Step |
Hyp |
Ref |
Expression |
1 |
|
sge0hsphoire.l |
|
2 |
|
sge0hsphoire.f |
|
3 |
|
sge0hsphoire.z |
|
4 |
|
sge0hsphoire.w |
|
5 |
|
sge0hsphoire.c |
|
6 |
|
sge0hsphoire.d |
|
7 |
|
sge0hsphoire.r |
|
8 |
|
sge0hsphoire.h |
|
9 |
|
sge0hsphoire.s |
|
10 |
|
nnex |
|
11 |
10
|
a1i |
|
12 |
|
snfi |
|
13 |
12
|
a1i |
|
14 |
|
unfi |
|
15 |
2 13 14
|
syl2anc |
|
16 |
4 15
|
eqeltrid |
|
17 |
16
|
adantr |
|
18 |
5
|
ffvelrnda |
|
19 |
|
elmapi |
|
20 |
18 19
|
syl |
|
21 |
|
eleq1w |
|
22 |
|
fveq2 |
|
23 |
22
|
breq1d |
|
24 |
23 22
|
ifbieq1d |
|
25 |
21 22 24
|
ifbieq12d |
|
26 |
25
|
cbvmptv |
|
27 |
26
|
mpteq2i |
|
28 |
27
|
mpteq2i |
|
29 |
8 28
|
eqtri |
|
30 |
9
|
adantr |
|
31 |
6
|
ffvelrnda |
|
32 |
|
elmapi |
|
33 |
31 32
|
syl |
|
34 |
29 30 17 33
|
hsphoif |
|
35 |
1 17 20 34
|
hoidmvcl |
|
36 |
|
eqid |
|
37 |
35 36
|
fmptd |
|
38 |
|
icossicc |
|
39 |
38
|
a1i |
|
40 |
37 39
|
fssd |
|
41 |
11 40
|
sge0cl |
|
42 |
11 40
|
sge0xrcl |
|
43 |
|
pnfxr |
|
44 |
43
|
a1i |
|
45 |
7
|
rexrd |
|
46 |
|
nfv |
|
47 |
38 35
|
sselid |
|
48 |
1 17 20 33
|
hoidmvcl |
|
49 |
38 48
|
sselid |
|
50 |
3
|
adantr |
|
51 |
1 17 50 4 30 29 20 33
|
hsphoidmvle |
|
52 |
46 11 47 49 51
|
sge0lempt |
|
53 |
7
|
ltpnfd |
|
54 |
42 45 44 52 53
|
xrlelttrd |
|
55 |
42 44 54
|
xrltned |
|
56 |
|
ge0xrre |
|
57 |
41 55 56
|
syl2anc |
|