Step |
Hyp |
Ref |
Expression |
1 |
|
hoidmvval0b.l |
⊢ 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
2 |
|
hoidmvval0b.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
3 |
|
hoidmvval0b.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
4 |
|
fveq2 |
⊢ ( 𝑋 = ∅ → ( 𝐿 ‘ 𝑋 ) = ( 𝐿 ‘ ∅ ) ) |
5 |
4
|
oveqd |
⊢ ( 𝑋 = ∅ → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐴 ) = ( 𝐴 ( 𝐿 ‘ ∅ ) 𝐴 ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐴 ) = ( 𝐴 ( 𝐿 ‘ ∅ ) 𝐴 ) ) |
7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐴 : 𝑋 ⟶ ℝ ) |
8 |
|
feq2 |
⊢ ( 𝑋 = ∅ → ( 𝐴 : 𝑋 ⟶ ℝ ↔ 𝐴 : ∅ ⟶ ℝ ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 𝐴 : 𝑋 ⟶ ℝ ↔ 𝐴 : ∅ ⟶ ℝ ) ) |
10 |
7 9
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐴 : ∅ ⟶ ℝ ) |
11 |
1 10 10
|
hoidmv0val |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 𝐴 ( 𝐿 ‘ ∅ ) 𝐴 ) = 0 ) |
12 |
6 11
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐴 ) = 0 ) |
13 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ ¬ 𝑋 = ∅ ) |
14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ∈ Fin ) |
15 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝐴 : 𝑋 ⟶ ℝ ) |
16 |
|
neqne |
⊢ ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ ) |
17 |
|
n0 |
⊢ ( 𝑋 ≠ ∅ ↔ ∃ 𝑗 𝑗 ∈ 𝑋 ) |
18 |
16 17
|
sylib |
⊢ ( ¬ 𝑋 = ∅ → ∃ 𝑗 𝑗 ∈ 𝑋 ) |
19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∃ 𝑗 𝑗 ∈ 𝑋 ) |
20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → 𝑗 ∈ 𝑋 ) |
21 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑗 ) ∈ ℝ ) |
22 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑗 ) = ( 𝐴 ‘ 𝑗 ) ) |
23 |
21 22
|
eqled |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) |
24 |
20 23
|
jca |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( 𝑗 ∈ 𝑋 ∧ ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) ) |
25 |
24
|
ex |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑋 → ( 𝑗 ∈ 𝑋 ∧ ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( 𝑗 ∈ 𝑋 → ( 𝑗 ∈ 𝑋 ∧ ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) ) ) |
27 |
26
|
eximdv |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( ∃ 𝑗 𝑗 ∈ 𝑋 → ∃ 𝑗 ( 𝑗 ∈ 𝑋 ∧ ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) ) ) |
28 |
19 27
|
mpd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∃ 𝑗 ( 𝑗 ∈ 𝑋 ∧ ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) ) |
29 |
|
df-rex |
⊢ ( ∃ 𝑗 ∈ 𝑋 ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ↔ ∃ 𝑗 ( 𝑗 ∈ 𝑋 ∧ ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) ) |
30 |
28 29
|
sylibr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∃ 𝑗 ∈ 𝑋 ( 𝐴 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) |
31 |
13 1 14 15 15 30
|
hoidmvval0 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐴 ) = 0 ) |
32 |
12 31
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐴 ) = 0 ) |