Step |
Hyp |
Ref |
Expression |
1 |
|
hoiprodp1.l |
|- L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) |
2 |
|
hoiprodp1.y |
|- ( ph -> Y e. Fin ) |
3 |
|
hoiprodp1.3 |
|- ( ph -> Z e. V ) |
4 |
|
hoiprodp1.z |
|- ( ph -> -. Z e. Y ) |
5 |
|
hoiprodp1.x |
|- X = ( Y u. { Z } ) |
6 |
|
hoiprodp1.a |
|- ( ph -> A : X --> RR ) |
7 |
|
hoiprodp1.b |
|- ( ph -> B : X --> RR ) |
8 |
|
hoiprodp1.g |
|- G = prod_ k e. Y ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) |
9 |
|
snfi |
|- { Z } e. Fin |
10 |
9
|
a1i |
|- ( ph -> { Z } e. Fin ) |
11 |
|
unfi |
|- ( ( Y e. Fin /\ { Z } e. Fin ) -> ( Y u. { Z } ) e. Fin ) |
12 |
2 10 11
|
syl2anc |
|- ( ph -> ( Y u. { Z } ) e. Fin ) |
13 |
5 12
|
eqeltrid |
|- ( ph -> X e. Fin ) |
14 |
|
snidg |
|- ( Z e. V -> Z e. { Z } ) |
15 |
3 14
|
syl |
|- ( ph -> Z e. { Z } ) |
16 |
|
elun2 |
|- ( Z e. { Z } -> Z e. ( Y u. { Z } ) ) |
17 |
15 16
|
syl |
|- ( ph -> Z e. ( Y u. { Z } ) ) |
18 |
17 5
|
eleqtrrdi |
|- ( ph -> Z e. X ) |
19 |
18
|
ne0d |
|- ( ph -> X =/= (/) ) |
20 |
1 13 19 6 7
|
hoidmvn0val |
|- ( ph -> ( A ( L ` X ) B ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
21 |
6
|
ffvelrnda |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) |
22 |
7
|
ffvelrnda |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) |
23 |
|
volicore |
|- ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) |
24 |
21 22 23
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) |
25 |
24
|
recnd |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. CC ) |
26 |
|
fveq2 |
|- ( k = Z -> ( A ` k ) = ( A ` Z ) ) |
27 |
|
fveq2 |
|- ( k = Z -> ( B ` k ) = ( B ` Z ) ) |
28 |
26 27
|
oveq12d |
|- ( k = Z -> ( ( A ` k ) [,) ( B ` k ) ) = ( ( A ` Z ) [,) ( B ` Z ) ) ) |
29 |
28
|
fveq2d |
|- ( k = Z -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) ) |
30 |
29
|
adantl |
|- ( ( ph /\ k = Z ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) ) |
31 |
13 25 18 30
|
fprodsplit1 |
|- ( ph -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) x. prod_ k e. ( X \ { Z } ) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) ) |
32 |
5
|
difeq1i |
|- ( X \ { Z } ) = ( ( Y u. { Z } ) \ { Z } ) |
33 |
32
|
a1i |
|- ( ph -> ( X \ { Z } ) = ( ( Y u. { Z } ) \ { Z } ) ) |
34 |
|
difun2 |
|- ( ( Y u. { Z } ) \ { Z } ) = ( Y \ { Z } ) |
35 |
34
|
a1i |
|- ( ph -> ( ( Y u. { Z } ) \ { Z } ) = ( Y \ { Z } ) ) |
36 |
|
difsn |
|- ( -. Z e. Y -> ( Y \ { Z } ) = Y ) |
37 |
4 36
|
syl |
|- ( ph -> ( Y \ { Z } ) = Y ) |
38 |
33 35 37
|
3eqtrd |
|- ( ph -> ( X \ { Z } ) = Y ) |
39 |
38
|
prodeq1d |
|- ( ph -> prod_ k e. ( X \ { Z } ) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = prod_ k e. Y ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
40 |
8
|
eqcomi |
|- prod_ k e. Y ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = G |
41 |
40
|
a1i |
|- ( ph -> prod_ k e. Y ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = G ) |
42 |
39 41
|
eqtrd |
|- ( ph -> prod_ k e. ( X \ { Z } ) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = G ) |
43 |
42
|
oveq2d |
|- ( ph -> ( ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) x. prod_ k e. ( X \ { Z } ) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) = ( ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) x. G ) ) |
44 |
6 18
|
ffvelrnd |
|- ( ph -> ( A ` Z ) e. RR ) |
45 |
7 18
|
ffvelrnd |
|- ( ph -> ( B ` Z ) e. RR ) |
46 |
|
volicore |
|- ( ( ( A ` Z ) e. RR /\ ( B ` Z ) e. RR ) -> ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) e. RR ) |
47 |
44 45 46
|
syl2anc |
|- ( ph -> ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) e. RR ) |
48 |
47
|
recnd |
|- ( ph -> ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) e. CC ) |
49 |
6
|
adantr |
|- ( ( ph /\ k e. Y ) -> A : X --> RR ) |
50 |
|
ssun1 |
|- Y C_ ( Y u. { Z } ) |
51 |
50 5
|
sseqtrri |
|- Y C_ X |
52 |
|
id |
|- ( k e. Y -> k e. Y ) |
53 |
51 52
|
sselid |
|- ( k e. Y -> k e. X ) |
54 |
53
|
adantl |
|- ( ( ph /\ k e. Y ) -> k e. X ) |
55 |
49 54
|
ffvelrnd |
|- ( ( ph /\ k e. Y ) -> ( A ` k ) e. RR ) |
56 |
7
|
adantr |
|- ( ( ph /\ k e. Y ) -> B : X --> RR ) |
57 |
56 54
|
ffvelrnd |
|- ( ( ph /\ k e. Y ) -> ( B ` k ) e. RR ) |
58 |
55 57 23
|
syl2anc |
|- ( ( ph /\ k e. Y ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) |
59 |
2 58
|
fprodrecl |
|- ( ph -> prod_ k e. Y ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) |
60 |
8 59
|
eqeltrid |
|- ( ph -> G e. RR ) |
61 |
60
|
recnd |
|- ( ph -> G e. CC ) |
62 |
48 61
|
mulcomd |
|- ( ph -> ( ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) x. G ) = ( G x. ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) ) ) |
63 |
43 62
|
eqtrd |
|- ( ph -> ( ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) x. prod_ k e. ( X \ { Z } ) ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) = ( G x. ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) ) ) |
64 |
20 31 63
|
3eqtrd |
|- ( ph -> ( A ( L ` X ) B ) = ( G x. ( vol ` ( ( A ` Z ) [,) ( B ` Z ) ) ) ) ) |