| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoiprodp1.l |
|- L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) |
| 2 |
|
hoiprodp1.y |
|- ( ph -> Y e. Fin ) |
| 3 |
|
hoiprodp1.3 |
|- ( ph -> Z e. V ) |
| 4 |
|
hoiprodp1.z |
|- ( ph -> -. Z e. Y ) |
| 5 |
|
hoiprodp1.x |
|- X = ( Y u. { Z } ) |
| 6 |
|
hoiprodp1.a |
|- ( ph -> A : X --> RR ) |
| 7 |
|
hoiprodp1.b |
|- ( ph -> B : X --> RR ) |
| 8 |
|
hoiprodp1.g |
|- G = prod_ k e. Y ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) |
| 9 |
|
snfi |
|- { Z } e. Fin |
| 10 |
9
|
a1i |
|- ( ph -> { Z } e. Fin ) |
| 11 |
|
unfi |
|- ( ( Y e. Fin /\ { Z } e. Fin ) -> ( Y u. { Z } ) e. Fin ) |
| 12 |
2 10 11
|
syl2anc |
|- ( ph -> ( Y u. { Z } ) e. Fin ) |
| 13 |
5 12
|
eqeltrid |
|- ( ph -> X e. Fin ) |
| 14 |
|
snidg |
|- ( Z e. V -> Z e. { Z } ) |
| 15 |
3 14
|
syl |
|- ( ph -> Z e. { Z } ) |
| 16 |
|
elun2 |
|- ( Z e. { Z } -> Z e. ( Y u. { Z } ) ) |
| 17 |
15 16
|
syl |
|- ( ph -> Z e. ( Y u. { Z } ) ) |
| 18 |
17 5
|
eleqtrrdi |
|- ( ph -> Z e. X ) |
| 19 |
18
|
ne0d |
|- ( ph -> X =/= (/) ) |
| 20 |
1 13 19 6 7
|
hoidmvn0val |
|- ( ph -> ( A ( L ` X ) B ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
| 21 |
6
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) |
| 22 |
7
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) |
| 23 |
|
volicore |
|- ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) |
| 24 |
21 22 23
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) |
| 25 |
24
|
recnd |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. CC ) |
| 26 |
|
fveq2 |
|- ( k = Z -> ( A ` k ) = ( A ` Z ) ) |
| 27 |
|
fveq2 |
|- ( k = Z -> ( B ` k ) = ( B ` Z ) ) |
| 28 |
26 27
|
oveq12d |
|- ( k = Z -> ( ( A ` k ) [,) ( B ` k ) ) = ( ( A ` Z ) [,) ( B ` Z ) ) ) |
| 29 |
28
|
fveq2d |
|- ( k = Z -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) ) |
| 30 |
29
|
adantl |
|- ( ( ph /\ k = Z ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) ) |
| 31 |
13 25 18 30
|
fprodsplit1 |
|- ( ph -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) x. prod_ k e. ( X \ { Z } ) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) ) |
| 32 |
5
|
difeq1i |
|- ( X \ { Z } ) = ( ( Y u. { Z } ) \ { Z } ) |
| 33 |
32
|
a1i |
|- ( ph -> ( X \ { Z } ) = ( ( Y u. { Z } ) \ { Z } ) ) |
| 34 |
|
difun2 |
|- ( ( Y u. { Z } ) \ { Z } ) = ( Y \ { Z } ) |
| 35 |
34
|
a1i |
|- ( ph -> ( ( Y u. { Z } ) \ { Z } ) = ( Y \ { Z } ) ) |
| 36 |
|
difsn |
|- ( -. Z e. Y -> ( Y \ { Z } ) = Y ) |
| 37 |
4 36
|
syl |
|- ( ph -> ( Y \ { Z } ) = Y ) |
| 38 |
33 35 37
|
3eqtrd |
|- ( ph -> ( X \ { Z } ) = Y ) |
| 39 |
38
|
prodeq1d |
|- ( ph -> prod_ k e. ( X \ { Z } ) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = prod_ k e. Y ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
| 40 |
8
|
eqcomi |
|- prod_ k e. Y ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = G |
| 41 |
40
|
a1i |
|- ( ph -> prod_ k e. Y ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = G ) |
| 42 |
39 41
|
eqtrd |
|- ( ph -> prod_ k e. ( X \ { Z } ) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = G ) |
| 43 |
42
|
oveq2d |
|- ( ph -> ( ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) x. prod_ k e. ( X \ { Z } ) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) = ( ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) x. G ) ) |
| 44 |
6 18
|
ffvelcdmd |
|- ( ph -> ( A ` Z ) e. RR ) |
| 45 |
7 18
|
ffvelcdmd |
|- ( ph -> ( B ` Z ) e. RR ) |
| 46 |
|
volicore |
|- ( ( ( A ` Z ) e. RR /\ ( B ` Z ) e. RR ) -> ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) e. RR ) |
| 47 |
44 45 46
|
syl2anc |
|- ( ph -> ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) e. RR ) |
| 48 |
47
|
recnd |
|- ( ph -> ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) e. CC ) |
| 49 |
6
|
adantr |
|- ( ( ph /\ k e. Y ) -> A : X --> RR ) |
| 50 |
|
ssun1 |
|- Y C_ ( Y u. { Z } ) |
| 51 |
50 5
|
sseqtrri |
|- Y C_ X |
| 52 |
|
id |
|- ( k e. Y -> k e. Y ) |
| 53 |
51 52
|
sselid |
|- ( k e. Y -> k e. X ) |
| 54 |
53
|
adantl |
|- ( ( ph /\ k e. Y ) -> k e. X ) |
| 55 |
49 54
|
ffvelcdmd |
|- ( ( ph /\ k e. Y ) -> ( A ` k ) e. RR ) |
| 56 |
7
|
adantr |
|- ( ( ph /\ k e. Y ) -> B : X --> RR ) |
| 57 |
56 54
|
ffvelcdmd |
|- ( ( ph /\ k e. Y ) -> ( B ` k ) e. RR ) |
| 58 |
55 57 23
|
syl2anc |
|- ( ( ph /\ k e. Y ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) |
| 59 |
2 58
|
fprodrecl |
|- ( ph -> prod_ k e. Y ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) |
| 60 |
8 59
|
eqeltrid |
|- ( ph -> G e. RR ) |
| 61 |
60
|
recnd |
|- ( ph -> G e. CC ) |
| 62 |
48 61
|
mulcomd |
|- ( ph -> ( ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) x. G ) = ( G x. ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) ) ) |
| 63 |
43 62
|
eqtrd |
|- ( ph -> ( ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) x. prod_ k e. ( X \ { Z } ) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) = ( G x. ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) ) ) |
| 64 |
20 31 63
|
3eqtrd |
|- ( ph -> ( A ( L ` X ) B ) = ( G x. ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) ) ) |