Metamath Proof Explorer


Theorem supicc

Description: Supremum of a bounded set of real numbers. (Contributed by Thierry Arnoux, 17-May-2019)

Ref Expression
Hypotheses supicc.1 φB
supicc.2 φC
supicc.3 φABC
supicc.4 φA
Assertion supicc φsupA<BC

Proof

Step Hyp Ref Expression
1 supicc.1 φB
2 supicc.2 φC
3 supicc.3 φABC
4 supicc.4 φA
5 iccssre BCBC
6 1 2 5 syl2anc φBC
7 3 6 sstrd φA
8 1 adantr φxAB
9 8 rexrd φxAB*
10 2 adantr φxAC
11 10 rexrd φxAC*
12 3 sselda φxAxBC
13 iccleub B*C*xBCxC
14 9 11 12 13 syl3anc φxAxC
15 14 ralrimiva φxAxC
16 brralrspcev CxAxCyxAxy
17 2 15 16 syl2anc φyxAxy
18 suprcl AAyxAxysupA<
19 7 4 17 18 syl3anc φsupA<
20 7 sselda φxAx
21 3 adantr φxAABC
22 simpr φxAxA
23 iccsupr BCABCxAAAyxAxy
24 8 10 21 22 23 syl211anc φxAAAyxAxy
25 24 18 syl φxAsupA<
26 iccgelb B*C*xBCBx
27 9 11 12 26 syl3anc φxABx
28 suprub AAyxAxyxAxsupA<
29 24 22 28 syl2anc φxAxsupA<
30 8 20 25 27 29 letrd φxABsupA<
31 30 ralrimiva φxABsupA<
32 r19.3rzv ABsupA<xABsupA<
33 4 32 syl φBsupA<xABsupA<
34 31 33 mpbird φBsupA<
35 suprleub AAyxAxyCsupA<CxAxC
36 7 4 17 2 35 syl31anc φsupA<CxAxC
37 15 36 mpbird φsupA<C
38 elicc2 BCsupA<BCsupA<BsupA<supA<C
39 1 2 38 syl2anc φsupA<BCsupA<BsupA<supA<C
40 19 34 37 39 mpbir3and φsupA<BC