| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supicc.1 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 2 |
|
supicc.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 3 |
|
supicc.3 |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝐵 [,] 𝐶 ) ) |
| 4 |
|
supicc.4 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 5 |
|
supiccub.1 |
⊢ ( 𝜑 → 𝐷 ∈ 𝐴 ) |
| 6 |
|
iccssre |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) |
| 7 |
1 2 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) |
| 8 |
3 7
|
sstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 9 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 10 |
9
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
| 11 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 12 |
11
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ* ) |
| 13 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) |
| 14 |
|
iccleub |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝑥 ≤ 𝐶 ) |
| 15 |
10 12 13 14
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ 𝐶 ) |
| 16 |
15
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐶 ) |
| 17 |
|
brralrspcev |
⊢ ( ( 𝐶 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐶 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 18 |
2 16 17
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 19 |
8 4 18 5
|
suprubd |
⊢ ( 𝜑 → 𝐷 ≤ sup ( 𝐴 , ℝ , < ) ) |