Metamath Proof Explorer


Theorem sge0hsphoire

Description: If the generalized sum of dimensional volumes of n-dimensional half-open intervals is finite, then the sum stays finite if every half-open interval is intersected with a half-space. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses sge0hsphoire.l L = x Fin a x , b x if x = 0 k x vol a k b k
sge0hsphoire.f φ Y Fin
sge0hsphoire.z φ Z W Y
sge0hsphoire.w W = Y Z
sge0hsphoire.c φ C : W
sge0hsphoire.d φ D : W
sge0hsphoire.r φ sum^ j C j L W D j
sge0hsphoire.h H = x c W j W if j Y c j if c j x c j x
sge0hsphoire.s φ S
Assertion sge0hsphoire φ sum^ j C j L W H S D j

Proof

Step Hyp Ref Expression
1 sge0hsphoire.l L = x Fin a x , b x if x = 0 k x vol a k b k
2 sge0hsphoire.f φ Y Fin
3 sge0hsphoire.z φ Z W Y
4 sge0hsphoire.w W = Y Z
5 sge0hsphoire.c φ C : W
6 sge0hsphoire.d φ D : W
7 sge0hsphoire.r φ sum^ j C j L W D j
8 sge0hsphoire.h H = x c W j W if j Y c j if c j x c j x
9 sge0hsphoire.s φ S
10 nnex V
11 10 a1i φ V
12 snfi Z Fin
13 12 a1i φ Z Fin
14 unfi Y Fin Z Fin Y Z Fin
15 2 13 14 syl2anc φ Y Z Fin
16 4 15 eqeltrid φ W Fin
17 16 adantr φ j W Fin
18 5 ffvelrnda φ j C j W
19 elmapi C j W C j : W
20 18 19 syl φ j C j : W
21 eleq1w j = h j Y h Y
22 fveq2 j = h c j = c h
23 22 breq1d j = h c j x c h x
24 23 22 ifbieq1d j = h if c j x c j x = if c h x c h x
25 21 22 24 ifbieq12d j = h if j Y c j if c j x c j x = if h Y c h if c h x c h x
26 25 cbvmptv j W if j Y c j if c j x c j x = h W if h Y c h if c h x c h x
27 26 mpteq2i c W j W if j Y c j if c j x c j x = c W h W if h Y c h if c h x c h x
28 27 mpteq2i x c W j W if j Y c j if c j x c j x = x c W h W if h Y c h if c h x c h x
29 8 28 eqtri H = x c W h W if h Y c h if c h x c h x
30 9 adantr φ j S
31 6 ffvelrnda φ j D j W
32 elmapi D j W D j : W
33 31 32 syl φ j D j : W
34 29 30 17 33 hsphoif φ j H S D j : W
35 1 17 20 34 hoidmvcl φ j C j L W H S D j 0 +∞
36 eqid j C j L W H S D j = j C j L W H S D j
37 35 36 fmptd φ j C j L W H S D j : 0 +∞
38 icossicc 0 +∞ 0 +∞
39 38 a1i φ 0 +∞ 0 +∞
40 37 39 fssd φ j C j L W H S D j : 0 +∞
41 11 40 sge0cl φ sum^ j C j L W H S D j 0 +∞
42 11 40 sge0xrcl φ sum^ j C j L W H S D j *
43 pnfxr +∞ *
44 43 a1i φ +∞ *
45 7 rexrd φ sum^ j C j L W D j *
46 nfv j φ
47 38 35 sseldi φ j C j L W H S D j 0 +∞
48 1 17 20 33 hoidmvcl φ j C j L W D j 0 +∞
49 38 48 sseldi φ j C j L W D j 0 +∞
50 3 adantr φ j Z W Y
51 1 17 50 4 30 29 20 33 hsphoidmvle φ j C j L W H S D j C j L W D j
52 46 11 47 49 51 sge0lempt φ sum^ j C j L W H S D j sum^ j C j L W D j
53 7 ltpnfd φ sum^ j C j L W D j < +∞
54 42 45 44 52 53 xrlelttrd φ sum^ j C j L W H S D j < +∞
55 42 44 54 xrltned φ sum^ j C j L W H S D j +∞
56 ge0xrre sum^ j C j L W H S D j 0 +∞ sum^ j C j L W H S D j +∞ sum^ j C j L W H S D j
57 41 55 56 syl2anc φ sum^ j C j L W H S D j