| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoidmv1lelem2.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
hoidmv1lelem2.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
hoidmv1lelem2.c |
⊢ ( 𝜑 → 𝐶 : ℕ ⟶ ℝ ) |
| 4 |
|
hoidmv1lelem2.d |
⊢ ( 𝜑 → 𝐷 : ℕ ⟶ ℝ ) |
| 5 |
|
hoidmv1lelem2.r |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ ) |
| 6 |
|
hoidmv1lelem2.u |
⊢ 𝑈 = { 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) } |
| 7 |
|
hoidmv1lelem2.e |
⊢ ( 𝜑 → 𝑆 ∈ 𝑈 ) |
| 8 |
|
hoidmv1lelem2.g |
⊢ ( 𝜑 → 𝐴 ≤ 𝑆 ) |
| 9 |
|
hoidmv1lelem2.l |
⊢ ( 𝜑 → 𝑆 < 𝐵 ) |
| 10 |
|
hoidmv1lelem2.k |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
| 11 |
|
hoidmv1lelem2.s |
⊢ ( 𝜑 → 𝑆 ∈ ( ( 𝐶 ‘ 𝐾 ) [,) ( 𝐷 ‘ 𝐾 ) ) ) |
| 12 |
|
hoidmv1lelem2.m |
⊢ 𝑀 = if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → 𝑀 = if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ) |
| 14 |
4 10
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐾 ) ∈ ℝ ) |
| 15 |
14 2
|
ifcld |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ∈ ℝ ) |
| 16 |
13 15
|
eqeltrd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 17 |
3 10
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝐾 ) ∈ ℝ ) |
| 18 |
14
|
rexrd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐾 ) ∈ ℝ* ) |
| 19 |
|
icossre |
⊢ ( ( ( 𝐶 ‘ 𝐾 ) ∈ ℝ ∧ ( 𝐷 ‘ 𝐾 ) ∈ ℝ* ) → ( ( 𝐶 ‘ 𝐾 ) [,) ( 𝐷 ‘ 𝐾 ) ) ⊆ ℝ ) |
| 20 |
17 18 19
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 𝐾 ) [,) ( 𝐷 ‘ 𝐾 ) ) ⊆ ℝ ) |
| 21 |
20 11
|
sseldd |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 22 |
17
|
rexrd |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝐾 ) ∈ ℝ* ) |
| 23 |
|
icoltub |
⊢ ( ( ( 𝐶 ‘ 𝐾 ) ∈ ℝ* ∧ ( 𝐷 ‘ 𝐾 ) ∈ ℝ* ∧ 𝑆 ∈ ( ( 𝐶 ‘ 𝐾 ) [,) ( 𝐷 ‘ 𝐾 ) ) ) → 𝑆 < ( 𝐷 ‘ 𝐾 ) ) |
| 24 |
22 18 11 23
|
syl3anc |
⊢ ( 𝜑 → 𝑆 < ( 𝐷 ‘ 𝐾 ) ) |
| 25 |
21 14 24
|
ltled |
⊢ ( 𝜑 → 𝑆 ≤ ( 𝐷 ‘ 𝐾 ) ) |
| 26 |
21 2 9
|
ltled |
⊢ ( 𝜑 → 𝑆 ≤ 𝐵 ) |
| 27 |
25 26
|
jca |
⊢ ( 𝜑 → ( 𝑆 ≤ ( 𝐷 ‘ 𝐾 ) ∧ 𝑆 ≤ 𝐵 ) ) |
| 28 |
|
lemin |
⊢ ( ( 𝑆 ∈ ℝ ∧ ( 𝐷 ‘ 𝐾 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑆 ≤ if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ↔ ( 𝑆 ≤ ( 𝐷 ‘ 𝐾 ) ∧ 𝑆 ≤ 𝐵 ) ) ) |
| 29 |
21 14 2 28
|
syl3anc |
⊢ ( 𝜑 → ( 𝑆 ≤ if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ↔ ( 𝑆 ≤ ( 𝐷 ‘ 𝐾 ) ∧ 𝑆 ≤ 𝐵 ) ) ) |
| 30 |
27 29
|
mpbird |
⊢ ( 𝜑 → 𝑆 ≤ if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ) |
| 31 |
1 21 15 8 30
|
letrd |
⊢ ( 𝜑 → 𝐴 ≤ if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ) |
| 32 |
13
|
eqcomd |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) = 𝑀 ) |
| 33 |
31 32
|
breqtrd |
⊢ ( 𝜑 → 𝐴 ≤ 𝑀 ) |
| 34 |
|
min2 |
⊢ ( ( ( 𝐷 ‘ 𝐾 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ≤ 𝐵 ) |
| 35 |
14 2 34
|
syl2anc |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ≤ 𝐵 ) |
| 36 |
13 35
|
eqbrtrd |
⊢ ( 𝜑 → 𝑀 ≤ 𝐵 ) |
| 37 |
1 2 16 33 36
|
eliccd |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 38 |
16
|
recnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 39 |
21
|
recnd |
⊢ ( 𝜑 → 𝑆 ∈ ℂ ) |
| 40 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 41 |
38 39 40
|
npncand |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑆 ) + ( 𝑆 − 𝐴 ) ) = ( 𝑀 − 𝐴 ) ) |
| 42 |
41
|
eqcomd |
⊢ ( 𝜑 → ( 𝑀 − 𝐴 ) = ( ( 𝑀 − 𝑆 ) + ( 𝑆 − 𝐴 ) ) ) |
| 43 |
16 21
|
resubcld |
⊢ ( 𝜑 → ( 𝑀 − 𝑆 ) ∈ ℝ ) |
| 44 |
21 1
|
resubcld |
⊢ ( 𝜑 → ( 𝑆 − 𝐴 ) ∈ ℝ ) |
| 45 |
43 44
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑆 ) + ( 𝑆 − 𝐴 ) ) ∈ ℝ ) |
| 46 |
|
nnex |
⊢ ℕ ∈ V |
| 47 |
46
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
| 48 |
|
volf |
⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) |
| 49 |
48
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → vol : dom vol ⟶ ( 0 [,] +∞ ) ) |
| 50 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) ∈ ℝ ) |
| 51 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) ∈ ℝ ) |
| 52 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑆 ∈ ℝ ) |
| 53 |
51 52
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ∈ ℝ ) |
| 54 |
53
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ∈ ℝ* ) |
| 55 |
|
icombl |
⊢ ( ( ( 𝐶 ‘ 𝑗 ) ∈ ℝ ∧ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ∈ ℝ* ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ∈ dom vol ) |
| 56 |
50 54 55
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ∈ dom vol ) |
| 57 |
49 56
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 58 |
|
eqid |
⊢ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) |
| 59 |
57 58
|
fmptd |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) : ℕ ⟶ ( 0 [,] +∞ ) ) |
| 60 |
47 59
