| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoidmv1lelem1.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | hoidmv1lelem1.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | hoidmv1lelem1.l | ⊢ ( 𝜑  →  𝐴  <  𝐵 ) | 
						
							| 4 |  | hoidmv1lelem1.c | ⊢ ( 𝜑  →  𝐶 : ℕ ⟶ ℝ ) | 
						
							| 5 |  | hoidmv1lelem1.d | ⊢ ( 𝜑  →  𝐷 : ℕ ⟶ ℝ ) | 
						
							| 6 |  | hoidmv1lelem1.r | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ ) | 
						
							| 7 |  | hoidmv1lelem1.u | ⊢ 𝑈  =  { 𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∣  ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) ) } | 
						
							| 8 |  | hoidmv1lelem1.s | ⊢ 𝑆  =  sup ( 𝑈 ,  ℝ ,   <  ) | 
						
							| 9 |  | ssrab2 | ⊢ { 𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∣  ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) ) }  ⊆  ( 𝐴 [,] 𝐵 ) | 
						
							| 10 | 7 9 | eqsstri | ⊢ 𝑈  ⊆  ( 𝐴 [,] 𝐵 ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  𝑈  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 12 | 1 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 13 | 2 | rexrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 14 | 1 2 3 | ltled | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 15 |  | lbicc2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  ≤  𝐵 )  →  𝐴  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 16 | 12 13 14 15 | syl3anc | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 17 | 1 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 18 | 17 | subidd | ⊢ ( 𝜑  →  ( 𝐴  −  𝐴 )  =  0 ) | 
						
							| 19 |  | nfv | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 20 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 21 | 20 | a1i | ⊢ ( 𝜑  →  ℕ  ∈  V ) | 
						
							| 22 |  | volf | ⊢ vol : dom  vol ⟶ ( 0 [,] +∞ ) | 
						
							| 23 | 22 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  vol : dom  vol ⟶ ( 0 [,] +∞ ) ) | 
						
							| 24 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐶 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 25 | 5 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐷 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 26 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝐴  ∈  ℝ ) | 
						
							| 27 | 25 26 | ifcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐴 )  ∈  ℝ ) | 
						
							| 28 | 27 | rexrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐴 )  ∈  ℝ* ) | 
						
							| 29 |  | icombl | ⊢ ( ( ( 𝐶 ‘ 𝑗 )  ∈  ℝ  ∧  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐴 )  ∈  ℝ* )  →  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐴 ) )  ∈  dom  vol ) | 
						
							| 30 | 24 28 29 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐴 ) )  ∈  dom  vol ) | 
						
							| 31 | 23 30 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐴 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 32 | 19 21 31 | sge0ge0mpt | ⊢ ( 𝜑  →  0  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐴 ) ) ) ) ) ) | 
						
							| 33 | 18 32 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝐴  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐴 ) ) ) ) ) ) | 
						
							| 34 | 16 33 | jca | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( 𝐴 [,] 𝐵 )  ∧  ( 𝐴  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐴 ) ) ) ) ) ) ) | 
						
							| 35 |  | oveq1 | ⊢ ( 𝑧  =  𝐴  →  ( 𝑧  −  𝐴 )  =  ( 𝐴  −  𝐴 ) ) | 
						
							| 36 |  | breq2 | ⊢ ( 𝑧  =  𝐴  →  ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧  ↔  ( 𝐷 ‘ 𝑗 )  ≤  𝐴 ) ) | 
						
							| 37 |  | id | ⊢ ( 𝑧  =  𝐴  →  𝑧  =  𝐴 ) | 
						
							| 38 | 36 37 | ifbieq2d | ⊢ ( 𝑧  =  𝐴  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  =  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐴 ) ) | 
						
							| 39 | 38 | oveq2d | ⊢ ( 𝑧  =  𝐴  →  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) )  =  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐴 ) ) ) | 
						
							| 40 | 39 | fveq2d | ⊢ ( 𝑧  =  𝐴  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) )  =  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐴 ) ) ) ) | 
						
