Step |
Hyp |
Ref |
Expression |
1 |
|
supicc.1 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
2 |
|
supicc.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
3 |
|
supicc.3 |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝐵 [,] 𝐶 ) ) |
4 |
|
supicc.4 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
5 |
|
iccssre |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) |
6 |
1 2 5
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) |
7 |
3 6
|
sstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
8 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
9 |
8
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
11 |
10
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ* ) |
12 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) |
13 |
|
iccleub |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝑥 ≤ 𝐶 ) |
14 |
9 11 12 13
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ 𝐶 ) |
15 |
14
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐶 ) |
16 |
|
brralrspcev |
⊢ ( ( 𝐶 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐶 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
17 |
2 15 16
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
18 |
|
suprcl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
19 |
7 4 17 18
|
syl3anc |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
20 |
7
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
21 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ ( 𝐵 [,] 𝐶 ) ) |
22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
23 |
|
iccsupr |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ⊆ ( 𝐵 [,] 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
24 |
8 10 21 22 23
|
syl211anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
25 |
24 18
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
26 |
|
iccgelb |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝐵 ≤ 𝑥 ) |
27 |
9 11 12 26
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝑥 ) |
28 |
|
suprub |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ sup ( 𝐴 , ℝ , < ) ) |
29 |
24 22 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ sup ( 𝐴 , ℝ , < ) ) |
30 |
8 20 25 27 29
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ) |
31 |
30
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ) |
32 |
|
r19.3rzv |
⊢ ( 𝐴 ≠ ∅ → ( 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ) ) |
33 |
4 32
|
syl |
⊢ ( 𝜑 → ( 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ) ) |
34 |
31 33
|
mpbird |
⊢ ( 𝜑 → 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ) |
35 |
|
suprleub |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝐶 ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐶 ) ) |
36 |
7 4 17 2 35
|
syl31anc |
⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐶 ) ) |
37 |
15 36
|
mpbird |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ≤ 𝐶 ) |
38 |
|
elicc2 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ∈ ( 𝐵 [,] 𝐶 ) ↔ ( sup ( 𝐴 , ℝ , < ) ∈ ℝ ∧ 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ∧ sup ( 𝐴 , ℝ , < ) ≤ 𝐶 ) ) ) |
39 |
1 2 38
|
syl2anc |
⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) ∈ ( 𝐵 [,] 𝐶 ) ↔ ( sup ( 𝐴 , ℝ , < ) ∈ ℝ ∧ 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ∧ sup ( 𝐴 , ℝ , < ) ≤ 𝐶 ) ) ) |
40 |
19 34 37 39
|
mpbir3and |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ( 𝐵 [,] 𝐶 ) ) |