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ∈ ℝ* ) |
| 61 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 62 |
61
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 63 |
5
|
rexrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ* ) |
| 64 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
| 65 |
51
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) ∈ ℝ* ) |
| 66 |
|
icombl |
⊢ ( ( ( 𝐶 ‘ 𝑗 ) ∈ ℝ ∧ ( 𝐷 ‘ 𝑗 ) ∈ ℝ* ) → ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ∈ dom vol ) |
| 67 |
50 65 66
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ∈ dom vol ) |
| 68 |
49 67
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 69 |
50
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) ∈ ℝ* ) |
| 70 |
50
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) ≤ ( 𝐶 ‘ 𝑗 ) ) |
| 71 |
|
min1 |
⊢ ( ( ( 𝐷 ‘ 𝑗 ) ∈ ℝ ∧ 𝑆 ∈ ℝ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ≤ ( 𝐷 ‘ 𝑗 ) ) |
| 72 |
51 52 71
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ≤ ( 𝐷 ‘ 𝑗 ) ) |
| 73 |
|
icossico |
⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) ∈ ℝ* ∧ ( 𝐷 ‘ 𝑗 ) ∈ ℝ* ) ∧ ( ( 𝐶 ‘ 𝑗 ) ≤ ( 𝐶 ‘ 𝑗 ) ∧ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ≤ ( 𝐷 ‘ 𝑗 ) ) ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ⊆ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
| 74 |
69 65 70 72 73
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ⊆ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
| 75 |
|
volss |
⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ∈ dom vol ∧ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ∈ dom vol ∧ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ⊆ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ≤ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) |
| 76 |
56 67 74 75
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ≤ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) |
| 77 |
64 47 57 68 76
|
sge0lempt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
| 78 |
5
|
ltpnfd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) ) < +∞ ) |
| 79 |
60 63 62 77 78
|
xrlelttrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) < +∞ ) |
| 80 |
60 62 79
|
xrltned |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ≠ +∞ ) |
| 81 |
80
|
neneqd |
⊢ ( 𝜑 → ¬ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) = +∞ ) |
| 82 |
47 59
|
sge0repnf |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ∈ ℝ ↔ ¬ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) = +∞ ) ) |
| 83 |
81 82
|
mpbird |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ∈ ℝ ) |
| 84 |
43 83
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑆 ) + ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ∈ ℝ ) |
| 85 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑀 ∈ ℝ ) |
| 86 |
51 85
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ∈ ℝ ) |
| 87 |
86
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ∈ ℝ* ) |
| 88 |
|
icombl |
⊢ ( ( ( 𝐶 ‘ 𝑗 ) ∈ ℝ ∧ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ∈ ℝ* ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ∈ dom vol ) |
| 89 |
50 87 88
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ∈ dom vol ) |
| 90 |
49 89
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 91 |
|
eqid |
⊢ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) |
| 92 |
90 91
|
fmptd |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) : ℕ ⟶ ( 0 [,] +∞ ) ) |
| 93 |
47 92
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ∈ ℝ* ) |
| 94 |
|
min1 |
⊢ ( ( ( 𝐷 ‘ 𝑗 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ≤ ( 𝐷 ‘ 𝑗 ) ) |
| 95 |
51 85 94
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ≤ ( 𝐷 ‘ 𝑗 ) ) |
| 96 |
|
icossico |
⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) ∈ ℝ* ∧ ( 𝐷 ‘ 𝑗 ) ∈ ℝ* ) ∧ ( ( 𝐶 ‘ 𝑗 ) ≤ ( 𝐶 ‘ 𝑗 ) ∧ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ≤ ( 𝐷 ‘ 𝑗 ) ) ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ⊆ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
| 97 |
69 65 70 95 96
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ⊆ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
| 98 |
|
volss |
⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ∈ dom vol ∧ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ∈ dom vol ∧ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ⊆ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ≤ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) |
| 99 |
89 67 97 98
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ≤ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) |
| 100 |
64 47 90 68 99
|
sge0lempt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
| 101 |
93 63 62 100 78
|
xrlelttrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) < +∞ ) |
| 102 |
93 62 101
|
xrltned |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ≠ +∞ ) |
| 103 |
102
|
neneqd |
⊢ ( 𝜑 → ¬ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) = +∞ ) |
| 104 |
47 92
|
sge0repnf |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ∈ ℝ ↔ ¬ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) = +∞ ) ) |
| 105 |
103 104
|
mpbird |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ∈ ℝ ) |
| 106 |
7 6
|
eleqtrdi |
⊢ ( 𝜑 → 𝑆 ∈ { 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) } ) |
| 107 |
|
oveq1 |
⊢ ( 𝑧 = 𝑆 → ( 𝑧 − 𝐴 ) = ( 𝑆 − 𝐴 ) ) |
| 108 |
|
simpl |
⊢ ( ( 𝑧 = 𝑆 ∧ 𝑗 ∈ ℕ ) → 𝑧 = 𝑆 ) |
| 109 |
108
|
breq2d |
⊢ ( ( 𝑧 = 𝑆 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 ↔ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) ) |
| 110 |
109 108
|
ifbieq2d |
⊢ ( ( 𝑧 = 𝑆 ∧ 𝑗 ∈ ℕ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) = if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) |
| 111 |
110
|
oveq2d |
⊢ ( ( 𝑧 = 𝑆 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) = ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) |
| 112 |
111
|
fveq2d |
⊢ ( ( 𝑧 = 𝑆 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) = ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) |
| 113 |
112
|
mpteq2dva |
⊢ ( 𝑧 = 𝑆 → ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) |
| 114 |
113
|
fveq2d |
⊢ ( 𝑧 = 𝑆 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) |
| 115 |
107 114
|
breq12d |
⊢ ( 𝑧 = 𝑆 → ( ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) ↔ ( 𝑆 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) |
| 116 |
115
|
elrab |
⊢ ( 𝑆 ∈ { 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) } ↔ ( 𝑆 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝑆 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) |
| 117 |
106 116
|
sylib |
⊢ ( 𝜑 → ( 𝑆 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝑆 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) |
| 118 |
117
|
simprd |
⊢ ( 𝜑 → ( 𝑆 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) |
| 119 |
44 83 43 118
|
leadd2dd |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑆 ) + ( 𝑆 − 𝐴 ) ) ≤ ( ( 𝑀 − 𝑆 ) + ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) |
| 120 |
|
difssd |
⊢ ( 𝜑 → ( ℕ ∖ { 𝐾 } ) ⊆ ℕ ) |
| 121 |
64 47 57 83 120
|
sge0ssrempt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ∈ ℝ ) |
| 122 |
|
difexg |
⊢ ( ℕ ∈ V → ( ℕ ∖ { 𝐾 } ) ∈ V ) |
| 123 |
46 122
|
ax-mp |
⊢ ( ℕ ∖ { 𝐾 } ) ∈ V |
| 124 |
123
|
a1i |
⊢ ( 𝜑 → ( ℕ ∖ { 𝐾 } ) ∈ V ) |
| 125 |
48
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → vol : dom vol ⟶ ( 0 [,] +∞ ) ) |
| 126 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → 𝜑 ) |
| 127 |
|
eldifi |
⊢ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) → 𝑗 ∈ ℕ ) |
| 128 |
127
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → 𝑗 ∈ ℕ ) |
| 129 |
126 128 50
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → ( 𝐶 ‘ 𝑗 ) ∈ ℝ ) |
| 130 |
128 87
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ∈ ℝ* ) |
| 131 |
129 130 88
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ∈ dom vol ) |
| 132 |
125 131
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 133 |
64 124 132
|
sge0xrclmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ∈ ℝ* ) |
| 134 |
47 90 120
|
sge0lessmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) |
| 135 |
133 93 62 134 101
|
xrlelttrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) < +∞ ) |
| 136 |
133 62 135
|
xrltned |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ≠ +∞ ) |
| 137 |
136
|
neneqd |
⊢ ( 𝜑 → ¬ ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) = +∞ ) |
| 138 |
64 124 132
|
sge0repnfmpt |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ∈ ℝ ↔ ¬ ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) = +∞ ) ) |
| 139 |
137 138
|
mpbird |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ∈ ℝ ) |
| 140 |
16 17
|
resubcld |
⊢ ( 𝜑 → ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) ∈ ℝ ) |
| 141 |
128 57
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 142 |
128 56
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ∈ dom vol ) |
| 143 |
128 69
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → ( 𝐶 ‘ 𝑗 ) ∈ ℝ* ) |
| 144 |
128 70
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → ( 𝐶 ‘ 𝑗 ) ≤ ( 𝐶 ‘ 𝑗 ) ) |
| 145 |
|
iftrue |
⊢ ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) = ( 𝐷 ‘ 𝑗 ) ) |
| 146 |
145
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) = ( 𝐷 ‘ 𝑗 ) ) |
| 147 |
51
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) ≤ ( 𝐷 ‘ 𝑗 ) ) |
| 148 |
147
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( 𝐷 ‘ 𝑗 ) ≤ ( 𝐷 ‘ 𝑗 ) ) |
| 149 |
51
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( 𝐷 ‘ 𝑗 ) ∈ ℝ ) |
| 150 |
85
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → 𝑀 ∈ ℝ ) |
| 151 |
52
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → 𝑆 ∈ ℝ ) |
| 152 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) |
| 153 |
24 9
|
jca |
⊢ ( 𝜑 → ( 𝑆 < ( 𝐷 ‘ 𝐾 ) ∧ 𝑆 < 𝐵 ) ) |
| 154 |
|
ltmin |
⊢ ( ( 𝑆 ∈ ℝ ∧ ( 𝐷 ‘ 𝐾 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑆 < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ↔ ( 𝑆 < ( 𝐷 ‘ 𝐾 ) ∧ 𝑆 < 𝐵 ) ) ) |
| 155 |
21 14 2 154
|
syl3anc |
⊢ ( 𝜑 → ( 𝑆 < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ↔ ( 𝑆 < ( 𝐷 ‘ 𝐾 ) ∧ 𝑆 < 𝐵 ) ) ) |
| 156 |
153 155
|
mpbird |
⊢ ( 𝜑 → 𝑆 < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ) |
| 157 |
156 32
|
breqtrd |
⊢ ( 𝜑 → 𝑆 < 𝑀 ) |
| 158 |
157
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → 𝑆 < 𝑀 ) |
| 159 |
149 151 150 152 158
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( 𝐷 ‘ 𝑗 ) < 𝑀 ) |
| 160 |
149 150 159
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 ) |
| 161 |
148 160
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( ( 𝐷 ‘ 𝑗 ) ≤ ( 𝐷 ‘ 𝑗 ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 ) ) |
| 162 |
|
lemin |
⊢ ( ( ( 𝐷 ‘ 𝑗 ) ∈ ℝ ∧ ( 𝐷 ‘ 𝑗 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑗 ) ≤ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ↔ ( ( 𝐷 ‘ 𝑗 ) ≤ ( 𝐷 ‘ 𝑗 ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 ) ) ) |
| 163 |
149 149 150 162
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( ( 𝐷 ‘ 𝑗 ) ≤ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ↔ ( ( 𝐷 ‘ 𝑗 ) ≤ ( 𝐷 ‘ 𝑗 ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 ) ) ) |
| 164 |
161 163
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( 𝐷 ‘ 𝑗 ) ≤ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) |
| 165 |
146 164
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ≤ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) |
| 166 |
|
iffalse |
⊢ ( ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) = 𝑆 ) |
| 167 |
166
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) = 𝑆 ) |
| 168 |
52
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → 𝑆 ∈ ℝ ) |
| 169 |
86
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ∈ ℝ ) |
| 170 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) |
| 171 |
51
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( 𝐷 ‘ 𝑗 ) ∈ ℝ ) |
| 172 |
168 171
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( 𝑆 < ( 𝐷 ‘ 𝑗 ) ↔ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) ) |
| 173 |
170 172
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → 𝑆 < ( 𝐷 ‘ 𝑗 ) ) |
| 174 |
157
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → 𝑆 < 𝑀 ) |
| 175 |
173 174
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( 𝑆 < ( 𝐷 ‘ 𝑗 ) ∧ 𝑆 < 𝑀 ) ) |
| 176 |
85
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → 𝑀 ∈ ℝ ) |
| 177 |
|
ltmin |
⊢ ( ( 𝑆 ∈ ℝ ∧ ( 𝐷 ‘ 𝑗 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝑆 < if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ↔ ( 𝑆 < ( 𝐷 ‘ 𝑗 ) ∧ 𝑆 < 𝑀 ) ) ) |
| 178 |
168 171 176 177
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( 𝑆 < if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ↔ ( 𝑆 < ( 𝐷 ‘ 𝑗 ) ∧ 𝑆 < 𝑀 ) ) ) |
| 179 |
175 178
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → 𝑆 < if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) |
| 180 |
168 169 179
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → 𝑆 ≤ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) |
| 181 |
167 180
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ≤ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) |
| 182 |
165 181
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ≤ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) |
| 183 |
128 182
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ≤ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) |
| 184 |
|
icossico |
⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) ∈ ℝ* ∧ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ∈ ℝ* ) ∧ ( ( 𝐶 ‘ 𝑗 ) ≤ ( 𝐶 ‘ 𝑗 ) ∧ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ≤ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ⊆ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) |
| 185 |
143 130 144 183 184
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ⊆ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) |
| 186 |
|
volss |
⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ∈ dom vol ∧ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ∈ dom vol ∧ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ⊆ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ≤ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) |
| 187 |
142 131 185 186
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ≤ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) |
| 188 |
64 124 141 132 187
|
sge0lempt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) |
| 189 |
121 139 140 188
|
leadd2dd |
⊢ ( 𝜑 → ( ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ≤ ( ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) ) |
| 190 |
|
difsnid |
⊢ ( 𝐾 ∈ ℕ → ( ( ℕ ∖ { 𝐾 } ) ∪ { 𝐾 } ) = ℕ ) |
| 191 |
10 190
|
syl |
⊢ ( 𝜑 → ( ( ℕ ∖ { 𝐾 } ) ∪ { 𝐾 } ) = ℕ ) |
| 192 |
191
|
eqcomd |
⊢ ( 𝜑 → ℕ = ( ( ℕ ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) |
| 193 |
192
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) = ( 𝑗 ∈ ( ( ℕ ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) |
| 194 |
193
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ( ( ℕ ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) |
| 195 |
|
neldifsnd |
⊢ ( 𝜑 → ¬ 𝐾 ∈ ( ℕ ∖ { 𝐾 } ) ) |
| 196 |
|
fveq2 |
⊢ ( 𝑗 = 𝐾 → ( 𝐶 ‘ 𝑗 ) = ( 𝐶 ‘ 𝐾 ) ) |
| 197 |
|
fveq2 |
⊢ ( 𝑗 = 𝐾 → ( 𝐷 ‘ 𝑗 ) = ( 𝐷 ‘ 𝐾 ) ) |
| 198 |
197
|
breq1d |
⊢ ( 𝑗 = 𝐾 → ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ↔ ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 ) ) |
| 199 |
198 197
|
ifbieq1d |
⊢ ( 𝑗 = 𝐾 → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) = if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) |
| 200 |
196 199
|
oveq12d |
⊢ ( 𝑗 = 𝐾 → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) = ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) |
| 201 |
200
|
fveq2d |
⊢ ( 𝑗 = 𝐾 → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) = ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ) |
| 202 |
48
|
a1i |
⊢ ( 𝜑 → vol : dom vol ⟶ ( 0 [,] +∞ ) ) |
| 203 |
14 21
|
ifcld |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ∈ ℝ ) |
| 204 |
203
|
rexrd |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ∈ ℝ* ) |
| 205 |
|
icombl |
⊢ ( ( ( 𝐶 ‘ 𝐾 ) ∈ ℝ ∧ if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ∈ ℝ* ) → ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ∈ dom vol ) |
| 206 |
17 204 205
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ∈ dom vol ) |
| 207 |
202 206
|
ffvelcdmd |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 208 |
64 124 10 195 141 201 207
|
sge0splitsn |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ( ( ℕ ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) = ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) +𝑒 ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ) ) |
| 209 |
|
volicore |
⊢ ( ( ( 𝐶 ‘ 𝐾 ) ∈ ℝ ∧ if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ∈ ℝ ) |
| 210 |
17 203 209
|
syl2anc |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ∈ ℝ ) |
| 211 |
|
rexadd |
⊢ ( ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ∈ ℝ ∧ ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ∈ ℝ ) → ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) +𝑒 ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ) = ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) + ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ) ) |
| 212 |
121 210 211
|
syl2anc |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) +𝑒 ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ) = ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) + ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ) ) |
| 213 |
|
volico |
⊢ ( ( ( 𝐶 ‘ 𝐾 ) ∈ ℝ ∧ if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) = if ( ( 𝐶 ‘ 𝐾 ) < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) , ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) − ( 𝐶 ‘ 𝐾 ) ) , 0 ) ) |
| 214 |
17 203 213
|
syl2anc |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) = if ( ( 𝐶 ‘ 𝐾 ) < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) , ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) − ( 𝐶 ‘ 𝐾 ) ) , 0 ) ) |
| 215 |
21 14
|
ltnled |
⊢ ( 𝜑 → ( 𝑆 < ( 𝐷 ‘ 𝐾 ) ↔ ¬ ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 ) ) |
| 216 |
24 215
|
mpbid |
⊢ ( 𝜑 → ¬ ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 ) |
| 217 |
216
|
iffalsed |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) = 𝑆 ) |
| 218 |
217
|
breq2d |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 𝐾 ) < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ↔ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) ) |