							| 41 | 40 | mpteq2dv | ⊢ ( 𝑧  =  𝐴  →  ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐴 ) ) ) ) ) | 
						
							| 42 | 41 | fveq2d | ⊢ ( 𝑧  =  𝐴  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) )  =  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐴 ) ) ) ) ) ) | 
						
							| 43 | 35 42 | breq12d | ⊢ ( 𝑧  =  𝐴  →  ( ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) )  ↔  ( 𝐴  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐴 ) ) ) ) ) ) ) | 
						
							| 44 | 43 | elrab | ⊢ ( 𝐴  ∈  { 𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∣  ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) ) }  ↔  ( 𝐴  ∈  ( 𝐴 [,] 𝐵 )  ∧  ( 𝐴  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐴 ) ) ) ) ) ) ) | 
						
							| 45 | 34 44 | sylibr | ⊢ ( 𝜑  →  𝐴  ∈  { 𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∣  ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) ) } ) | 
						
							| 46 | 45 7 | eleqtrrdi | ⊢ ( 𝜑  →  𝐴  ∈  𝑈 ) | 
						
							| 47 | 46 | ne0d | ⊢ ( 𝜑  →  𝑈  ≠  ∅ ) | 
						
							| 48 | 1 2 11 47 | supicc | ⊢ ( 𝜑  →  sup ( 𝑈 ,  ℝ ,   <  )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 49 | 8 48 | eqeltrid | ⊢ ( 𝜑  →  𝑆  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 50 | 8 | a1i | ⊢ ( 𝜑  →  𝑆  =  sup ( 𝑈 ,  ℝ ,   <  ) ) | 
						
							| 51 |  | nfv | ⊢ Ⅎ 𝑧 𝜑 | 
						
							| 52 | 1 2 | iccssred | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 53 | 11 52 | sstrd | ⊢ ( 𝜑  →  𝑈  ⊆  ℝ ) | 
						
							| 54 | 53 | sselda | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  𝑧  ∈  ℝ ) | 
						
							| 55 |  | nfv | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑧  ∈  𝑈 ) | 
						
							| 56 | 20 | a1i | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ℕ  ∈  V ) | 
						
							| 57 | 22 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  vol : dom  vol ⟶ ( 0 [,] +∞ ) ) | 
						
							| 58 | 24 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( 𝐶 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 59 | 25 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( 𝐷 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 60 | 54 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  𝑧  ∈  ℝ ) | 
						
							| 61 | 59 60 | ifcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  ∈  ℝ ) | 
						
							| 62 | 61 | rexrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  ∈  ℝ* ) | 
						
							| 63 |  | icombl | ⊢ ( ( ( 𝐶 ‘ 𝑗 )  ∈  ℝ  ∧  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  ∈  ℝ* )  →  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) )  ∈  dom  vol ) | 
						
							| 64 | 58 62 63 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) )  ∈  dom  vol ) | 
						
							| 65 | 57 64 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 66 | 55 56 65 | sge0xrclmpt | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) )  ∈  ℝ* ) | 
						
							| 67 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 68 | 67 | a1i | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  +∞  ∈  ℝ* ) | 
						
							| 69 | 6 | rexrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ* ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ* ) | 
						
							| 71 | 25 | rexrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐷 ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 72 |  | icombl | ⊢ ( ( ( 𝐶 ‘ 𝑗 )  ∈  ℝ  ∧  ( 𝐷 ‘ 𝑗 )  ∈  ℝ* )  →  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) )  ∈  dom  vol ) | 
						
							| 73 | 24 71 72 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) )  ∈  dom  vol ) | 
						
							| 74 | 23 73 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 75 | 74 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 76 | 73 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) )  ∈  dom  vol ) | 
						
							| 77 | 24 | rexrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐶 ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 78 | 77 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( 𝐶 ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 79 | 71 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( 𝐷 ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 80 | 24 | leidd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐶 ‘ 𝑗 )  ≤  ( 𝐶 ‘ 𝑗 ) ) | 
						
							| 81 | 80 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( 𝐶 ‘ 𝑗 )  ≤  ( 𝐶 ‘ 𝑗 ) ) | 
						
