| Step | Hyp | Ref | Expression | 
						
							| 1 |  | supicc.1 |  |-  ( ph -> B e. RR ) | 
						
							| 2 |  | supicc.2 |  |-  ( ph -> C e. RR ) | 
						
							| 3 |  | supicc.3 |  |-  ( ph -> A C_ ( B [,] C ) ) | 
						
							| 4 |  | supicc.4 |  |-  ( ph -> A =/= (/) ) | 
						
							| 5 |  | iccssre |  |-  ( ( B e. RR /\ C e. RR ) -> ( B [,] C ) C_ RR ) | 
						
							| 6 | 1 2 5 | syl2anc |  |-  ( ph -> ( B [,] C ) C_ RR ) | 
						
							| 7 | 3 6 | sstrd |  |-  ( ph -> A C_ RR ) | 
						
							| 8 | 1 | adantr |  |-  ( ( ph /\ x e. A ) -> B e. RR ) | 
						
							| 9 | 8 | rexrd |  |-  ( ( ph /\ x e. A ) -> B e. RR* ) | 
						
							| 10 | 2 | adantr |  |-  ( ( ph /\ x e. A ) -> C e. RR ) | 
						
							| 11 | 10 | rexrd |  |-  ( ( ph /\ x e. A ) -> C e. RR* ) | 
						
							| 12 | 3 | sselda |  |-  ( ( ph /\ x e. A ) -> x e. ( B [,] C ) ) | 
						
							| 13 |  | iccleub |  |-  ( ( B e. RR* /\ C e. RR* /\ x e. ( B [,] C ) ) -> x <_ C ) | 
						
							| 14 | 9 11 12 13 | syl3anc |  |-  ( ( ph /\ x e. A ) -> x <_ C ) | 
						
							| 15 | 14 | ralrimiva |  |-  ( ph -> A. x e. A x <_ C ) | 
						
							| 16 |  | brralrspcev |  |-  ( ( C e. RR /\ A. x e. A x <_ C ) -> E. y e. RR A. x e. A x <_ y ) | 
						
							| 17 | 2 15 16 | syl2anc |  |-  ( ph -> E. y e. RR A. x e. A x <_ y ) | 
						
							| 18 |  | suprcl |  |-  ( ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. x e. A x <_ y ) -> sup ( A , RR , < ) e. RR ) | 
						
							| 19 | 7 4 17 18 | syl3anc |  |-  ( ph -> sup ( A , RR , < ) e. RR ) | 
						
							| 20 | 7 | sselda |  |-  ( ( ph /\ x e. A ) -> x e. RR ) | 
						
							| 21 | 3 | adantr |  |-  ( ( ph /\ x e. A ) -> A C_ ( B [,] C ) ) | 
						
							| 22 |  | simpr |  |-  ( ( ph /\ x e. A ) -> x e. A ) | 
						
							| 23 |  | iccsupr |  |-  ( ( ( B e. RR /\ C e. RR ) /\ A C_ ( B [,] C ) /\ x e. A ) -> ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. x e. A x <_ y ) ) | 
						
							| 24 | 8 10 21 22 23 | syl211anc |  |-  ( ( ph /\ x e. A ) -> ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. x e. A x <_ y ) ) | 
						
							| 25 | 24 18 | syl |  |-  ( ( ph /\ x e. A ) -> sup ( A , RR , < ) e. RR ) | 
						
							| 26 |  | iccgelb |  |-  ( ( B e. RR* /\ C e. RR* /\ x e. ( B [,] C ) ) -> B <_ x ) | 
						
							| 27 | 9 11 12 26 | syl3anc |  |-  ( ( ph /\ x e. A ) -> B <_ x ) | 
						
							| 28 |  | suprub |  |-  ( ( ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. x e. A x <_ y ) /\ x e. A ) -> x <_ sup ( A , RR , < ) ) | 
						
							| 29 | 24 22 28 | syl2anc |  |-  ( ( ph /\ x e. A ) -> x <_ sup ( A , RR , < ) ) | 
						
							| 30 | 8 20 25 27 29 | letrd |  |-  ( ( ph /\ x e. A ) -> B <_ sup ( A , RR , < ) ) | 
						
							| 31 | 30 | ralrimiva |  |-  ( ph -> A. x e. A B <_ sup ( A , RR , < ) ) | 
						
							| 32 |  | r19.3rzv |  |-  ( A =/= (/) -> ( B <_ sup ( A , RR , < ) <-> A. x e. A B <_ sup ( A , RR , < ) ) ) | 
						
							| 33 | 4 32 | syl |  |-  ( ph -> ( B <_ sup ( A , RR , < ) <-> A. x e. A B <_ sup ( A , RR , < ) ) ) | 
						
							| 34 | 31 33 | mpbird |  |-  ( ph -> B <_ sup ( A , RR , < ) ) | 
						
							| 35 |  | suprleub |  |-  ( ( ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. x e. A x <_ y ) /\ C e. RR ) -> ( sup ( A , RR , < ) <_ C <-> A. x e. A x <_ C ) ) | 
						
							| 36 | 7 4 17 2 35 | syl31anc |  |-  ( ph -> ( sup ( A , RR , < ) <_ C <-> A. x e. A x <_ C ) ) | 
						
							| 37 | 15 36 | mpbird |  |-  ( ph -> sup ( A , RR , < ) <_ C ) | 
						
							| 38 |  | elicc2 |  |-  ( ( B e. RR /\ C e. RR ) -> ( sup ( A , RR , < ) e. ( B [,] C ) <-> ( sup ( A , RR , < ) e. RR /\ B <_ sup ( A , RR , < ) /\ sup ( A , RR , < ) <_ C ) ) ) | 
						
							| 39 | 1 2 38 | syl2anc |  |-  ( ph -> ( sup ( A , RR , < ) e. ( B [,] C ) <-> ( sup ( A , RR , < ) e. RR /\ B <_ sup ( A , RR , < ) /\ sup ( A , RR , < ) <_ C ) ) ) | 
						
							| 40 | 19 34 37 39 | mpbir3and |  |-  ( ph -> sup ( A , RR , < ) e. ( B [,] C ) ) |