Step |
Hyp |
Ref |
Expression |
1 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
2 |
|
sstr |
|- ( ( S C_ ( A [,] B ) /\ ( A [,] B ) C_ RR ) -> S C_ RR ) |
3 |
2
|
ancoms |
|- ( ( ( A [,] B ) C_ RR /\ S C_ ( A [,] B ) ) -> S C_ RR ) |
4 |
1 3
|
sylan |
|- ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) ) -> S C_ RR ) |
5 |
4
|
3adant3 |
|- ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) /\ C e. S ) -> S C_ RR ) |
6 |
|
ne0i |
|- ( C e. S -> S =/= (/) ) |
7 |
6
|
3ad2ant3 |
|- ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) /\ C e. S ) -> S =/= (/) ) |
8 |
|
simplr |
|- ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) ) -> B e. RR ) |
9 |
|
ssel |
|- ( S C_ ( A [,] B ) -> ( y e. S -> y e. ( A [,] B ) ) ) |
10 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( y e. ( A [,] B ) <-> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) |
11 |
10
|
biimpd |
|- ( ( A e. RR /\ B e. RR ) -> ( y e. ( A [,] B ) -> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) |
12 |
9 11
|
sylan9r |
|- ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) ) -> ( y e. S -> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) |
13 |
12
|
imp |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) ) /\ y e. S ) -> ( y e. RR /\ A <_ y /\ y <_ B ) ) |
14 |
13
|
simp3d |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) ) /\ y e. S ) -> y <_ B ) |
15 |
14
|
ralrimiva |
|- ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) ) -> A. y e. S y <_ B ) |
16 |
|
brralrspcev |
|- ( ( B e. RR /\ A. y e. S y <_ B ) -> E. x e. RR A. y e. S y <_ x ) |
17 |
8 15 16
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) ) -> E. x e. RR A. y e. S y <_ x ) |
18 |
17
|
3adant3 |
|- ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) /\ C e. S ) -> E. x e. RR A. y e. S y <_ x ) |
19 |
5 7 18
|
3jca |
|- ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) /\ C e. S ) -> ( S C_ RR /\ S =/= (/) /\ E. x e. RR A. y e. S y <_ x ) ) |