							| 82 |  | min1 | ⊢ ( ( ( 𝐷 ‘ 𝑗 )  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  ≤  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 83 | 59 60 82 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  ≤  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 84 |  | icossico | ⊢ ( ( ( ( 𝐶 ‘ 𝑗 )  ∈  ℝ*  ∧  ( 𝐷 ‘ 𝑗 )  ∈  ℝ* )  ∧  ( ( 𝐶 ‘ 𝑗 )  ≤  ( 𝐶 ‘ 𝑗 )  ∧  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  ≤  ( 𝐷 ‘ 𝑗 ) ) )  →  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) )  ⊆  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 85 | 78 79 81 83 84 | syl22anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) )  ⊆  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 86 |  | volss | ⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) )  ∈  dom  vol  ∧  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) )  ∈  dom  vol  ∧  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) )  ⊆  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) )  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) )  ≤  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 87 | 64 76 85 86 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) )  ≤  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 88 | 55 56 65 75 87 | sge0lempt | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 89 | 6 | ltpnfd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) )  <  +∞ ) | 
						
							| 90 | 89 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) )  <  +∞ ) | 
						
							| 91 | 66 70 68 88 90 | xrlelttrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) )  <  +∞ ) | 
						
							| 92 | 66 68 91 | xrltned | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) )  ≠  +∞ ) | 
						
							| 93 | 92 | neneqd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ¬  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) )  =  +∞ ) | 
						
							| 94 |  | eqid | ⊢ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) | 
						
							| 95 | 65 94 | fmptd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) : ℕ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 96 | 56 95 | sge0repnf | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) )  ∈  ℝ  ↔  ¬  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) )  =  +∞ ) ) | 
						
							| 97 | 93 96 | mpbird | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) )  ∈  ℝ ) | 
						
							| 98 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  𝐴  ∈  ℝ ) | 
						
							| 99 | 97 98 | readdcld | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) )  +  𝐴 )  ∈  ℝ ) | 
						
							| 100 | 52 49 | sseldd | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 101 | 100 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑆  ∈  ℝ ) | 
						
							| 102 | 25 101 | ifcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 )  ∈  ℝ ) | 
						
							| 103 | 102 | rexrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 )  ∈  ℝ* ) | 
						
							| 104 |  | icombl | ⊢ ( ( ( 𝐶 ‘ 𝑗 )  ∈  ℝ  ∧  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 )  ∈  ℝ* )  →  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) )  ∈  dom  vol ) | 
						
							| 105 | 24 103 104 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) )  ∈  dom  vol ) | 
						
							| 106 | 23 105 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 107 | 19 21 106 | sge0xrclmpt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  ∈  ℝ* ) | 
						
							| 108 | 67 | a1i | ⊢ ( 𝜑  →  +∞  ∈  ℝ* ) | 
						
							| 109 |  | min1 | ⊢ ( ( ( 𝐷 ‘ 𝑗 )  ∈  ℝ  ∧  𝑆  ∈  ℝ )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 )  ≤  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 110 | 25 101 109 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 )  ≤  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 111 |  | icossico | ⊢ ( ( ( ( 𝐶 ‘ 𝑗 )  ∈  ℝ*  ∧  ( 𝐷 ‘ 𝑗 )  ∈  ℝ* )  ∧  ( ( 𝐶 ‘ 𝑗 )  ≤  ( 𝐶 ‘ 𝑗 )  ∧  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 )  ≤  ( 𝐷 ‘ 𝑗 ) ) )  →  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) )  ⊆  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 112 | 77 71 80 110 111 | syl22anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) )  ⊆  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 113 |  | volss | ⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) )  ∈  dom  vol  ∧  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) )  ∈  dom  vol  ∧  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) )  ⊆  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) )  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) )  ≤  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 114 | 105 73 112 113 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) )  ≤  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 115 | 19 21 106 74 114 | sge0lempt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 116 | 107 69 108 115 89 | xrlelttrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  <  +∞ ) | 
						
