Step |
Hyp |
Ref |
Expression |
1 |
|
hoidmv1lelem2.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
hoidmv1lelem2.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
hoidmv1lelem2.c |
⊢ ( 𝜑 → 𝐶 : ℕ ⟶ ℝ ) |
4 |
|
hoidmv1lelem2.d |
⊢ ( 𝜑 → 𝐷 : ℕ ⟶ ℝ ) |
5 |
|
hoidmv1lelem2.r |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ ) |
6 |
|
hoidmv1lelem2.u |
⊢ 𝑈 = { 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) } |
7 |
|
hoidmv1lelem2.e |
⊢ ( 𝜑 → 𝑆 ∈ 𝑈 ) |
8 |
|
hoidmv1lelem2.g |
⊢ ( 𝜑 → 𝐴 ≤ 𝑆 ) |
9 |
|
hoidmv1lelem2.l |
⊢ ( 𝜑 → 𝑆 < 𝐵 ) |
10 |
|
hoidmv1lelem2.k |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
11 |
|
hoidmv1lelem2.s |
⊢ ( 𝜑 → 𝑆 ∈ ( ( 𝐶 ‘ 𝐾 ) [,) ( 𝐷 ‘ 𝐾 ) ) ) |
12 |
|
hoidmv1lelem2.m |
⊢ 𝑀 = if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) |
13 |
12
|
a1i |
⊢ ( 𝜑 → 𝑀 = if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ) |
14 |
4 10
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐾 ) ∈ ℝ ) |
15 |
14 2
|
ifcld |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ∈ ℝ ) |
16 |
13 15
|
eqeltrd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
17 |
3 10
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝐾 ) ∈ ℝ ) |
18 |
14
|
rexrd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐾 ) ∈ ℝ* ) |
19 |
|
icossre |
⊢ ( ( ( 𝐶 ‘ 𝐾 ) ∈ ℝ ∧ ( 𝐷 ‘ 𝐾 ) ∈ ℝ* ) → ( ( 𝐶 ‘ 𝐾 ) [,) ( 𝐷 ‘ 𝐾 ) ) ⊆ ℝ ) |
20 |
17 18 19
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 𝐾 ) [,) ( 𝐷 ‘ 𝐾 ) ) ⊆ ℝ ) |
21 |
20 11
|
sseldd |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
22 |
17
|
rexrd |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝐾 ) ∈ ℝ* ) |
23 |
|
icoltub |
⊢ ( ( ( 𝐶 ‘ 𝐾 ) ∈ ℝ* ∧ ( 𝐷 ‘ 𝐾 ) ∈ ℝ* ∧ 𝑆 ∈ ( ( 𝐶 ‘ 𝐾 ) [,) ( 𝐷 ‘ 𝐾 ) ) ) → 𝑆 < ( 𝐷 ‘ 𝐾 ) ) |
24 |
22 18 11 23
|
syl3anc |
⊢ ( 𝜑 → 𝑆 < ( 𝐷 ‘ 𝐾 ) ) |
25 |
21 14 24
|
ltled |
⊢ ( 𝜑 → 𝑆 ≤ ( 𝐷 ‘ 𝐾 ) ) |
26 |
21 2 9
|
ltled |
⊢ ( 𝜑 → 𝑆 ≤ 𝐵 ) |
27 |
25 26
|
jca |
⊢ ( 𝜑 → ( 𝑆 ≤ ( 𝐷 ‘ 𝐾 ) ∧ 𝑆 ≤ 𝐵 ) ) |
28 |
|
lemin |
⊢ ( ( 𝑆 ∈ ℝ ∧ ( 𝐷 ‘ 𝐾 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑆 ≤ if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ↔ ( 𝑆 ≤ ( 𝐷 ‘ 𝐾 ) ∧ 𝑆 ≤ 𝐵 ) ) ) |
29 |
21 14 2 28
|
syl3anc |
⊢ ( 𝜑 → ( 𝑆 ≤ if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ↔ ( 𝑆 ≤ ( 𝐷 ‘ 𝐾 ) ∧ 𝑆 ≤ 𝐵 ) ) ) |
30 |
27 29
|
mpbird |
⊢ ( 𝜑 → 𝑆 ≤ if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ) |
31 |
1 21 15 8 30
|
letrd |
⊢ ( 𝜑 → 𝐴 ≤ if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ) |
32 |
13
|
eqcomd |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) = 𝑀 ) |
33 |
31 32
|
breqtrd |
⊢ ( 𝜑 → 𝐴 ≤ 𝑀 ) |
34 |
|
min2 |
⊢ ( ( ( 𝐷 ‘ 𝐾 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ≤ 𝐵 ) |
35 |
14 2 34
|
syl2anc |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ≤ 𝐵 ) |
36 |
13 35
|
eqbrtrd |
⊢ ( 𝜑 → 𝑀 ≤ 𝐵 ) |
37 |
1 2 16 33 36
|
eliccd |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 [,] 𝐵 ) ) |
38 |
16
|
recnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
39 |
21
|
recnd |
⊢ ( 𝜑 → 𝑆 ∈ ℂ ) |
40 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
41 |
38 39 40
|
npncand |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑆 ) + ( 𝑆 − 𝐴 ) ) = ( 𝑀 − 𝐴 ) ) |
42 |
41
|
eqcomd |
⊢ ( 𝜑 → ( 𝑀 − 𝐴 ) = ( ( 𝑀 − 𝑆 ) + ( 𝑆 − 𝐴 ) ) ) |
43 |
16 21
|
resubcld |
⊢ ( 𝜑 → ( 𝑀 − 𝑆 ) ∈ ℝ ) |
44 |
21 1
|
resubcld |
⊢ ( 𝜑 → ( 𝑆 − 𝐴 ) ∈ ℝ ) |
45 |
43 44
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑆 ) + ( 𝑆 − 𝐴 ) ) ∈ ℝ ) |
46 |
|
nnex |
⊢ ℕ ∈ V |
47 |
46
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
48 |
|
volf |
⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) |
49 |
48
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → vol : dom vol ⟶ ( 0 [,] +∞ ) ) |
50 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) ∈ ℝ ) |
51 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) ∈ ℝ ) |
52 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑆 ∈ ℝ ) |
53 |
51 52
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ∈ ℝ ) |
54 |
53
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ∈ ℝ* ) |
55 |
|
icombl |
⊢ ( ( ( 𝐶 ‘ 𝑗 ) ∈ ℝ ∧ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ∈ ℝ* ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ∈ dom vol ) |
56 |
50 54 55
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ∈ dom vol ) |
57 |
49 56
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ∈ ( 0 [,] +∞ ) ) |