| 219 |
218
|
ifbid |
⊢ ( 𝜑 → if ( ( 𝐶 ‘ 𝐾 ) < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) , ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) − ( 𝐶 ‘ 𝐾 ) ) , 0 ) = if ( ( 𝐶 ‘ 𝐾 ) < 𝑆 , ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) − ( 𝐶 ‘ 𝐾 ) ) , 0 ) ) |
| 220 |
217
|
oveq1d |
⊢ ( 𝜑 → ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) − ( 𝐶 ‘ 𝐾 ) ) = ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ) |
| 221 |
220
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) − ( 𝐶 ‘ 𝐾 ) ) = ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ) |
| 222 |
217 204
|
eqeltrrd |
⊢ ( 𝜑 → 𝑆 ∈ ℝ* ) |
| 223 |
222
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → 𝑆 ∈ ℝ* ) |
| 224 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → ( 𝐶 ‘ 𝐾 ) ∈ ℝ* ) |
| 225 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) |
| 226 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → 𝑆 ∈ ℝ ) |
| 227 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → ( 𝐶 ‘ 𝐾 ) ∈ ℝ ) |
| 228 |
226 227
|
lenltd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → ( 𝑆 ≤ ( 𝐶 ‘ 𝐾 ) ↔ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) ) |
| 229 |
225 228
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → 𝑆 ≤ ( 𝐶 ‘ 𝐾 ) ) |
| 230 |
|
icogelb |
⊢ ( ( ( 𝐶 ‘ 𝐾 ) ∈ ℝ* ∧ ( 𝐷 ‘ 𝐾 ) ∈ ℝ* ∧ 𝑆 ∈ ( ( 𝐶 ‘ 𝐾 ) [,) ( 𝐷 ‘ 𝐾 ) ) ) → ( 𝐶 ‘ 𝐾 ) ≤ 𝑆 ) |
| 231 |
22 18 11 230
|
syl3anc |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝐾 ) ≤ 𝑆 ) |
| 232 |
231
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → ( 𝐶 ‘ 𝐾 ) ≤ 𝑆 ) |
| 233 |
223 224 229 232
|
xrletrid |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → 𝑆 = ( 𝐶 ‘ 𝐾 ) ) |
| 234 |
233
|
oveq1d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) = ( ( 𝐶 ‘ 𝐾 ) − ( 𝐶 ‘ 𝐾 ) ) ) |
| 235 |
227
|
recnd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → ( 𝐶 ‘ 𝐾 ) ∈ ℂ ) |
| 236 |
235
|
subidd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → ( ( 𝐶 ‘ 𝐾 ) − ( 𝐶 ‘ 𝐾 ) ) = 0 ) |
| 237 |
234 236
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → 0 = ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ) |
| 238 |
221 237
|
ifeqda |
⊢ ( 𝜑 → if ( ( 𝐶 ‘ 𝐾 ) < 𝑆 , ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) − ( 𝐶 ‘ 𝐾 ) ) , 0 ) = ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ) |
| 239 |
214 219 238
|
3eqtrd |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) = ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ) |
| 240 |
239
|
oveq2d |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) + ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ) = ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) + ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ) ) |
| 241 |
121
|
recnd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ∈ ℂ ) |
| 242 |
17
|
recnd |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝐾 ) ∈ ℂ ) |
| 243 |
39 242
|
subcld |
⊢ ( 𝜑 → ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ∈ ℂ ) |
| 244 |
241 243
|
addcomd |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) + ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ) = ( ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) |
| 245 |
212 240 244
|
3eqtrd |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) +𝑒 ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ) = ( ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) |
| 246 |
194 208 245
|
3eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) = ( ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) |
| 247 |
246
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑆 ) + ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) = ( ( 𝑀 − 𝑆 ) + ( ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) ) |
| 248 |
43
|
recnd |
⊢ ( 𝜑 → ( 𝑀 − 𝑆 ) ∈ ℂ ) |
| 249 |
248 243 241
|
addassd |
⊢ ( 𝜑 → ( ( ( 𝑀 − 𝑆 ) + ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) = ( ( 𝑀 − 𝑆 ) + ( ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) ) |
| 250 |
249
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑆 ) + ( ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) = ( ( ( 𝑀 − 𝑆 ) + ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) |
| 251 |
38 39 242
|
npncand |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑆 ) + ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ) = ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) ) |
| 252 |
251
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑀 − 𝑆 ) + ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) = ( ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) |
| 253 |
247 250 252
