Metamath Proof Explorer


Theorem sge0hsphoire

Description: If the generalized sum of dimensional volumes of n-dimensional half-open intervals is finite, then the sum stays finite if every half-open interval is intersected with a half-space. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses sge0hsphoire.l L=xFinax,bxifx=0kxvolakbk
sge0hsphoire.f φYFin
sge0hsphoire.z φZWY
sge0hsphoire.w W=YZ
sge0hsphoire.c φC:W
sge0hsphoire.d φD:W
sge0hsphoire.r φsum^jCjLWDj
sge0hsphoire.h H=xcWjWifjYcjifcjxcjx
sge0hsphoire.s φS
Assertion sge0hsphoire φsum^jCjLWHSDj

Proof

Step Hyp Ref Expression
1 sge0hsphoire.l L=xFinax,bxifx=0kxvolakbk
2 sge0hsphoire.f φYFin
3 sge0hsphoire.z φZWY
4 sge0hsphoire.w W=YZ
5 sge0hsphoire.c φC:W
6 sge0hsphoire.d φD:W
7 sge0hsphoire.r φsum^jCjLWDj
8 sge0hsphoire.h H=xcWjWifjYcjifcjxcjx
9 sge0hsphoire.s φS
10 nnex V
11 10 a1i φV
12 snfi ZFin
13 12 a1i φZFin
14 unfi YFinZFinYZFin
15 2 13 14 syl2anc φYZFin
16 4 15 eqeltrid φWFin
17 16 adantr φjWFin
18 5 ffvelcdmda φjCjW
19 elmapi CjWCj:W
20 18 19 syl φjCj:W
21 eleq1w j=hjYhY
22 fveq2 j=hcj=ch
23 22 breq1d j=hcjxchx
24 23 22 ifbieq1d j=hifcjxcjx=ifchxchx
25 21 22 24 ifbieq12d j=hifjYcjifcjxcjx=ifhYchifchxchx
26 25 cbvmptv jWifjYcjifcjxcjx=hWifhYchifchxchx
27 26 mpteq2i cWjWifjYcjifcjxcjx=cWhWifhYchifchxchx
28 27 mpteq2i xcWjWifjYcjifcjxcjx=xcWhWifhYchifchxchx
29 8 28 eqtri H=xcWhWifhYchifchxchx
30 9 adantr φjS
31 6 ffvelcdmda φjDjW
32 elmapi DjWDj:W
33 31 32 syl φjDj:W
34 29 30 17 33 hsphoif φjHSDj:W
35 1 17 20 34 hoidmvcl φjCjLWHSDj0+∞
36 eqid jCjLWHSDj=jCjLWHSDj
37 35 36 fmptd φjCjLWHSDj:0+∞
38 icossicc 0+∞0+∞
39 38 a1i φ0+∞0+∞
40 37 39 fssd φjCjLWHSDj:0+∞
41 11 40 sge0cl φsum^jCjLWHSDj0+∞
42 11 40 sge0xrcl φsum^jCjLWHSDj*
43 pnfxr +∞*
44 43 a1i φ+∞*
45 7 rexrd φsum^jCjLWDj*
46 nfv jφ
47 38 35 sselid φjCjLWHSDj0+∞
48 1 17 20 33 hoidmvcl φjCjLWDj0+∞
49 38 48 sselid φjCjLWDj0+∞
50 3 adantr φjZWY
51 1 17 50 4 30 29 20 33 hsphoidmvle φjCjLWHSDjCjLWDj
52 46 11 47 49 51 sge0lempt φsum^jCjLWHSDjsum^jCjLWDj
53 7 ltpnfd φsum^jCjLWDj<+∞
54 42 45 44 52 53 xrlelttrd φsum^jCjLWHSDj<+∞
55 42 44 54 xrltned φsum^jCjLWHSDj+∞
56 ge0xrre sum^jCjLWHSDj0+∞sum^jCjLWHSDj+∞sum^jCjLWHSDj
57 41 55 56 syl2anc φsum^jCjLWHSDj