							| 117 | 107 108 116 | xrltned | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  ≠  +∞ ) | 
						
							| 118 | 117 | neneqd | ⊢ ( 𝜑  →  ¬  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  =  +∞ ) | 
						
							| 119 |  | eqid | ⊢ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) | 
						
							| 120 | 106 119 | fmptd | ⊢ ( 𝜑  →  ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) : ℕ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 121 | 21 120 | sge0repnf | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  ∈  ℝ  ↔  ¬  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  =  +∞ ) ) | 
						
							| 122 | 118 121 | mpbird | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  ∈  ℝ ) | 
						
							| 123 | 122 1 | readdcld | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  +  𝐴 )  ∈  ℝ ) | 
						
							| 124 | 123 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  +  𝐴 )  ∈  ℝ ) | 
						
							| 125 | 7 | eleq2i | ⊢ ( 𝑧  ∈  𝑈  ↔  𝑧  ∈  { 𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∣  ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) ) } ) | 
						
							| 126 | 125 | biimpi | ⊢ ( 𝑧  ∈  𝑈  →  𝑧  ∈  { 𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∣  ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) ) } ) | 
						
							| 127 | 126 | adantl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  𝑧  ∈  { 𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∣  ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) ) } ) | 
						
							| 128 |  | rabid | ⊢ ( 𝑧  ∈  { 𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∣  ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) ) }  ↔  ( 𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∧  ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) ) ) ) | 
						
							| 129 | 127 128 | sylib | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( 𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∧  ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) ) ) ) | 
						
							| 130 | 129 | simprd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) ) ) | 
						
							| 131 | 54 98 97 | lesubaddd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) )  ↔  𝑧  ≤  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) )  +  𝐴 ) ) ) | 
						
							| 132 | 130 131 | mpbid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  𝑧  ≤  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) )  +  𝐴 ) ) | 
						
							| 133 | 122 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  ∈  ℝ ) | 
						
							| 134 | 106 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 135 | 105 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) )  ∈  dom  vol ) | 
						
							| 136 | 103 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 )  ∈  ℝ* ) | 
						
							| 137 | 61 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  ∈  ℝ ) | 
						
							| 138 |  | eqidd | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  →  ( 𝐷 ‘ 𝑗 )  =  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 139 |  | iftrue | ⊢ ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  =  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 140 | 139 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  =  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 141 | 59 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  →  ( 𝐷 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 142 | 60 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  →  𝑧  ∈  ℝ ) | 
						
							| 143 | 100 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  →  𝑆  ∈  ℝ ) | 
						
							| 144 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  →  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ) | 
						
							| 145 | 53 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  𝑈  ⊆  ℝ ) | 
						
							| 146 | 47 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  𝑈  ≠  ∅ ) | 
						
							| 147 | 1 2 | jca | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ ) ) | 
						
							| 148 |  | iccsupr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝑈  ⊆  ( 𝐴 [,] 𝐵 )  ∧  𝐴  ∈  𝑈 )  →  ( 𝑈  ⊆  ℝ  ∧  𝑈  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑈 𝑦  ≤  𝑥 ) ) | 
						
							| 149 | 147 11 46 148 | syl3anc | ⊢ ( 𝜑  →  ( 𝑈  ⊆  ℝ  ∧  𝑈  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑈 𝑦  ≤  𝑥 ) ) | 
						
							| 150 | 149 | simp3d | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑈 𝑦  ≤  𝑥 ) | 
						
							| 151 | 150 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑈 𝑦  ≤  𝑥 ) | 
						
							| 152 | 127 125 | sylibr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  𝑧  ∈  𝑈 ) | 
						
							| 153 |  | suprub | ⊢ ( ( ( 𝑈  ⊆  ℝ  ∧  𝑈  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑈 𝑦  ≤  𝑥 )  ∧  𝑧  ∈  𝑈 )  →  𝑧  ≤  sup ( 𝑈 ,  ℝ ,   <  ) ) | 
						
							| 154 | 145 146 151 152 153 | syl31anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  𝑧  ≤  sup ( 𝑈 ,  ℝ ,   <  ) ) | 
						
