| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0hsphoire.l |
⊢ 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
| 2 |
|
sge0hsphoire.f |
⊢ ( 𝜑 → 𝑌 ∈ Fin ) |
| 3 |
|
sge0hsphoire.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑊 ∖ 𝑌 ) ) |
| 4 |
|
sge0hsphoire.w |
⊢ 𝑊 = ( 𝑌 ∪ { 𝑍 } ) |
| 5 |
|
sge0hsphoire.c |
⊢ ( 𝜑 → 𝐶 : ℕ ⟶ ( ℝ ↑m 𝑊 ) ) |
| 6 |
|
sge0hsphoire.d |
⊢ ( 𝜑 → 𝐷 : ℕ ⟶ ( ℝ ↑m 𝑊 ) ) |
| 7 |
|
sge0hsphoire.r |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 8 |
|
sge0hsphoire.h |
⊢ 𝐻 = ( 𝑥 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑗 ∈ 𝑊 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑐 ‘ 𝑗 ) , if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) ) ) ) |
| 9 |
|
sge0hsphoire.s |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 10 |
|
nnex |
⊢ ℕ ∈ V |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
| 12 |
|
snfi |
⊢ { 𝑍 } ∈ Fin |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → { 𝑍 } ∈ Fin ) |
| 14 |
|
unfi |
⊢ ( ( 𝑌 ∈ Fin ∧ { 𝑍 } ∈ Fin ) → ( 𝑌 ∪ { 𝑍 } ) ∈ Fin ) |
| 15 |
2 13 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ∪ { 𝑍 } ) ∈ Fin ) |
| 16 |
4 15
|
eqeltrid |
⊢ ( 𝜑 → 𝑊 ∈ Fin ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑊 ∈ Fin ) |
| 18 |
5
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑊 ) ) |
| 19 |
|
elmapi |
⊢ ( ( 𝐶 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑊 ) → ( 𝐶 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) |
| 20 |
18 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) |
| 21 |
|
eleq1w |
⊢ ( 𝑗 = ℎ → ( 𝑗 ∈ 𝑌 ↔ ℎ ∈ 𝑌 ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑗 = ℎ → ( 𝑐 ‘ 𝑗 ) = ( 𝑐 ‘ ℎ ) ) |
| 23 |
22
|
breq1d |
⊢ ( 𝑗 = ℎ → ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 ↔ ( 𝑐 ‘ ℎ ) ≤ 𝑥 ) ) |
| 24 |
23 22
|
ifbieq1d |
⊢ ( 𝑗 = ℎ → if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) = if ( ( 𝑐 ‘ ℎ ) ≤ 𝑥 , ( 𝑐 ‘ ℎ ) , 𝑥 ) ) |
| 25 |
21 22 24
|
ifbieq12d |
⊢ ( 𝑗 = ℎ → if ( 𝑗 ∈ 𝑌 , ( 𝑐 ‘ 𝑗 ) , if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) = if ( ℎ ∈ 𝑌 , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑥 , ( 𝑐 ‘ ℎ ) , 𝑥 ) ) ) |
| 26 |
25
|
cbvmptv |
⊢ ( 𝑗 ∈ 𝑊 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑐 ‘ 𝑗 ) , if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) ) = ( ℎ ∈ 𝑊 ↦ if ( ℎ ∈ 𝑌 , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑥 , ( 𝑐 ‘ ℎ ) , 𝑥 ) ) ) |
| 27 |
26
|
mpteq2i |
⊢ ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑗 ∈ 𝑊 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑐 ‘ 𝑗 ) , if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) ) ) = ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( ℎ ∈ 𝑊 ↦ if ( ℎ ∈ 𝑌 , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑥 , ( 𝑐 ‘ ℎ ) , 𝑥 ) ) ) ) |
| 28 |
27
|
mpteq2i |
⊢ ( 𝑥 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑗 ∈ 𝑊 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑐 ‘ 𝑗 ) , if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( ℎ ∈ 𝑊 ↦ if ( ℎ ∈ 𝑌 , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑥 , ( 𝑐 ‘ ℎ ) , 𝑥 ) ) ) ) ) |
| 29 |
8 28
|
eqtri |
⊢ 𝐻 = ( 𝑥 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( ℎ ∈ 𝑊 ↦ if ( ℎ ∈ 𝑌 , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑥 , ( 𝑐 ‘ ℎ ) , 𝑥 ) ) ) ) ) |
| 30 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑆 ∈ ℝ ) |
| 31 |
6
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑊 ) ) |
| 32 |
|
elmapi |
⊢ ( ( 𝐷 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑊 ) → ( 𝐷 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) |
| 33 |
31 32
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) |
| 34 |
29 30 17 33
|
hsphoif |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) : 𝑊 ⟶ ℝ ) |
| 35 |
1 17 20 34
|
hoidmvcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ∈ ( 0 [,) +∞ ) ) |
| 36 |
|
eqid |
⊢ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) |
| 37 |
35 36
|
fmptd |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 38 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
| 39 |
38
|
a1i |
⊢ ( 𝜑 → ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) |
| 40 |
37 39
|
fssd |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) : ℕ ⟶ ( 0 [,] +∞ ) ) |
| 41 |
11 40
|
sge0cl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 42 |
11 40
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ* ) |
| 43 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 44 |
43
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 45 |
7
|
rexrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ* ) |
| 46 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
| 47 |
38 35
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 48 |
1 17 20 33
|
hoidmvcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ∈ ( 0 [,) +∞ ) ) |
| 49 |
38 48
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ∈ ( 0 [,] +∞ ) ) |
| 50 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑍 ∈ ( 𝑊 ∖ 𝑌 ) ) |
| 51 |
1 17 50 4 30 29 20 33
|
hsphoidmvle |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ≤ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) |
| 52 |
46 11 47 49 51
|
sge0lempt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
| 53 |
7
|
ltpnfd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) < +∞ ) |
| 54 |
42 45 44 52 53
|
xrlelttrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) < +∞ ) |
| 55 |
42 44 54
|
xrltned |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ≠ +∞ ) |
| 56 |
|
ge0xrre |
⊢ ( ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ≠ +∞ ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ ) |
| 57 |
41 55 56
|
syl2anc |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ ) |