58 |
|
eqid |
⊢ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) |
59 |
57 58
|
fmptd |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) : ℕ ⟶ ( 0 [,] +∞ ) ) |
60 |
47 59
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ∈ ℝ* ) |
61 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
62 |
61
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
63 |
5
|
rexrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ* ) |
64 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
65 |
51
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) ∈ ℝ* ) |
66 |
|
icombl |
⊢ ( ( ( 𝐶 ‘ 𝑗 ) ∈ ℝ ∧ ( 𝐷 ‘ 𝑗 ) ∈ ℝ* ) → ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ∈ dom vol ) |
67 |
50 65 66
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ∈ dom vol ) |
68 |
49 67
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ∈ ( 0 [,] +∞ ) ) |
69 |
50
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) ∈ ℝ* ) |
70 |
50
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) ≤ ( 𝐶 ‘ 𝑗 ) ) |
71 |
|
min1 |
⊢ ( ( ( 𝐷 ‘ 𝑗 ) ∈ ℝ ∧ 𝑆 ∈ ℝ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ≤ ( 𝐷 ‘ 𝑗 ) ) |
72 |
51 52 71
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ≤ ( 𝐷 ‘ 𝑗 ) ) |
73 |
|
icossico |
⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) ∈ ℝ* ∧ ( 𝐷 ‘ 𝑗 ) ∈ ℝ* ) ∧ ( ( 𝐶 ‘ 𝑗 ) ≤ ( 𝐶 ‘ 𝑗 ) ∧ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ≤ ( 𝐷 ‘ 𝑗 ) ) ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ⊆ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
74 |
69 65 70 72 73
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ⊆ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
75 |
|
volss |
⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ∈ dom vol ∧ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ∈ dom vol ∧ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ⊆ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ≤ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) |
76 |
56 67 74 75
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ≤ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) |
77 |
64 47 57 68 76
|
sge0lempt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
78 |
5
|
ltpnfd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) ) < +∞ ) |
79 |
60 63 62 77 78
|
xrlelttrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) < +∞ ) |
80 |
60 62 79
|
xrltned |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ≠ +∞ ) |
81 |
80
|
neneqd |
⊢ ( 𝜑 → ¬ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) = +∞ ) |
82 |
47 59
|
sge0repnf |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ∈ ℝ ↔ ¬ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) = +∞ ) ) |
83 |
81 82
|
mpbird |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ∈ ℝ ) |
84 |
43 83
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑆 ) + ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ∈ ℝ ) |
85 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑀 ∈ ℝ ) |
86 |
51 85
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ∈ ℝ ) |
87 |
86
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ∈ ℝ* ) |
88 |
|
icombl |
⊢ ( ( ( 𝐶 ‘ 𝑗 ) ∈ ℝ ∧ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ∈ ℝ* ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ∈ dom vol ) |
89 |
50 87 88
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ∈ dom vol ) |
90 |
49 89
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ∈ ( 0 [,] +∞ ) ) |
91 |
|
eqid |
⊢ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) |
92 |
90 91
|
fmptd |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) : ℕ ⟶ ( 0 [,] +∞ ) ) |
93 |
47 92
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ∈ ℝ* ) |
94 |
|
min1 |
⊢ ( ( ( 𝐷 ‘ 𝑗 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ≤ ( 𝐷 ‘ 𝑗 ) ) |
95 |
51 85 94
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ≤ ( 𝐷 ‘ 𝑗 ) ) |
96 |
|
icossico |
⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) ∈ ℝ* ∧ ( 𝐷 ‘ 𝑗 ) ∈ ℝ* ) ∧ ( ( 𝐶 ‘ 𝑗 ) ≤ ( 𝐶 ‘ 𝑗 ) ∧ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ≤ ( 𝐷 ‘ 𝑗 ) ) ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ⊆ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
97 |
69 65 70 95 96
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ⊆ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
98 |
|
volss |
⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ∈ dom vol ∧ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ∈ dom vol ∧ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ⊆ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ≤ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) |
99 |
89 67 97 98
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ≤ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) |
100 |
64 47 90 68 99
|
sge0lempt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
101 |
93 63 62 100 78
|
xrlelttrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) < +∞ ) |
102 |
93 62 101
|
xrltned |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ≠ +∞ ) |
103 |
102
|
neneqd |
⊢ ( 𝜑 → ¬ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) = +∞ ) |
104 |
47 92
|
sge0repnf |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ∈ ℝ ↔ ¬ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) = +∞ ) ) |
105 |
103 104
|
mpbird |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ∈ ℝ ) |
106 |
7 6
|
eleqtrdi |
⊢ ( 𝜑 → 𝑆 ∈ { 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) } ) |
107 |
|
oveq1 |
⊢ ( 𝑧 = 𝑆 → ( 𝑧 − 𝐴 ) = ( 𝑆 − 𝐴 ) ) |
108 |
|
simpl |
⊢ ( ( 𝑧 = 𝑆 ∧ 𝑗 ∈ ℕ ) → 𝑧 = 𝑆 ) |
109 |
108
|
breq2d |
⊢ ( ( 𝑧 = 𝑆 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 ↔ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) ) |
110 |
109 108
|
ifbieq2d |
⊢ ( ( 𝑧 = 𝑆 ∧ 𝑗 ∈ ℕ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) = if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) |
111 |
110
|
oveq2d |
⊢ ( ( 𝑧 = 𝑆 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) = ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) |
112 |
111
|
fveq2d |
⊢ ( ( 𝑧 = 𝑆 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) = ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) |
113 |
112
|
mpteq2dva |
⊢ ( 𝑧 = 𝑆 → ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) |
114 |
113
|
fveq2d |
⊢ ( 𝑧 = 𝑆 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) |
115 |
107 114
|
breq12d |
⊢ ( 𝑧 = 𝑆 → ( ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) ↔ ( 𝑆 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) |
116 |
115
|
elrab |
⊢ ( 𝑆 ∈ { 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) } ↔ ( 𝑆 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝑆 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) |
117 |
106 116
|
sylib |
⊢ ( 𝜑 → ( 𝑆 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝑆 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) |
118 |
117
|
simprd |
⊢ ( 𝜑 → ( 𝑆 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) |
119 |
44 83 43 118
|
leadd2dd |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑆 ) + ( 𝑆 − 𝐴 ) ) ≤ ( ( 𝑀 − 𝑆 ) + ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) |
120 |
|
difssd |
⊢ ( 𝜑 → ( ℕ ∖ { 𝐾 } ) ⊆ ℕ ) |
121 |
64 47 57 83 120
|
sge0ssrempt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ∈ ℝ ) |
122 |
|
difexg |
⊢ ( ℕ ∈ V → ( ℕ ∖ { 𝐾 } ) ∈ V ) |
123 |
46 122
|
ax-mp |
⊢ ( ℕ ∖ { 𝐾 } ) ∈ V |
124 |
123
|
a1i |
⊢ ( 𝜑 → ( ℕ ∖ { 𝐾 } ) ∈ V ) |
125 |
48
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → vol : dom vol ⟶ ( 0 [,] +∞ ) ) |
126 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → 𝜑 ) |
127 |
|
eldifi |
⊢ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) → 𝑗 ∈ ℕ ) |
128 |
127
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → 𝑗 ∈ ℕ ) |
129 |
126 128 50
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → ( 𝐶 ‘ 𝑗 ) ∈ ℝ ) |
130 |
128 87
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ∈ ℝ* ) |
131 |
129 130 88
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ∈ dom vol ) |
132 |
125 131
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ∈ ( 0 [,] +∞ ) ) |
133 |
64 124 132
|
sge0xrclmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ∈ ℝ* ) |
134 |
47 90 120
|
sge0lessmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) |
135 |
133 93 62 134 101
|
xrlelttrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) < +∞ ) |
136 |
133 62 135
|
xrltned |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ≠ +∞ ) |
137 |
136
|
neneqd |
⊢ ( 𝜑 → ¬ ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) = +∞ ) |
138 |
64 124 132
|
sge0repnfmpt |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ∈ ℝ ↔ ¬ ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) = +∞ ) ) |