							| 155 | 154 8 | breqtrrdi | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  𝑧  ≤  𝑆 ) | 
						
							| 156 | 155 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  →  𝑧  ≤  𝑆 ) | 
						
							| 157 | 141 142 143 144 156 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  →  ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ) | 
						
							| 158 | 157 | iftrued | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 )  =  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 159 | 138 140 158 | 3eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  =  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) | 
						
							| 160 | 137 159 | eqled | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  ≤  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) | 
						
							| 161 | 60 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  →  𝑧  ∈  ℝ ) | 
						
							| 162 | 59 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  →  ( 𝐷 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 163 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  →  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ) | 
						
							| 164 | 161 162 | ltnled | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  →  ( 𝑧  <  ( 𝐷 ‘ 𝑗 )  ↔  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ) ) | 
						
							| 165 | 163 164 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  →  𝑧  <  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 166 | 161 162 165 | ltled | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  →  𝑧  ≤  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 167 | 166 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  ∧  ( 𝐷 ‘ 𝑗 )  ≤  𝑆 )  →  𝑧  ≤  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 168 |  | iffalse | ⊢ ( ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑧  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  =  𝑧 ) | 
						
							| 169 | 168 | ad2antlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  ∧  ( 𝐷 ‘ 𝑗 )  ≤  𝑆 )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  =  𝑧 ) | 
						
							| 170 |  | iftrue | ⊢ ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 )  =  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 171 | 170 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  ∧  ( 𝐷 ‘ 𝑗 )  ≤  𝑆 )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 )  =  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 172 | 169 171 | breq12d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  ∧  ( 𝐷 ‘ 𝑗 )  ≤  𝑆 )  →  ( if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  ≤  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 )  ↔  𝑧  ≤  ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 173 | 167 172 | mpbird | ⊢ ( ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  ∧  ( 𝐷 ‘ 𝑗 )  ≤  𝑆 )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  ≤  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) | 
						
							| 174 | 155 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  ∧  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑆 )  →  𝑧  ≤  𝑆 ) | 
						
							| 175 | 168 | ad2antlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  ∧  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑆 )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  =  𝑧 ) | 
						
							| 176 |  | iffalse | ⊢ ( ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑆  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 )  =  𝑆 ) | 
						
							| 177 | 176 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  ∧  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑆 )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 )  =  𝑆 ) | 
						
							| 178 | 175 177 | breq12d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  ∧  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑆 )  →  ( if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  ≤  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 )  ↔  𝑧  ≤  𝑆 ) ) | 
						
							| 179 | 174 178 | mpbird | ⊢ ( ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  ∧  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑆 )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  ≤  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) | 
						
							| 180 | 173 179 | pm2.61dan | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  ∧  ¬  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  ≤  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) | 
						
							| 181 | 160 180 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  ≤  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) | 
						
							| 182 |  | icossico | ⊢ ( ( ( ( 𝐶 ‘ 𝑗 )  ∈  ℝ*  ∧  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 )  ∈  ℝ* )  ∧  ( ( 𝐶 ‘ 𝑗 )  ≤  ( 𝐶 ‘ 𝑗 )  ∧  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  ≤  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) )  →  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) )  ⊆  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) | 
						
							| 183 | 78 136 81 181 182 | syl22anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) )  ⊆  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) | 
						
							| 184 |  | volss | ⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) )  ∈  dom  vol  ∧  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) )  ∈  dom  vol  ∧  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) )  ⊆  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) )  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) )  ≤  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) | 
						
							| 185 | 64 135 183 184 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) )  ≤  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) | 
						
							| 186 | 55 56 65 134 185 | sge0lempt | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) ) ) | 
						
							| 187 | 97 133 98 186 | leadd1dd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) )  +  𝐴 )  ≤  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  +  𝐴 ) ) | 
						
							| 188 | 54 99 124 132 187 | letrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  𝑧  ≤  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  +  𝐴 ) ) | 
						
							| 189 | 188 | ex | ⊢ ( 𝜑  →  ( 𝑧  ∈  𝑈  →  𝑧  ≤  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  +  𝐴 ) ) ) | 
						
							| 190 | 51 189 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝑈 𝑧  ≤  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  +  𝐴 ) ) | 
						
							| 191 |  | suprleub | ⊢ ( ( ( 𝑈  ⊆  ℝ  ∧  𝑈  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑈 𝑦  ≤  𝑥 )  ∧  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  +  𝐴 )  ∈  ℝ )  →  ( sup ( 𝑈 ,  ℝ ,   <  )  ≤  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  +  𝐴 )  ↔  ∀ 𝑧  ∈  𝑈 𝑧  ≤  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  +  𝐴 ) ) ) | 
						
							| 192 | 53 47 150 123 191 | syl31anc | ⊢ ( 𝜑  →  ( sup ( 𝑈 ,  ℝ ,   <  )  ≤  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  +  𝐴 )  ↔  ∀ 𝑧  ∈  𝑈 𝑧  ≤  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  +  𝐴 ) ) ) | 
						
							| 193 | 190 192 | mpbird | ⊢ ( 𝜑  →  sup ( 𝑈 ,  ℝ ,   <  )  ≤  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  +  𝐴 ) ) | 
						
							| 194 | 50 193 | eqbrtrd | ⊢ ( 𝜑  →  𝑆  ≤  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  +  𝐴 ) ) | 
						
							| 195 | 100 1 122 | lesubaddd | ⊢ ( 𝜑  →  ( ( 𝑆  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  ↔  𝑆  ≤  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) )  +  𝐴 ) ) ) | 
						
							| 196 | 194 195 | mpbird | ⊢ ( 𝜑  →  ( 𝑆  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) ) ) | 
						
							| 197 | 49 196 | jca | ⊢ ( 𝜑  →  ( 𝑆  ∈  ( 𝐴 [,] 𝐵 )  ∧  ( 𝑆  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) ) ) ) | 
						
							| 198 |  | oveq1 | ⊢ ( 𝑧  =  𝑆  →  ( 𝑧  −  𝐴 )  =  ( 𝑆  −  𝐴 ) ) | 
						
							| 199 |  | breq2 | ⊢ ( 𝑧  =  𝑆  →  ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧  ↔  ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ) ) | 
						
							| 200 |  | id | ⊢ ( 𝑧  =  𝑆  →  𝑧  =  𝑆 ) | 
						
							| 201 | 199 200 | ifbieq2d | ⊢ ( 𝑧  =  𝑆  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  =  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) | 
						
							| 202 | 201 | oveq2d | ⊢ ( 𝑧  =  𝑆  →  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) )  =  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) | 
						
							| 203 | 202 | fveq2d | ⊢ ( 𝑧  =  𝑆  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) )  =  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) | 
						
							| 204 | 203 | mpteq2dv | ⊢ ( 𝑧  =  𝑆  →  ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) ) | 
						
							| 205 | 204 | fveq2d | ⊢ ( 𝑧  =  𝑆  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) )  =  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) ) ) | 
						
							| 206 | 198 205 | breq12d | ⊢ ( 𝑧  =  𝑆  →  ( ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) )  ↔  ( 𝑆  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) ) ) ) | 
						
							| 207 | 206 | elrab | ⊢ ( 𝑆  ∈  { 𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∣  ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) ) }  ↔  ( 𝑆  ∈  ( 𝐴 [,] 𝐵 )  ∧  ( 𝑆  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑆 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑆 ) ) ) ) ) ) ) | 
						
							| 208 | 197 207 | sylibr | ⊢ ( 𝜑  →  𝑆  ∈  { 𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∣  ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) ) } ) | 
						
							| 209 | 208 7 | eleqtrrdi | ⊢ ( 𝜑  →  𝑆  ∈  𝑈 ) | 
						
							| 210 | 209 46 150 | 3jca | ⊢ ( 𝜑  →  ( 𝑆  ∈  𝑈  ∧  𝐴  ∈  𝑈  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑈 𝑦  ≤  𝑥 ) ) |