Metamath Proof Explorer


Theorem supicc

Description: Supremum of a bounded set of real numbers. (Contributed by Thierry Arnoux, 17-May-2019)

Ref Expression
Hypotheses supicc.1 ( 𝜑𝐵 ∈ ℝ )
supicc.2 ( 𝜑𝐶 ∈ ℝ )
supicc.3 ( 𝜑𝐴 ⊆ ( 𝐵 [,] 𝐶 ) )
supicc.4 ( 𝜑𝐴 ≠ ∅ )
Assertion supicc ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ( 𝐵 [,] 𝐶 ) )

Proof

Step Hyp Ref Expression
1 supicc.1 ( 𝜑𝐵 ∈ ℝ )
2 supicc.2 ( 𝜑𝐶 ∈ ℝ )
3 supicc.3 ( 𝜑𝐴 ⊆ ( 𝐵 [,] 𝐶 ) )
4 supicc.4 ( 𝜑𝐴 ≠ ∅ )
5 iccssre ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 [,] 𝐶 ) ⊆ ℝ )
6 1 2 5 syl2anc ( 𝜑 → ( 𝐵 [,] 𝐶 ) ⊆ ℝ )
7 3 6 sstrd ( 𝜑𝐴 ⊆ ℝ )
8 1 adantr ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
9 8 rexrd ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
10 2 adantr ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℝ )
11 10 rexrd ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℝ* )
12 3 sselda ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ( 𝐵 [,] 𝐶 ) )
13 iccleub ( ( 𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝑥𝐶 )
14 9 11 12 13 syl3anc ( ( 𝜑𝑥𝐴 ) → 𝑥𝐶 )
15 14 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝑥𝐶 )
16 brralrspcev ( ( 𝐶 ∈ ℝ ∧ ∀ 𝑥𝐴 𝑥𝐶 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝑥𝑦 )
17 2 15 16 syl2anc ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝑥𝑦 )
18 suprcl ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝑥𝑦 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ )
19 7 4 17 18 syl3anc ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ℝ )
20 7 sselda ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ℝ )
21 3 adantr ( ( 𝜑𝑥𝐴 ) → 𝐴 ⊆ ( 𝐵 [,] 𝐶 ) )
22 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
23 iccsupr ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ⊆ ( 𝐵 [,] 𝐶 ) ∧ 𝑥𝐴 ) → ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝑥𝑦 ) )
24 8 10 21 22 23 syl211anc ( ( 𝜑𝑥𝐴 ) → ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝑥𝑦 ) )
25 24 18 syl ( ( 𝜑𝑥𝐴 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ )
26 iccgelb ( ( 𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝐵𝑥 )
27 9 11 12 26 syl3anc ( ( 𝜑𝑥𝐴 ) → 𝐵𝑥 )
28 suprub ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝑥𝑦 ) ∧ 𝑥𝐴 ) → 𝑥 ≤ sup ( 𝐴 , ℝ , < ) )
29 24 22 28 syl2anc ( ( 𝜑𝑥𝐴 ) → 𝑥 ≤ sup ( 𝐴 , ℝ , < ) )
30 8 20 25 27 29 letrd ( ( 𝜑𝑥𝐴 ) → 𝐵 ≤ sup ( 𝐴 , ℝ , < ) )
31 30 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝐵 ≤ sup ( 𝐴 , ℝ , < ) )
32 r19.3rzv ( 𝐴 ≠ ∅ → ( 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ↔ ∀ 𝑥𝐴 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ) )
33 4 32 syl ( 𝜑 → ( 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ↔ ∀ 𝑥𝐴 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ) )
34 31 33 mpbird ( 𝜑𝐵 ≤ sup ( 𝐴 , ℝ , < ) )
35 suprleub ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝑥𝑦 ) ∧ 𝐶 ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐶 ↔ ∀ 𝑥𝐴 𝑥𝐶 ) )
36 7 4 17 2 35 syl31anc ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐶 ↔ ∀ 𝑥𝐴 𝑥𝐶 ) )
37 15 36 mpbird ( 𝜑 → sup ( 𝐴 , ℝ , < ) ≤ 𝐶 )
38 elicc2 ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ∈ ( 𝐵 [,] 𝐶 ) ↔ ( sup ( 𝐴 , ℝ , < ) ∈ ℝ ∧ 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ∧ sup ( 𝐴 , ℝ , < ) ≤ 𝐶 ) ) )
39 1 2 38 syl2anc ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) ∈ ( 𝐵 [,] 𝐶 ) ↔ ( sup ( 𝐴 , ℝ , < ) ∈ ℝ ∧ 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ∧ sup ( 𝐴 , ℝ , < ) ≤ 𝐶 ) ) )
40 19 34 37 39 mpbir3and ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ( 𝐵 [,] 𝐶 ) )