139 |
137 138
|
mpbird |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ∈ ℝ ) |
140 |
16 17
|
resubcld |
⊢ ( 𝜑 → ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) ∈ ℝ ) |
141 |
128 57
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ∈ ( 0 [,] +∞ ) ) |
142 |
128 56
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ∈ dom vol ) |
143 |
128 69
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → ( 𝐶 ‘ 𝑗 ) ∈ ℝ* ) |
144 |
128 70
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → ( 𝐶 ‘ 𝑗 ) ≤ ( 𝐶 ‘ 𝑗 ) ) |
145 |
|
iftrue |
⊢ ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) = ( 𝐷 ‘ 𝑗 ) ) |
146 |
145
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) = ( 𝐷 ‘ 𝑗 ) ) |
147 |
51
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) ≤ ( 𝐷 ‘ 𝑗 ) ) |
148 |
147
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( 𝐷 ‘ 𝑗 ) ≤ ( 𝐷 ‘ 𝑗 ) ) |
149 |
51
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( 𝐷 ‘ 𝑗 ) ∈ ℝ ) |
150 |
85
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → 𝑀 ∈ ℝ ) |
151 |
52
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → 𝑆 ∈ ℝ ) |
152 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) |
153 |
24 9
|
jca |
⊢ ( 𝜑 → ( 𝑆 < ( 𝐷 ‘ 𝐾 ) ∧ 𝑆 < 𝐵 ) ) |
154 |
|
ltmin |
⊢ ( ( 𝑆 ∈ ℝ ∧ ( 𝐷 ‘ 𝐾 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑆 < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ↔ ( 𝑆 < ( 𝐷 ‘ 𝐾 ) ∧ 𝑆 < 𝐵 ) ) ) |
155 |
21 14 2 154
|
syl3anc |
⊢ ( 𝜑 → ( 𝑆 < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ↔ ( 𝑆 < ( 𝐷 ‘ 𝐾 ) ∧ 𝑆 < 𝐵 ) ) ) |
156 |
153 155
|
mpbird |
⊢ ( 𝜑 → 𝑆 < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ) |
157 |
156 32
|
breqtrd |
⊢ ( 𝜑 → 𝑆 < 𝑀 ) |
158 |
157
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → 𝑆 < 𝑀 ) |
159 |
149 151 150 152 158
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( 𝐷 ‘ 𝑗 ) < 𝑀 ) |
160 |
149 150 159
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 ) |
161 |
148 160
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( ( 𝐷 ‘ 𝑗 ) ≤ ( 𝐷 ‘ 𝑗 ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 ) ) |
162 |
|
lemin |
⊢ ( ( ( 𝐷 ‘ 𝑗 ) ∈ ℝ ∧ ( 𝐷 ‘ 𝑗 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑗 ) ≤ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ↔ ( ( 𝐷 ‘ 𝑗 ) ≤ ( 𝐷 ‘ 𝑗 ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 ) ) ) |
163 |
149 149 150 162
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( ( 𝐷 ‘ 𝑗 ) ≤ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ↔ ( ( 𝐷 ‘ 𝑗 ) ≤ ( 𝐷 ‘ 𝑗 ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 ) ) ) |
164 |
161 163
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( 𝐷 ‘ 𝑗 ) ≤ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) |
165 |
146 164
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ≤ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) |
166 |
|
iffalse |
⊢ ( ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) = 𝑆 ) |
167 |
166
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) = 𝑆 ) |
168 |
52
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → 𝑆 ∈ ℝ ) |
169 |
86
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ∈ ℝ ) |
170 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) |
171 |
51
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( 𝐷 ‘ 𝑗 ) ∈ ℝ ) |
172 |
168 171
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( 𝑆 < ( 𝐷 ‘ 𝑗 ) ↔ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) ) |
173 |
170 172
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → 𝑆 < ( 𝐷 ‘ 𝑗 ) ) |
174 |
157
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → 𝑆 < 𝑀 ) |
175 |
173 174
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( 𝑆 < ( 𝐷 ‘ 𝑗 ) ∧ 𝑆 < 𝑀 ) ) |
176 |
85
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → 𝑀 ∈ ℝ ) |
177 |
|
ltmin |
⊢ ( ( 𝑆 ∈ ℝ ∧ ( 𝐷 ‘ 𝑗 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝑆 < if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ↔ ( 𝑆 < ( 𝐷 ‘ 𝑗 ) ∧ 𝑆 < 𝑀 ) ) ) |
178 |
168 171 176 177
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → ( 𝑆 < if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ↔ ( 𝑆 < ( 𝐷 ‘ 𝑗 ) ∧ 𝑆 < 𝑀 ) ) ) |
179 |
175 178
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → 𝑆 < if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) |
180 |
168 169 179
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → 𝑆 ≤ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) |
181 |
167 180
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ¬ ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ≤ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) |
182 |
165 181
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ≤ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) |
183 |
128 182
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ≤ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) |
184 |
|
icossico |
⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) ∈ ℝ* ∧ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ∈ ℝ* ) ∧ ( ( 𝐶 ‘ 𝑗 ) ≤ ( 𝐶 ‘ 𝑗 ) ∧ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ≤ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ⊆ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) |
185 |
143 130 144 183 184
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ⊆ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) |
186 |
|
volss |
⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ∈ dom vol ∧ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ∈ dom vol ∧ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ⊆ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ≤ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) |
187 |
142 131 185 186
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ≤ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) |
188 |
64 124 141 132 187
|
sge0lempt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) |
189 |
121 139 140 188
|
leadd2dd |
⊢ ( 𝜑 → ( ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ≤ ( ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) ) |
190 |
|
difsnid |
⊢ ( 𝐾 ∈ ℕ → ( ( ℕ ∖ { 𝐾 } ) ∪ { 𝐾 } ) = ℕ ) |
191 |
10 190
|
syl |
⊢ ( 𝜑 → ( ( ℕ ∖ { 𝐾 } ) ∪ { 𝐾 } ) = ℕ ) |
192 |
191
|
eqcomd |
⊢ ( 𝜑 → ℕ = ( ( ℕ ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) |
193 |
192
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) = ( 𝑗 ∈ ( ( ℕ ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) |
194 |
193
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ( ( ℕ ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) |
195 |
|
neldifsnd |
⊢ ( 𝜑 → ¬ 𝐾 ∈ ( ℕ ∖ { 𝐾 } ) ) |
196 |
|
fveq2 |
⊢ ( 𝑗 = 𝐾 → ( 𝐶 ‘ 𝑗 ) = ( 𝐶 ‘ 𝐾 ) ) |
197 |
|
fveq2 |
⊢ ( 𝑗 = 𝐾 → ( 𝐷 ‘ 𝑗 ) = ( 𝐷 ‘ 𝐾 ) ) |
198 |
197
|
breq1d |
⊢ ( 𝑗 = 𝐾 → ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 ↔ ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 ) ) |
199 |
198 197
|
ifbieq1d |
⊢ ( 𝑗 = 𝐾 → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) = if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) |
200 |
196 199
|
oveq12d |
⊢ ( 𝑗 = 𝐾 → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) = ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) |
201 |
200
|
fveq2d |
⊢ ( 𝑗 = 𝐾 → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) = ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ) |
202 |
48
|
a1i |
⊢ ( 𝜑 → vol : dom vol ⟶ ( 0 [,] +∞ ) ) |
203 |
14 21
|
ifcld |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ∈ ℝ ) |
204 |
203
|
rexrd |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ∈ ℝ* ) |
205 |
|
icombl |
⊢ ( ( ( 𝐶 ‘ 𝐾 ) ∈ ℝ ∧ if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ∈ ℝ* ) → ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ∈ dom vol ) |
206 |
17 204 205
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ∈ dom vol ) |
207 |
202 206
|
ffvelrnd |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ∈ ( 0 [,] +∞ ) ) |
208 |
64 124 10 195 141 201 207
|
sge0splitsn |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ( ( ℕ ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) = ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) +𝑒 ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ) ) |
209 |
|
volicore |
⊢ ( ( ( 𝐶 ‘ 𝐾 ) ∈ ℝ ∧ if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ∈ ℝ ) |
210 |
17 203 209
|
syl2anc |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ∈ ℝ ) |
211 |
|
rexadd |
⊢ ( ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ∈ ℝ ∧ ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ∈ ℝ ) → ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) +𝑒 ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ) = ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) + ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ) ) |
