| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoidmvval0b.l | ⊢ 𝐿  =  ( 𝑥  ∈  Fin  ↦  ( 𝑎  ∈  ( ℝ  ↑m  𝑥 ) ,  𝑏  ∈  ( ℝ  ↑m  𝑥 )  ↦  if ( 𝑥  =  ∅ ,  0 ,  ∏ 𝑘  ∈  𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 2 |  | hoidmvval0b.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 3 |  | hoidmvval0b.a | ⊢ ( 𝜑  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑋  =  ∅  →  ( 𝐿 ‘ 𝑋 )  =  ( 𝐿 ‘ ∅ ) ) | 
						
							| 5 | 4 | oveqd | ⊢ ( 𝑋  =  ∅  →  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐴 )  =  ( 𝐴 ( 𝐿 ‘ ∅ ) 𝐴 ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐴 )  =  ( 𝐴 ( 𝐿 ‘ ∅ ) 𝐴 ) ) | 
						
							| 7 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 8 |  | feq2 | ⊢ ( 𝑋  =  ∅  →  ( 𝐴 : 𝑋 ⟶ ℝ  ↔  𝐴 : ∅ ⟶ ℝ ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ( 𝐴 : 𝑋 ⟶ ℝ  ↔  𝐴 : ∅ ⟶ ℝ ) ) | 
						
							| 10 | 7 9 | mpbid | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  𝐴 : ∅ ⟶ ℝ ) | 
						
							| 11 | 1 10 10 | hoidmv0val | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ( 𝐴 ( 𝐿 ‘ ∅ ) 𝐴 )  =  0 ) | 
						
							| 12 | 6 11 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐴 )  =  0 ) | 
						
							| 13 |  | nfv | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  ¬  𝑋  =  ∅ ) | 
						
							| 14 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  𝑋  ∈  Fin ) | 
						
							| 15 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 16 |  | neqne | ⊢ ( ¬  𝑋  =  ∅  →  𝑋  ≠  ∅ ) | 
						
							| 17 |  | n0 | ⊢ ( 𝑋  ≠  ∅  ↔  ∃ 𝑗 𝑗  ∈  𝑋 ) | 
						
							| 18 | 16 17 | sylib | ⊢ ( ¬  𝑋  =  ∅  →  ∃ 𝑗 𝑗  ∈  𝑋 ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  ∃ 𝑗 𝑗  ∈  𝑋 ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  𝑗  ∈  𝑋 ) | 
						
							| 21 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 22 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑗 )  =  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 23 | 21 22 | eqled | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 24 | 20 23 | jca | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ( 𝑗  ∈  𝑋  ∧  ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) ) ) | 
						
							| 25 | 24 | ex | ⊢ ( 𝜑  →  ( 𝑗  ∈  𝑋  →  ( 𝑗  ∈  𝑋  ∧  ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) ) ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  ( 𝑗  ∈  𝑋  →  ( 𝑗  ∈  𝑋  ∧  ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) ) ) ) | 
						
							| 27 | 26 | eximdv | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  ( ∃ 𝑗 𝑗  ∈  𝑋  →  ∃ 𝑗 ( 𝑗  ∈  𝑋  ∧  ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) ) ) ) | 
						
							| 28 | 19 27 | mpd | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  ∃ 𝑗 ( 𝑗  ∈  𝑋  ∧  ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) ) ) | 
						
							| 29 |  | df-rex | ⊢ ( ∃ 𝑗  ∈  𝑋 ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 )  ↔  ∃ 𝑗 ( 𝑗  ∈  𝑋  ∧  ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) ) ) | 
						
							| 30 | 28 29 | sylibr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  ∃ 𝑗  ∈  𝑋 ( 𝐴 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 31 | 13 1 14 15 15 30 | hoidmvval0 | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐴 )  =  0 ) | 
						
							| 32 | 12 31 | pm2.61dan | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐴 )  =  0 ) |