| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoidmvval0.p | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 2 |  | hoidmvval0.l | ⊢ 𝐿  =  ( 𝑥  ∈  Fin  ↦  ( 𝑎  ∈  ( ℝ  ↑m  𝑥 ) ,  𝑏  ∈  ( ℝ  ↑m  𝑥 )  ↦  if ( 𝑥  =  ∅ ,  0 ,  ∏ 𝑘  ∈  𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 3 |  | hoidmvval0.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 4 |  | hoidmvval0.a | ⊢ ( 𝜑  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 5 |  | hoidmvval0.b | ⊢ ( 𝜑  →  𝐵 : 𝑋 ⟶ ℝ ) | 
						
							| 6 |  | hoidmvval0.j | ⊢ ( 𝜑  →  ∃ 𝑗  ∈  𝑋 ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 7 |  | id | ⊢ ( 𝜑  →  𝜑 ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝐵 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 10 | 8 9 | breq12d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝐵 ‘ 𝑘 )  ≤  ( 𝐴 ‘ 𝑘 )  ↔  ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) ) ) | 
						
							| 11 | 10 | cbvrexvw | ⊢ ( ∃ 𝑘  ∈  𝑋 ( 𝐵 ‘ 𝑘 )  ≤  ( 𝐴 ‘ 𝑘 )  ↔  ∃ 𝑗  ∈  𝑋 ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 12 |  | rexn0 | ⊢ ( ∃ 𝑘  ∈  𝑋 ( 𝐵 ‘ 𝑘 )  ≤  ( 𝐴 ‘ 𝑘 )  →  𝑋  ≠  ∅ ) | 
						
							| 13 | 11 12 | sylbir | ⊢ ( ∃ 𝑗  ∈  𝑋 ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 )  →  𝑋  ≠  ∅ ) | 
						
							| 14 | 6 13 | syl | ⊢ ( 𝜑  →  𝑋  ≠  ∅ ) | 
						
							| 15 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  𝑋  ∈  Fin ) | 
						
							| 16 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  𝑋  ≠  ∅ ) | 
						
							| 17 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 18 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  𝐵 : 𝑋 ⟶ ℝ ) | 
						
							| 19 | 2 15 16 17 18 | hoidmvn0val | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 )  =  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 20 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ∃ 𝑗  ∈  𝑋 ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 21 |  | nfv | ⊢ Ⅎ 𝑗 𝑋  ≠  ∅ | 
						
							| 22 | 1 21 | nfan | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑋  ≠  ∅ ) | 
						
							| 23 |  | nfv | ⊢ Ⅎ 𝑗 ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  0 | 
						
							| 24 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 25 |  | nfcv | ⊢ Ⅎ 𝑘 ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) ) | 
						
							| 26 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) )  →  𝑋  ∈  Fin ) | 
						
							| 27 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 28 | 5 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 29 |  | volicore | ⊢ ( ( ( 𝐴 ‘ 𝑘 )  ∈  ℝ  ∧  ( 𝐵 ‘ 𝑘 )  ∈  ℝ )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 30 | 27 28 29 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 31 | 30 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℂ ) | 
						
							| 32 | 31 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) )  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℂ ) | 
						
							| 33 | 9 8 | oveq12d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  =  ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( 𝑘  =  𝑗  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) ) ) | 
						
							| 35 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) )  →  𝑗  ∈  𝑋 ) | 
						
							| 36 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 37 | 36 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) )  →  ( 𝐴 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 38 | 5 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 39 | 38 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) )  →  ( 𝐵 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 40 |  | volico | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℝ  ∧  ( 𝐵 ‘ 𝑗 )  ∈  ℝ )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) )  =  if ( ( 𝐴 ‘ 𝑗 )  <  ( 𝐵 ‘ 𝑗 ) ,  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ,  0 ) ) | 
						
							| 41 | 37 39 40 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) )  =  if ( ( 𝐴 ‘ 𝑗 )  <  ( 𝐵 ‘ 𝑗 ) ,  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ,  0 ) ) | 
						
							| 42 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) )  →  ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 43 | 39 37 | lenltd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) )  →  ( ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 )  ↔  ¬  ( 𝐴 ‘ 𝑗 )  <  ( 𝐵 ‘ 𝑗 ) ) ) | 
						
							| 44 | 42 43 | mpbid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) )  →  ¬  ( 𝐴 ‘ 𝑗 )  <  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 45 | 44 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) )  →  if ( ( 𝐴 ‘ 𝑗 )  <  ( 𝐵 ‘ 𝑗 ) ,  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ,  0 )  =  0 ) | 
						
							| 46 | 41 45 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) )  =  0 ) | 
						
							| 47 | 24 25 26 32 34 35 46 | fprod0 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) )  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  0 ) | 
						
							| 48 | 47 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝑋  ≠  ∅ )  ∧  𝑗  ∈  𝑋  ∧  ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 ) )  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  0 ) | 
						
							| 49 | 48 | 3exp | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ( 𝑗  ∈  𝑋  →  ( ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 )  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  0 ) ) ) | 
						
							| 50 | 22 23 49 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ( ∃ 𝑗  ∈  𝑋 ( 𝐵 ‘ 𝑗 )  ≤  ( 𝐴 ‘ 𝑗 )  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  0 ) ) | 
						
							| 51 | 20 50 | mpd | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  0 ) | 
						
							| 52 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  0  =  0 ) | 
						
							| 53 | 19 51 52 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 )  =  0 ) | 
						
							| 54 | 7 14 53 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 )  =  0 ) |