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑆 ) + ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) = ( ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) |
| 254 |
192
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) = ( 𝑗 ∈ ( ( ℕ ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) |
| 255 |
254
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ( ( ℕ ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) |
| 256 |
197
|
breq1d |
⊢ ( 𝑗 = 𝐾 → ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 ↔ ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) ) |
| 257 |
256 197
|
ifbieq1d |
⊢ ( 𝑗 = 𝐾 → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) = if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) |
| 258 |
196 257
|
oveq12d |
⊢ ( 𝑗 = 𝐾 → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) = ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) |
| 259 |
258
|
fveq2d |
⊢ ( 𝑗 = 𝐾 → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) = ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ) |
| 260 |
14 16
|
ifcld |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ∈ ℝ ) |
| 261 |
260
|
rexrd |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ∈ ℝ* ) |
| 262 |
|
icombl |
⊢ ( ( ( 𝐶 ‘ 𝐾 ) ∈ ℝ ∧ if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ∈ ℝ* ) → ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ∈ dom vol ) |
| 263 |
17 261 262
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ∈ dom vol ) |
| 264 |
202 263
|
ffvelcdmd |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 265 |
64 124 10 195 132 259 264
|
sge0splitsn |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ( ( ℕ ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) = ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) +𝑒 ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ) ) |
| 266 |
|
volicore |
⊢ ( ( ( 𝐶 ‘ 𝐾 ) ∈ ℝ ∧ if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ∈ ℝ ) |
| 267 |
17 260 266
|
syl2anc |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ∈ ℝ ) |
| 268 |
|
rexadd |
⊢ ( ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ∈ ℝ ∧ ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ∈ ℝ ) → ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) +𝑒 ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ) = ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) + ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ) ) |
| 269 |
139 267 268
|
syl2anc |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) +𝑒 ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ) = ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) + ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ) ) |
| 270 |
|
volico |
⊢ ( ( ( 𝐶 ‘ 𝐾 ) ∈ ℝ ∧ if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) = if ( ( 𝐶 ‘ 𝐾 ) < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) , ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) − ( 𝐶 ‘ 𝐾 ) ) , 0 ) ) |
| 271 |
17 260 270
|
syl2anc |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) = if ( ( 𝐶 ‘ 𝐾 ) < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) , ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) − ( 𝐶 ‘ 𝐾 ) ) , 0 ) ) |
| 272 |
24 157
|
jca |
⊢ ( 𝜑 → ( 𝑆 < ( 𝐷 ‘ 𝐾 ) ∧ 𝑆 < 𝑀 ) ) |
| 273 |
|
ltmin |
⊢ ( ( 𝑆 ∈ ℝ ∧ ( 𝐷 ‘ 𝐾 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝑆 < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ↔ ( 𝑆 < ( 𝐷 ‘ 𝐾 ) ∧ 𝑆 < 𝑀 ) ) ) |
| 274 |
21 14 16 273
|
syl3anc |
⊢ ( 𝜑 → ( 𝑆 < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ↔ ( 𝑆 < ( 𝐷 ‘ 𝐾 ) ∧ 𝑆 < 𝑀 ) ) ) |
| 275 |
272 274
|
mpbird |
⊢ ( 𝜑 → 𝑆 < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) |
| 276 |
17 21 260 231 275
|
lelttrd |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝐾 ) < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) |
| 277 |
276
|
iftrued |
⊢ ( 𝜑 → if ( ( 𝐶 ‘ 𝐾 ) < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) , ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) − ( 𝐶 ‘ 𝐾 ) ) , 0 ) = ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) − ( 𝐶 ‘ 𝐾 ) ) ) |
| 278 |
|
iftrue |
⊢ ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) = ( 𝐷 ‘ 𝐾 ) ) |
| 279 |
278
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) = ( 𝐷 ‘ 𝐾 ) ) |
| 280 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) → ( 𝐷 ‘ 𝐾 ) ∈ ℝ* ) |
| 281 |
16
|
rexrd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ* ) |
| 282 |
281
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) → 𝑀 ∈ ℝ* ) |
| 283 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) → ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) |
| 284 |
|
min1 |
⊢ ( ( ( 𝐷 ‘ 𝐾 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ≤ ( 𝐷 ‘ 𝐾 ) ) |
| 285 |
14 2 284
|
syl2anc |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ≤ ( 𝐷 ‘ 𝐾 ) ) |
| 286 |
13 285
|
eqbrtrd |
⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 ‘ 𝐾 ) ) |
| 287 |
286
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) → 𝑀 ≤ ( 𝐷 ‘ 𝐾 ) ) |
| 288 |
280 282 283 287
|
xrletrid |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) → ( 𝐷 ‘ 𝐾 ) = 𝑀 ) |
| 289 |
279 288
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) = 𝑀 ) |
| 290 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) → ¬ ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) |
| 291 |
290
|
iffalsed |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) = 𝑀 ) |
| 292 |
289 291
|
pm2.61dan |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) = 𝑀 ) |
| 293 |
292
|
oveq1d |
⊢ ( 𝜑 → ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) − ( 𝐶 ‘ 𝐾 ) ) = ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) ) |
| 294 |
271 277 293
|
3eqtrd |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) = ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) ) |
| 295 |
294
|
oveq2d |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) + ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ) = ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) + ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) ) ) |
| 296 |
139
|
recnd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ∈ ℂ ) |
| 297 |
38 242
|
subcld |
⊢ ( 𝜑 → ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) ∈ ℂ ) |
| 298 |
296 297
|
addcomd |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) + ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) ) = ( ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) ) |
| 299 |
269 295 298
|
3eqtrd |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) +𝑒 ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ) = ( ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) ) |
| 300 |
255 265 299
|
3eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) = ( ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) ) |
| 301 |
253 300
|
breq12d |
⊢ ( 𝜑 → ( ( ( 𝑀 − 𝑆 ) + ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ↔ ( ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ≤ ( ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) ) ) |
| 302 |
189 301
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑆 ) + ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) |
| 303 |
45 84 105 119 302
|
letrd |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑆 ) + ( 𝑆 − 𝐴 ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) |
| 304 |
42 303
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑀 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) |
| 305 |
37 304
|
jca |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝑀 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) ) |
| 306 |
|
oveq1 |
⊢ ( 𝑧 = 𝑀 → ( 𝑧 − 𝐴 ) = ( 𝑀 − 𝐴 ) ) |
| 307 |
|
breq2 |
⊢ ( 𝑧 = 𝑀 → ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 ↔ ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 ) ) |
| 308 |
|
id |
⊢ ( 𝑧 = 𝑀 → 𝑧 = 𝑀 ) |
| 309 |
307 308
|
ifbieq2d |
⊢ ( 𝑧 = 𝑀 → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) = if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) |
| 310 |
309
|
oveq2d |
⊢ ( 𝑧 = 𝑀 → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) = ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) |
| 311 |
310
|
fveq2d |
⊢ ( 𝑧 = 𝑀 → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) = ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) |
| 312 |
311
|
mpteq2dv |
⊢ ( 𝑧 = 𝑀 → ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) |
| 313 |
312
|
fveq2d |
⊢ ( 𝑧 = 𝑀 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) |
| 314 |
306 313
|
breq12d |
⊢ ( 𝑧 = 𝑀 → ( ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) ↔ ( 𝑀 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) ) |
| 315 |
314
|
elrab |
⊢ ( 𝑀 ∈ { 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) } ↔ ( 𝑀 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝑀 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) ) |
| 316 |
305 315
|
sylibr |
⊢ ( 𝜑 → 𝑀 ∈ { 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) } ) |
| 317 |
316 6
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) |
| 318 |
272
|
simprd |
⊢ ( 𝜑 → 𝑆 < 𝑀 ) |
| 319 |
|
breq2 |
⊢ ( 𝑢 = 𝑀 → ( 𝑆 < 𝑢 ↔ 𝑆 < 𝑀 ) ) |
| 320 |
319
|
rspcev |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 𝑆 < 𝑀 ) → ∃ 𝑢 ∈ 𝑈 𝑆 < 𝑢 ) |
| 321 |
317 318 320
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝑈 𝑆 < 𝑢 ) |