ( ph -> ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) e. CC ) | 
						
							| 49 | 6 | adantr |  |-  ( ( ph /\ k e. Y ) -> A : X --> RR ) | 
						
							| 50 |  | ssun1 |  |-  Y C_ ( Y u. { Z } ) | 
						
							| 51 | 50 5 | sseqtrri |  |-  Y C_ X | 
						
							| 52 |  | id |  |-  ( k e. Y -> k e. Y ) | 
						
							| 53 | 51 52 | sselid |  |-  ( k e. Y -> k e. X ) | 
						
							| 54 | 53 | adantl |  |-  ( ( ph /\ k e. Y ) -> k e. X ) | 
						
							| 55 | 49 54 | ffvelcdmd |  |-  ( ( ph /\ k e. Y ) -> ( A ` k ) e. RR ) | 
						
							| 56 | 7 | adantr |  |-  ( ( ph /\ k e. Y ) -> B : X --> RR ) | 
						
							| 57 | 56 54 | ffvelcdmd |  |-  ( ( ph /\ k e. Y ) -> ( B ` k ) e. RR ) | 
						
							| 58 | 55 57 23 | syl2anc |  |-  ( ( ph /\ k e. Y ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) | 
						
							| 59 | 2 58 | fprodrecl |  |-  ( ph -> prod_ k e. Y ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) | 
						
							| 60 | 8 59 | eqeltrid |  |-  ( ph -> G e. RR ) | 
						
							| 61 | 60 | recnd |  |-  ( ph -> G e. CC ) | 
						
							| 62 | 48 61 | mulcomd |  |-  ( ph -> ( ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) x. G ) = ( G x. ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) ) ) | 
						
							| 63 | 43 62 | eqtrd |  |-  ( ph -> ( ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) x. prod_ k e. ( X \ { Z } ) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) = ( G x. ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) ) ) | 
						
							| 64 | 20 31 63 | 3eqtrd |  |-  ( ph -> ( A ( L ` X ) B ) = ( G x. ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) ) ) |