Metamath Proof Explorer


Theorem supicc

Description: Supremum of a bounded set of real numbers. (Contributed by Thierry Arnoux, 17-May-2019)

Ref Expression
Hypotheses supicc.1 φ B
supicc.2 φ C
supicc.3 φ A B C
supicc.4 φ A
Assertion supicc φ sup A < B C

Proof

Step Hyp Ref Expression
1 supicc.1 φ B
2 supicc.2 φ C
3 supicc.3 φ A B C
4 supicc.4 φ A
5 iccssre B C B C
6 1 2 5 syl2anc φ B C
7 3 6 sstrd φ A
8 1 adantr φ x A B
9 8 rexrd φ x A B *
10 2 adantr φ x A C
11 10 rexrd φ x A C *
12 3 sselda φ x A x B C
13 iccleub B * C * x B C x C
14 9 11 12 13 syl3anc φ x A x C
15 14 ralrimiva φ x A x C
16 brralrspcev C x A x C y x A x y
17 2 15 16 syl2anc φ y x A x y
18 suprcl A A y x A x y sup A <
19 7 4 17 18 syl3anc φ sup A <
20 7 sselda φ x A x
21 3 adantr φ x A A B C
22 simpr φ x A x A
23 iccsupr B C A B C x A A A y x A x y
24 8 10 21 22 23 syl211anc φ x A A A y x A x y
25 24 18 syl φ x A sup A <
26 iccgelb B * C * x B C B x
27 9 11 12 26 syl3anc φ x A B x
28 suprub A A y x A x y x A x sup A <
29 24 22 28 syl2anc φ x A x sup A <
30 8 20 25 27 29 letrd φ x A B sup A <
31 30 ralrimiva φ x A B sup A <
32 r19.3rzv A B sup A < x A B sup A <
33 4 32 syl φ B sup A < x A B sup A <
34 31 33 mpbird φ B sup A <
35 suprleub A A y x A x y C sup A < C x A x C
36 7 4 17 2 35 syl31anc φ sup A < C x A x C
37 15 36 mpbird φ sup A < C
38 elicc2 B C sup A < B C sup A < B sup A < sup A < C
39 1 2 38 syl2anc φ sup A < B C sup A < B sup A < sup A < C
40 19 34 37 39 mpbir3and φ sup A < B C