| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoidmvval0.p |  |-  F/ j ph | 
						
							| 2 |  | hoidmvval0.l |  |-  L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) | 
						
							| 3 |  | hoidmvval0.x |  |-  ( ph -> X e. Fin ) | 
						
							| 4 |  | hoidmvval0.a |  |-  ( ph -> A : X --> RR ) | 
						
							| 5 |  | hoidmvval0.b |  |-  ( ph -> B : X --> RR ) | 
						
							| 6 |  | hoidmvval0.j |  |-  ( ph -> E. j e. X ( B ` j ) <_ ( A ` j ) ) | 
						
							| 7 |  | id |  |-  ( ph -> ph ) | 
						
							| 8 |  | fveq2 |  |-  ( k = j -> ( B ` k ) = ( B ` j ) ) | 
						
							| 9 |  | fveq2 |  |-  ( k = j -> ( A ` k ) = ( A ` j ) ) | 
						
							| 10 | 8 9 | breq12d |  |-  ( k = j -> ( ( B ` k ) <_ ( A ` k ) <-> ( B ` j ) <_ ( A ` j ) ) ) | 
						
							| 11 | 10 | cbvrexvw |  |-  ( E. k e. X ( B ` k ) <_ ( A ` k ) <-> E. j e. X ( B ` j ) <_ ( A ` j ) ) | 
						
							| 12 |  | rexn0 |  |-  ( E. k e. X ( B ` k ) <_ ( A ` k ) -> X =/= (/) ) | 
						
							| 13 | 11 12 | sylbir |  |-  ( E. j e. X ( B ` j ) <_ ( A ` j ) -> X =/= (/) ) | 
						
							| 14 | 6 13 | syl |  |-  ( ph -> X =/= (/) ) | 
						
							| 15 | 3 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> X e. Fin ) | 
						
							| 16 |  | simpr |  |-  ( ( ph /\ X =/= (/) ) -> X =/= (/) ) | 
						
							| 17 | 4 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> A : X --> RR ) | 
						
							| 18 | 5 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> B : X --> RR ) | 
						
							| 19 | 2 15 16 17 18 | hoidmvn0val |  |-  ( ( ph /\ X =/= (/) ) -> ( A ( L ` X ) B ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) | 
						
							| 20 | 6 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> E. j e. X ( B ` j ) <_ ( A ` j ) ) | 
						
							| 21 |  | nfv |  |-  F/ j X =/= (/) | 
						
							| 22 | 1 21 | nfan |  |-  F/ j ( ph /\ X =/= (/) ) | 
						
							| 23 |  | nfv |  |-  F/ j prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = 0 | 
						
							| 24 |  | nfv |  |-  F/ k ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) | 
						
							| 25 |  | nfcv |  |-  F/_ k ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) | 
						
							| 26 | 3 | 3ad2ant1 |  |-  ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) -> X e. Fin ) | 
						
							| 27 | 4 | ffvelcdmda |  |-  ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) | 
						
							| 28 | 5 | ffvelcdmda |  |-  ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) | 
						
							| 29 |  | volicore |  |-  ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) | 
						
							| 30 | 27 28 29 | syl2anc |  |-  ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) | 
						
							| 31 | 30 | recnd |  |-  ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. CC ) | 
						
							| 32 | 31 | 3ad2antl1 |  |-  ( ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. CC ) | 
						
							| 33 | 9 8 | oveq12d |  |-  ( k = j -> ( ( A ` k ) [,) ( B ` k ) ) = ( ( A ` j ) [,) ( B ` j ) ) ) | 
						
							| 34 | 33 | fveq2d |  |-  ( k = j -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) ) | 
						
							| 35 |  | simp2 |  |-  ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) -> j e. X ) | 
						
							| 36 | 4 | ffvelcdmda |  |-  ( ( ph /\ j e. X ) -> ( A ` j ) e. RR ) | 
						
							| 37 | 36 | 3adant3 |  |-  ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) -> ( A ` j ) e. RR ) | 
						
							| 38 | 5 | ffvelcdmda |  |-  ( ( ph /\ j e. X ) -> ( B ` j ) e. RR ) | 
						
							| 39 | 38 | 3adant3 |  |-  ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) -> ( B ` j ) e. RR ) | 
						
							| 40 |  | volico |  |-  ( ( ( A ` j ) e. RR /\ ( B ` j ) e. RR ) -> ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) = if ( ( A ` j ) < ( B ` j ) , ( ( B ` j ) - ( A ` j ) ) , 0 ) ) | 
						
							| 41 | 37 39 40 | syl2anc |  |-  ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) -> ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) = if ( ( A ` j ) < ( B ` j ) , ( ( B ` j ) - ( A ` j ) ) , 0 ) ) | 
						
							| 42 |  | simp3 |  |-  ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) -> ( B ` j ) <_ ( A ` j ) ) | 
						
							| 43 | 39 37 | lenltd |  |-  ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) -> ( ( B ` j ) <_ ( A ` j ) <-> -. ( A ` j ) < ( B ` j ) ) ) | 
						
							| 44 | 42 43 | mpbid |  |-  ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) -> -. ( A ` j ) < ( B ` j ) ) | 
						
							| 45 | 44 | iffalsed |  |-  ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) -> if ( ( A ` j ) < ( B ` j ) , ( ( B ` j ) - ( A ` j ) ) , 0 ) = 0 ) | 
						
							| 46 | 41 45 | eqtrd |  |-  ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) -> ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) = 0 ) | 
						
							| 47 | 24 25 26 32 34 35 46 | fprod0 |  |-  ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = 0 ) | 
						
							| 48 | 47 | 3adant1r |  |-  ( ( ( ph /\ X =/= (/) ) /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = 0 ) | 
						
							| 49 | 48 | 3exp |  |-  ( ( ph /\ X =/= (/) ) -> ( j e. X -> ( ( B ` j ) <_ ( A ` j ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = 0 ) ) ) | 
						
							| 50 | 22 23 49 | rexlimd |  |-  ( ( ph /\ X =/= (/) ) -> ( E. j e. X ( B ` j ) <_ ( A ` j ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = 0 ) ) | 
						
							| 51 | 20 50 | mpd |  |-  ( ( ph /\ X =/= (/) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = 0 ) | 
						
							| 52 |  | eqidd |  |-  ( ( ph /\ X =/= (/) ) -> 0 = 0 ) | 
						
							| 53 | 19 51 52 | 3eqtrd |  |-  ( ( ph /\ X =/= (/) ) -> ( A ( L ` X ) B ) = 0 ) | 
						
							| 54 | 7 14 53 | syl2anc |  |-  ( ph -> ( A ( L ` X ) B ) = 0 ) |