212 |
121 210 211
|
syl2anc |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) +𝑒 ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ) = ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) + ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ) ) |
213 |
|
volico |
⊢ ( ( ( 𝐶 ‘ 𝐾 ) ∈ ℝ ∧ if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) = if ( ( 𝐶 ‘ 𝐾 ) < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) , ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) − ( 𝐶 ‘ 𝐾 ) ) , 0 ) ) |
214 |
17 203 213
|
syl2anc |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) = if ( ( 𝐶 ‘ 𝐾 ) < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) , ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) − ( 𝐶 ‘ 𝐾 ) ) , 0 ) ) |
215 |
21 14
|
ltnled |
⊢ ( 𝜑 → ( 𝑆 < ( 𝐷 ‘ 𝐾 ) ↔ ¬ ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 ) ) |
216 |
24 215
|
mpbid |
⊢ ( 𝜑 → ¬ ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 ) |
217 |
216
|
iffalsed |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) = 𝑆 ) |
218 |
217
|
breq2d |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 𝐾 ) < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ↔ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) ) |
219 |
218
|
ifbid |
⊢ ( 𝜑 → if ( ( 𝐶 ‘ 𝐾 ) < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) , ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) − ( 𝐶 ‘ 𝐾 ) ) , 0 ) = if ( ( 𝐶 ‘ 𝐾 ) < 𝑆 , ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) − ( 𝐶 ‘ 𝐾 ) ) , 0 ) ) |
220 |
217
|
oveq1d |
⊢ ( 𝜑 → ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) − ( 𝐶 ‘ 𝐾 ) ) = ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ) |
221 |
220
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) − ( 𝐶 ‘ 𝐾 ) ) = ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ) |
222 |
217 204
|
eqeltrrd |
⊢ ( 𝜑 → 𝑆 ∈ ℝ* ) |
223 |
222
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → 𝑆 ∈ ℝ* ) |
224 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → ( 𝐶 ‘ 𝐾 ) ∈ ℝ* ) |
225 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) |
226 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → 𝑆 ∈ ℝ ) |
227 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → ( 𝐶 ‘ 𝐾 ) ∈ ℝ ) |
228 |
226 227
|
lenltd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → ( 𝑆 ≤ ( 𝐶 ‘ 𝐾 ) ↔ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) ) |
229 |
225 228
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → 𝑆 ≤ ( 𝐶 ‘ 𝐾 ) ) |
230 |
|
icogelb |
⊢ ( ( ( 𝐶 ‘ 𝐾 ) ∈ ℝ* ∧ ( 𝐷 ‘ 𝐾 ) ∈ ℝ* ∧ 𝑆 ∈ ( ( 𝐶 ‘ 𝐾 ) [,) ( 𝐷 ‘ 𝐾 ) ) ) → ( 𝐶 ‘ 𝐾 ) ≤ 𝑆 ) |
231 |
22 18 11 230
|
syl3anc |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝐾 ) ≤ 𝑆 ) |
232 |
231
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → ( 𝐶 ‘ 𝐾 ) ≤ 𝑆 ) |
233 |
223 224 229 232
|
xrletrid |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → 𝑆 = ( 𝐶 ‘ 𝐾 ) ) |
234 |
233
|
oveq1d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) = ( ( 𝐶 ‘ 𝐾 ) − ( 𝐶 ‘ 𝐾 ) ) ) |
235 |
227
|
recnd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → ( 𝐶 ‘ 𝐾 ) ∈ ℂ ) |
236 |
235
|
subidd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → ( ( 𝐶 ‘ 𝐾 ) − ( 𝐶 ‘ 𝐾 ) ) = 0 ) |
237 |
234 236
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ‘ 𝐾 ) < 𝑆 ) → 0 = ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ) |
238 |
221 237
|
ifeqda |
⊢ ( 𝜑 → if ( ( 𝐶 ‘ 𝐾 ) < 𝑆 , ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) − ( 𝐶 ‘ 𝐾 ) ) , 0 ) = ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ) |
239 |
214 219 238
|
3eqtrd |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) = ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ) |
240 |
239
|
oveq2d |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) + ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ) = ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) + ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ) ) |
241 |
121
|
recnd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ∈ ℂ ) |
242 |
17
|
recnd |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝐾 ) ∈ ℂ ) |
243 |
39 242
|
subcld |
⊢ ( 𝜑 → ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ∈ ℂ ) |
244 |
241 243
|
addcomd |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) + ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ) = ( ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) |
