Metamath Proof Explorer


Theorem sge0hsphoire

Description: If the generalized sum of dimensional volumes of n-dimensional half-open intervals is finite, then the sum stays finite if every half-open interval is intersected with a half-space. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses sge0hsphoire.l 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) )
sge0hsphoire.f ( 𝜑𝑌 ∈ Fin )
sge0hsphoire.z ( 𝜑𝑍 ∈ ( 𝑊𝑌 ) )
sge0hsphoire.w 𝑊 = ( 𝑌 ∪ { 𝑍 } )
sge0hsphoire.c ( 𝜑𝐶 : ℕ ⟶ ( ℝ ↑m 𝑊 ) )
sge0hsphoire.d ( 𝜑𝐷 : ℕ ⟶ ( ℝ ↑m 𝑊 ) )
sge0hsphoire.r ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( 𝐷𝑗 ) ) ) ) ∈ ℝ )
sge0hsphoire.h 𝐻 = ( 𝑥 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑗𝑊 ↦ if ( 𝑗𝑌 , ( 𝑐𝑗 ) , if ( ( 𝑐𝑗 ) ≤ 𝑥 , ( 𝑐𝑗 ) , 𝑥 ) ) ) ) )
sge0hsphoire.s ( 𝜑𝑆 ∈ ℝ )
Assertion sge0hsphoire ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( ( 𝐻𝑆 ) ‘ ( 𝐷𝑗 ) ) ) ) ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 sge0hsphoire.l 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) )
2 sge0hsphoire.f ( 𝜑𝑌 ∈ Fin )
3 sge0hsphoire.z ( 𝜑𝑍 ∈ ( 𝑊𝑌 ) )
4 sge0hsphoire.w 𝑊 = ( 𝑌 ∪ { 𝑍 } )
5 sge0hsphoire.c ( 𝜑𝐶 : ℕ ⟶ ( ℝ ↑m 𝑊 ) )
6 sge0hsphoire.d ( 𝜑𝐷 : ℕ ⟶ ( ℝ ↑m 𝑊 ) )
7 sge0hsphoire.r ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( 𝐷𝑗 ) ) ) ) ∈ ℝ )
8 sge0hsphoire.h 𝐻 = ( 𝑥 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑗𝑊 ↦ if ( 𝑗𝑌 , ( 𝑐𝑗 ) , if ( ( 𝑐𝑗 ) ≤ 𝑥 , ( 𝑐𝑗 ) , 𝑥 ) ) ) ) )
9 sge0hsphoire.s ( 𝜑𝑆 ∈ ℝ )
10 nnex ℕ ∈ V
11 10 a1i ( 𝜑 → ℕ ∈ V )
12 snfi { 𝑍 } ∈ Fin
13 12 a1i ( 𝜑 → { 𝑍 } ∈ Fin )
14 unfi ( ( 𝑌 ∈ Fin ∧ { 𝑍 } ∈ Fin ) → ( 𝑌 ∪ { 𝑍 } ) ∈ Fin )
15 2 13 14 syl2anc ( 𝜑 → ( 𝑌 ∪ { 𝑍 } ) ∈ Fin )
16 4 15 eqeltrid ( 𝜑𝑊 ∈ Fin )
17 16 adantr ( ( 𝜑𝑗 ∈ ℕ ) → 𝑊 ∈ Fin )
18 5 ffvelrnda ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝐶𝑗 ) ∈ ( ℝ ↑m 𝑊 ) )
19 elmapi ( ( 𝐶𝑗 ) ∈ ( ℝ ↑m 𝑊 ) → ( 𝐶𝑗 ) : 𝑊 ⟶ ℝ )
20 18 19 syl ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝐶𝑗 ) : 𝑊 ⟶ ℝ )
21 eleq1w ( 𝑗 = → ( 𝑗𝑌𝑌 ) )
22 fveq2 ( 𝑗 = → ( 𝑐𝑗 ) = ( 𝑐 ) )
23 22 breq1d ( 𝑗 = → ( ( 𝑐𝑗 ) ≤ 𝑥 ↔ ( 𝑐 ) ≤ 𝑥 ) )
24 23 22 ifbieq1d ( 𝑗 = → if ( ( 𝑐𝑗 ) ≤ 𝑥 , ( 𝑐𝑗 ) , 𝑥 ) = if ( ( 𝑐 ) ≤ 𝑥 , ( 𝑐 ) , 𝑥 ) )
25 21 22 24 ifbieq12d ( 𝑗 = → if ( 𝑗𝑌 , ( 𝑐𝑗 ) , if ( ( 𝑐𝑗 ) ≤ 𝑥 , ( 𝑐𝑗 ) , 𝑥 ) ) = if ( 𝑌 , ( 𝑐 ) , if ( ( 𝑐 ) ≤ 𝑥 , ( 𝑐 ) , 𝑥 ) ) )
26 25 cbvmptv ( 𝑗𝑊 ↦ if ( 𝑗𝑌 , ( 𝑐𝑗 ) , if ( ( 𝑐𝑗 ) ≤ 𝑥 , ( 𝑐𝑗 ) , 𝑥 ) ) ) = ( 𝑊 ↦ if ( 𝑌 , ( 𝑐 ) , if ( ( 𝑐 ) ≤ 𝑥 , ( 𝑐 ) , 𝑥 ) ) )
27 26 mpteq2i ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑗𝑊 ↦ if ( 𝑗𝑌 , ( 𝑐𝑗 ) , if ( ( 𝑐𝑗 ) ≤ 𝑥 , ( 𝑐𝑗 ) , 𝑥 ) ) ) ) = ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑊 ↦ if ( 𝑌 , ( 𝑐 ) , if ( ( 𝑐 ) ≤ 𝑥 , ( 𝑐 ) , 𝑥 ) ) ) )
28 27 mpteq2i ( 𝑥 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑗𝑊 ↦ if ( 𝑗𝑌 , ( 𝑐𝑗 ) , if ( ( 𝑐𝑗 ) ≤ 𝑥 , ( 𝑐𝑗 ) , 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑊 ↦ if ( 𝑌 , ( 𝑐 ) , if ( ( 𝑐 ) ≤ 𝑥 , ( 𝑐 ) , 𝑥 ) ) ) ) )
