| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0hsphoire.l | ⊢ 𝐿  =  ( 𝑥  ∈  Fin  ↦  ( 𝑎  ∈  ( ℝ  ↑m  𝑥 ) ,  𝑏  ∈  ( ℝ  ↑m  𝑥 )  ↦  if ( 𝑥  =  ∅ ,  0 ,  ∏ 𝑘  ∈  𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 2 |  | sge0hsphoire.f | ⊢ ( 𝜑  →  𝑌  ∈  Fin ) | 
						
							| 3 |  | sge0hsphoire.z | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑊  ∖  𝑌 ) ) | 
						
							| 4 |  | sge0hsphoire.w | ⊢ 𝑊  =  ( 𝑌  ∪  { 𝑍 } ) | 
						
							| 5 |  | sge0hsphoire.c | ⊢ ( 𝜑  →  𝐶 : ℕ ⟶ ( ℝ  ↑m  𝑊 ) ) | 
						
							| 6 |  | sge0hsphoire.d | ⊢ ( 𝜑  →  𝐷 : ℕ ⟶ ( ℝ  ↑m  𝑊 ) ) | 
						
							| 7 |  | sge0hsphoire.r | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) )  ∈  ℝ ) | 
						
							| 8 |  | sge0hsphoire.h | ⊢ 𝐻  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( 𝑗  ∈  𝑊  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) ) ) ) ) | 
						
							| 9 |  | sge0hsphoire.s | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 10 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ℕ  ∈  V ) | 
						
							| 12 |  | snfi | ⊢ { 𝑍 }  ∈  Fin | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  { 𝑍 }  ∈  Fin ) | 
						
							| 14 |  | unfi | ⊢ ( ( 𝑌  ∈  Fin  ∧  { 𝑍 }  ∈  Fin )  →  ( 𝑌  ∪  { 𝑍 } )  ∈  Fin ) | 
						
							| 15 | 2 13 14 | syl2anc | ⊢ ( 𝜑  →  ( 𝑌  ∪  { 𝑍 } )  ∈  Fin ) | 
						
							| 16 | 4 15 | eqeltrid | ⊢ ( 𝜑  →  𝑊  ∈  Fin ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑊  ∈  Fin ) | 
						
							| 18 | 5 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐶 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑊 ) ) | 
						
							| 19 |  | elmapi | ⊢ ( ( 𝐶 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑊 )  →  ( 𝐶 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐶 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 21 |  | eleq1w | ⊢ ( 𝑗  =  ℎ  →  ( 𝑗  ∈  𝑌  ↔  ℎ  ∈  𝑌 ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑗  =  ℎ  →  ( 𝑐 ‘ 𝑗 )  =  ( 𝑐 ‘ ℎ ) ) | 
						
							| 23 | 22 | breq1d | ⊢ ( 𝑗  =  ℎ  →  ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥  ↔  ( 𝑐 ‘ ℎ )  ≤  𝑥 ) ) | 
						
							| 24 | 23 22 | ifbieq1d | ⊢ ( 𝑗  =  ℎ  →  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 )  =  if ( ( 𝑐 ‘ ℎ )  ≤  𝑥 ,  ( 𝑐 ‘ ℎ ) ,  𝑥 ) ) | 
						
							| 25 | 21 22 24 | ifbieq12d | ⊢ ( 𝑗  =  ℎ  →  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) )  =  if ( ℎ  ∈  𝑌 ,  ( 𝑐 ‘ ℎ ) ,  if ( ( 𝑐 ‘ ℎ )  ≤  𝑥 ,  ( 𝑐 ‘ ℎ ) ,  𝑥 ) ) ) | 
						
							| 26 | 25 | cbvmptv | ⊢ ( 𝑗  ∈  𝑊  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) ) )  =  ( ℎ  ∈  𝑊  ↦  if ( ℎ  ∈  𝑌 ,  ( 𝑐 ‘ ℎ ) ,  if ( ( 𝑐 ‘ ℎ )  ≤  𝑥 ,  ( 𝑐 ‘ ℎ ) ,  𝑥 ) ) ) | 
						
							| 27 | 26 | mpteq2i | ⊢ ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( 𝑗  ∈  𝑊  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) ) ) )  =  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( ℎ  ∈  𝑊  ↦  if ( ℎ  ∈  𝑌 ,  ( 𝑐 ‘ ℎ ) ,  if ( ( 𝑐 ‘ ℎ )  ≤  𝑥 ,  ( 𝑐 ‘ ℎ ) ,  𝑥 ) ) ) ) | 
						
							| 28 | 27 | mpteq2i | ⊢ ( 𝑥  ∈  ℝ  ↦  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( 𝑗  ∈  𝑊  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) ) ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( ℎ  ∈  𝑊  ↦  if ( ℎ  ∈  𝑌 ,  ( 𝑐 ‘ ℎ ) ,  if ( ( 𝑐 ‘ ℎ )  ≤  𝑥 ,  ( 𝑐 ‘ ℎ ) ,  𝑥 ) ) ) ) ) | 
						
							| 29 | 8 28 | eqtri | ⊢ 𝐻  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( ℎ  ∈  𝑊  ↦  if ( ℎ  ∈  𝑌 ,  ( 𝑐 ‘ ℎ ) ,  if ( ( 𝑐 ‘ ℎ )  ≤  𝑥 ,  ( 𝑐 ‘ ℎ ) ,  𝑥 ) ) ) ) ) | 
						
							| 30 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑆  ∈  ℝ ) | 
						
							| 31 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐷 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑊 ) ) | 
						
							| 32 |  | elmapi | ⊢ ( ( 𝐷 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑊 )  →  ( 𝐷 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 33 | 31 32 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐷 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 34 | 29 30 17 33 | hsphoif | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) : 𝑊 ⟶ ℝ ) | 
						
							| 35 | 1 17 20 34 | hoidmvcl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 36 |  | eqid | ⊢ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 37 | 35 36 | fmptd | ⊢ ( 𝜑  →  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 38 |  | icossicc | ⊢ ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) | 
						
							| 39 | 38 | a1i | ⊢ ( 𝜑  →  ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) ) | 
						
							| 40 | 37 39 | fssd | ⊢ ( 𝜑  →  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) : ℕ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 41 | 11 40 | sge0cl | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 42 | 11 40 | sge0xrcl | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ* ) | 
						
							| 43 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 44 | 43 | a1i | ⊢ ( 𝜑  →  +∞  ∈  ℝ* ) | 
						
							| 45 | 7 | rexrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) )  ∈  ℝ* ) | 
						
							| 46 |  | nfv | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 47 | 38 35 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 48 | 1 17 20 33 | hoidmvcl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 49 | 38 48 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 50 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑍  ∈  ( 𝑊  ∖  𝑌 ) ) | 
						
							| 51 | 1 17 50 4 30 29 20 33 | hsphoidmvle | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ≤  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 52 | 46 11 47 49 51 | sge0lempt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) | 
						
							| 53 | 7 | ltpnfd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) )  <  +∞ ) | 
						
							| 54 | 42 45 44 52 53 | xrlelttrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  <  +∞ ) | 
						
							| 55 | 42 44 54 | xrltned | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ≠  +∞ ) | 
						
							| 56 |  | ge0xrre | ⊢ ( ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ( 0 [,] +∞ )  ∧  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ≠  +∞ )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ ) | 
						
							| 57 | 41 55 56 | syl2anc | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ ) |