Description: Supremum of a bounded set of real numbers. (Contributed by Thierry Arnoux, 17-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | supicc.1 | |
|
supicc.2 | |
||
supicc.3 | |
||
supicc.4 | |
||
Assertion | supicc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supicc.1 | |
|
2 | supicc.2 | |
|
3 | supicc.3 | |
|
4 | supicc.4 | |
|
5 | iccssre | |
|
6 | 1 2 5 | syl2anc | |
7 | 3 6 | sstrd | |
8 | 1 | adantr | |
9 | 8 | rexrd | |
10 | 2 | adantr | |
11 | 10 | rexrd | |
12 | 3 | sselda | |
13 | iccleub | |
|
14 | 9 11 12 13 | syl3anc | |
15 | 14 | ralrimiva | |
16 | brralrspcev | |
|
17 | 2 15 16 | syl2anc | |
18 | suprcl | |
|
19 | 7 4 17 18 | syl3anc | |
20 | 7 | sselda | |
21 | 3 | adantr | |
22 | simpr | |
|
23 | iccsupr | |
|
24 | 8 10 21 22 23 | syl211anc | |
25 | 24 18 | syl | |
26 | iccgelb | |
|
27 | 9 11 12 26 | syl3anc | |
28 | suprub | |
|
29 | 24 22 28 | syl2anc | |
30 | 8 20 25 27 29 | letrd | |
31 | 30 | ralrimiva | |
32 | r19.3rzv | |
|
33 | 4 32 | syl | |
34 | 31 33 | mpbird | |
35 | suprleub | |
|
36 | 7 4 17 2 35 | syl31anc | |
37 | 15 36 | mpbird | |
38 | elicc2 | |
|
39 | 1 2 38 | syl2anc | |
40 | 19 34 37 39 | mpbir3and | |