29 8 28 eqtri 𝐻 = ( 𝑥 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑊 ↦ if ( 𝑌 , ( 𝑐 ) , if ( ( 𝑐 ) ≤ 𝑥 , ( 𝑐 ) , 𝑥 ) ) ) ) )
30 9 adantr ( ( 𝜑𝑗 ∈ ℕ ) → 𝑆 ∈ ℝ )
31 6 ffvelrnda ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝐷𝑗 ) ∈ ( ℝ ↑m 𝑊 ) )
32 elmapi ( ( 𝐷𝑗 ) ∈ ( ℝ ↑m 𝑊 ) → ( 𝐷𝑗 ) : 𝑊 ⟶ ℝ )
33 31 32 syl ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝐷𝑗 ) : 𝑊 ⟶ ℝ )
34 29 30 17 33 hsphoif ( ( 𝜑𝑗 ∈ ℕ ) → ( ( 𝐻𝑆 ) ‘ ( 𝐷𝑗 ) ) : 𝑊 ⟶ ℝ )
35 1 17 20 34 hoidmvcl ( ( 𝜑𝑗 ∈ ℕ ) → ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( ( 𝐻𝑆 ) ‘ ( 𝐷𝑗 ) ) ) ∈ ( 0 [,) +∞ ) )
36 eqid ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( ( 𝐻𝑆 ) ‘ ( 𝐷𝑗 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( ( 𝐻𝑆 ) ‘ ( 𝐷𝑗 ) ) ) )
37 35 36 fmptd ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( ( 𝐻𝑆 ) ‘ ( 𝐷𝑗 ) ) ) ) : ℕ ⟶ ( 0 [,) +∞ ) )
38 icossicc ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ )
39 38 a1i ( 𝜑 → ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) )
40 37 39 fssd ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( ( 𝐻𝑆 ) ‘ ( 𝐷𝑗 ) ) ) ) : ℕ ⟶ ( 0 [,] +∞ ) )
41 11 40 sge0cl ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( ( 𝐻𝑆 ) ‘ ( 𝐷𝑗 ) ) ) ) ) ∈ ( 0 [,] +∞ ) )
42 11 40 sge0xrcl ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( ( 𝐻𝑆 ) ‘ ( 𝐷𝑗 ) ) ) ) ) ∈ ℝ* )
43 pnfxr +∞ ∈ ℝ*
44 43 a1i ( 𝜑 → +∞ ∈ ℝ* )
45 7 rexrd ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( 𝐷𝑗 ) ) ) ) ∈ ℝ* )
46 nfv 𝑗 𝜑
47 38 35 sseldi ( ( 𝜑𝑗 ∈ ℕ ) → ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( ( 𝐻𝑆 ) ‘ ( 𝐷𝑗 ) ) ) ∈ ( 0 [,] +∞ ) )
48 1 17 20 33 hoidmvcl ( ( 𝜑𝑗 ∈ ℕ ) → ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( 𝐷𝑗 ) ) ∈ ( 0 [,) +∞ ) )
49 38 48 sseldi ( ( 𝜑𝑗 ∈ ℕ ) → ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( 𝐷𝑗 ) ) ∈ ( 0 [,] +∞ ) )
50 3 adantr ( ( 𝜑𝑗 ∈ ℕ ) → 𝑍 ∈ ( 𝑊𝑌 ) )
51 1 17 50 4 30 29 20 33 hsphoidmvle ( ( 𝜑𝑗 ∈ ℕ ) → ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( ( 𝐻𝑆 ) ‘ ( 𝐷𝑗 ) ) ) ≤ ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( 𝐷𝑗 ) ) )
52 46 11 47 49 51 sge0lempt ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( ( 𝐻𝑆 ) ‘ ( 𝐷𝑗 ) ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( 𝐷𝑗 ) ) ) ) )
53 7 ltpnfd ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( 𝐷𝑗 ) ) ) ) < +∞ )
54 42 45 44 52 53 xrlelttrd ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( ( 𝐻𝑆 ) ‘ ( 𝐷𝑗 ) ) ) ) ) < +∞ )
55 42 44 54 xrltned ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( ( 𝐻𝑆 ) ‘ ( 𝐷𝑗 ) ) ) ) ) ≠ +∞ )
56 ge0xrre ( ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( ( 𝐻𝑆 ) ‘ ( 𝐷𝑗 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( ( 𝐻𝑆 ) ‘ ( 𝐷𝑗 ) ) ) ) ) ≠ +∞ ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( ( 𝐻𝑆 ) ‘ ( 𝐷𝑗 ) ) ) ) ) ∈ ℝ )
57 41 55 56 syl2anc ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶𝑗 ) ( 𝐿𝑊 ) ( ( 𝐻𝑆 ) ‘ ( 𝐷𝑗 ) ) ) ) ) ∈ ℝ )