Metamath Proof Explorer


Theorem hoidmvval0b

Description: The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoidmvval0b.l L = x Fin a x , b x if x = 0 k x vol a k b k
hoidmvval0b.x φ X Fin
hoidmvval0b.a φ A : X
Assertion hoidmvval0b φ A L X A = 0

Proof

Step Hyp Ref Expression
1 hoidmvval0b.l L = x Fin a x , b x if x = 0 k x vol a k b k
2 hoidmvval0b.x φ X Fin
3 hoidmvval0b.a φ A : X
4 fveq2 X = L X = L
5 4 oveqd X = A L X A = A L A
6 5 adantl φ X = A L X A = A L A
7 3 adantr φ X = A : X
8 feq2 X = A : X A :
9 8 adantl φ X = A : X A :
10 7 9 mpbid φ X = A :
11 1 10 10 hoidmv0val φ X = A L A = 0
12 6 11 eqtrd φ X = A L X A = 0
13 nfv j φ ¬ X =
14 2 adantr φ ¬ X = X Fin
15 3 adantr φ ¬ X = A : X
16 neqne ¬ X = X
17 n0 X j j X
18 16 17 sylib ¬ X = j j X
19 18 adantl φ ¬ X = j j X
20 simpr φ j X j X
21 3 ffvelrnda φ j X A j
22 eqidd φ j X A j = A j
23 21 22 eqled φ j X A j A j
24 20 23 jca φ j X j X A j A j
25 24 ex φ j X j X A j A j
26 25 adantr φ ¬ X = j X j X A j A j
27 26 eximdv φ ¬ X = j j X j j X A j A j
28 19 27 mpd φ ¬ X = j j X A j A j
29 df-rex j X A j A j j j X A j A j
30 28 29 sylibr φ ¬ X = j X A j A j
31 13 1 14 15 15 30 hoidmvval0 φ ¬ X = A L X A = 0
32 12 31 pm2.61dan φ A L X A = 0