245 |
212 240 244
|
3eqtrd |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) +𝑒 ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑆 , ( 𝐷 ‘ 𝐾 ) , 𝑆 ) ) ) ) = ( ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) |
246 |
194 208 245
|
3eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) = ( ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) |
247 |
246
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑆 ) + ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) = ( ( 𝑀 − 𝑆 ) + ( ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) ) |
248 |
43
|
recnd |
⊢ ( 𝜑 → ( 𝑀 − 𝑆 ) ∈ ℂ ) |
249 |
248 243 241
|
addassd |
⊢ ( 𝜑 → ( ( ( 𝑀 − 𝑆 ) + ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) = ( ( 𝑀 − 𝑆 ) + ( ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) ) |
250 |
249
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑆 ) + ( ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) = ( ( ( 𝑀 − 𝑆 ) + ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) |
251 |
38 39 242
|
npncand |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑆 ) + ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ) = ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) ) |
252 |
251
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑀 − 𝑆 ) + ( 𝑆 − ( 𝐶 ‘ 𝐾 ) ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) = ( ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) |
253 |
247 250 252
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑆 ) + ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) = ( ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ) |
254 |
192
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) = ( 𝑗 ∈ ( ( ℕ ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) |
255 |
254
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ( ( ℕ ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) |
256 |
197
|
breq1d |
⊢ ( 𝑗 = 𝐾 → ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 ↔ ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) ) |
257 |
256 197
|
ifbieq1d |
⊢ ( 𝑗 = 𝐾 → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) = if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) |
258 |
196 257
|
oveq12d |
⊢ ( 𝑗 = 𝐾 → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) = ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) |
259 |
258
|
fveq2d |
⊢ ( 𝑗 = 𝐾 → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) = ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ) |
260 |
14 16
|
ifcld |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ∈ ℝ ) |
261 |
260
|
rexrd |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ∈ ℝ* ) |
262 |
|
icombl |
⊢ ( ( ( 𝐶 ‘ 𝐾 ) ∈ ℝ ∧ if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ∈ ℝ* ) → ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ∈ dom vol ) |
263 |
17 261 262
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ∈ dom vol ) |
264 |
202 263
|
ffvelrnd |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ∈ ( 0 [,] +∞ ) ) |
265 |
64 124 10 195 132 259 264
|
sge0splitsn |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ( ( ℕ ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) = ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) +𝑒 ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ) ) |
266 |
|
volicore |
⊢ ( ( ( 𝐶 ‘ 𝐾 ) ∈ ℝ ∧ if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ∈ ℝ ) |
267 |
17 260 266
|
syl2anc |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ∈ ℝ ) |
268 |
|
rexadd |
⊢ ( ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ∈ ℝ ∧ ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ∈ ℝ ) → ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) +𝑒 ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ) = ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) + ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ) ) |
269 |
139 267 268
|
syl2anc |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) +𝑒 ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ) = ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) + ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ) ) |
270 |
|
volico |
⊢ ( ( ( 𝐶 ‘ 𝐾 ) ∈ ℝ ∧ if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) = if ( ( 𝐶 ‘ 𝐾 ) < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) , ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) − ( 𝐶 ‘ 𝐾 ) ) , 0 ) ) |
271 |
17 260 270
|
syl2anc |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) = if ( ( 𝐶 ‘ 𝐾 ) < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) , ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) − ( 𝐶 ‘ 𝐾 ) ) , 0 ) ) |
272 |
24 157
|
jca |
⊢ ( 𝜑 → ( 𝑆 < ( 𝐷 ‘ 𝐾 ) ∧ 𝑆 < 𝑀 ) ) |
273 |
|
ltmin |
⊢ ( ( 𝑆 ∈ ℝ ∧ ( 𝐷 ‘ 𝐾 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝑆 < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ↔ ( 𝑆 < ( 𝐷 ‘ 𝐾 ) ∧ 𝑆 < 𝑀 ) ) ) |
274 |
21 14 16 273
|
syl3anc |
⊢ ( 𝜑 → ( 𝑆 < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ↔ ( 𝑆 < ( 𝐷 ‘ 𝐾 ) ∧ 𝑆 < 𝑀 ) ) ) |
275 |
272 274
|
mpbird |
⊢ ( 𝜑 → 𝑆 < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) |
276 |
17 21 260 231 275
|
lelttrd |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝐾 ) < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) |
277 |
276
|
iftrued |
⊢ ( 𝜑 → if ( ( 𝐶 ‘ 𝐾 ) < if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) , ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) − ( 𝐶 ‘ 𝐾 ) ) , 0 ) = ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) − ( 𝐶 ‘ 𝐾 ) ) ) |
278 |
|
iftrue |
⊢ ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) = ( 𝐷 ‘ 𝐾 ) ) |
279 |
278
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) = ( 𝐷 ‘ 𝐾 ) ) |
280 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) → ( 𝐷 ‘ 𝐾 ) ∈ ℝ* ) |
281 |
16
|
rexrd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ* ) |
282 |
281
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) → 𝑀 ∈ ℝ* ) |
283 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) → ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) |
284 |
|
min1 |
⊢ ( ( ( 𝐷 ‘ 𝐾 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ≤ ( 𝐷 ‘ 𝐾 ) ) |
285 |
14 2 284
|
syl2anc |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝐵 , ( 𝐷 ‘ 𝐾 ) , 𝐵 ) ≤ ( 𝐷 ‘ 𝐾 ) ) |
286 |
13 285
|
eqbrtrd |
⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 ‘ 𝐾 ) ) |
287 |
286
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) → 𝑀 ≤ ( 𝐷 ‘ 𝐾 ) ) |
288 |
280 282 283 287
|
xrletrid |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) → ( 𝐷 ‘ 𝐾 ) = 𝑀 ) |
289 |
279 288
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) = 𝑀 ) |
290 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) → ¬ ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) |
291 |
290
|
iffalsed |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 ) → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) = 𝑀 ) |
292 |
289 291
|
pm2.61dan |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) = 𝑀 ) |
293 |
292
|
oveq1d |
⊢ ( 𝜑 → ( if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) − ( 𝐶 ‘ 𝐾 ) ) = ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) ) |
294 |
271 277 293
|
3eqtrd |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) = ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) ) |
295 |
294
|
oveq2d |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) + ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ) = ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) + ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) ) ) |
296 |
139
|
recnd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ∈ ℂ ) |
297 |
38 242
|
subcld |
⊢ ( 𝜑 → ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) ∈ ℂ ) |
298 |
296 297
|
addcomd |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) + ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) ) = ( ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) ) |
299 |
269 295 298
|
3eqtrd |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) +𝑒 ( vol ‘ ( ( 𝐶 ‘ 𝐾 ) [,) if ( ( 𝐷 ‘ 𝐾 ) ≤ 𝑀 , ( 𝐷 ‘ 𝐾 ) , 𝑀 ) ) ) ) = ( ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) ) |
300 |
255 265 299
|
3eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) = ( ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) ) |
301 |
253 300
|
breq12d |
⊢ ( 𝜑 → ( ( ( 𝑀 − 𝑆 ) + ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ↔ ( ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ≤ ( ( 𝑀 − ( 𝐶 ‘ 𝐾 ) ) + ( Σ^ ‘ ( 𝑗 ∈ ( ℕ ∖ { 𝐾 } ) ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) ) ) |
302 |
189 301
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑆 ) + ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑆 , ( 