| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 2 |
|
sstr |
⊢ ( ( 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → 𝑆 ⊆ ℝ ) |
| 3 |
2
|
ancoms |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) → 𝑆 ⊆ ℝ ) |
| 4 |
1 3
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) → 𝑆 ⊆ ℝ ) |
| 5 |
4
|
3adant3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 ∈ 𝑆 ) → 𝑆 ⊆ ℝ ) |
| 6 |
|
ne0i |
⊢ ( 𝐶 ∈ 𝑆 → 𝑆 ≠ ∅ ) |
| 7 |
6
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 ∈ 𝑆 ) → 𝑆 ≠ ∅ ) |
| 8 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 9 |
|
ssel |
⊢ ( 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 10 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
| 11 |
10
|
biimpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
| 12 |
9 11
|
sylan9r |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 ∈ 𝑆 → ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
| 13 |
12
|
imp |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) |
| 14 |
13
|
simp3d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ≤ 𝐵 ) |
| 15 |
14
|
ralrimiva |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) |
| 16 |
|
brralrspcev |
⊢ ( ( 𝐵 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) |
| 17 |
8 15 16
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) |
| 18 |
17
|
3adant3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 ∈ 𝑆 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) |
| 19 |
5 7 18
|
3jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 ∈ 𝑆 ) → ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) |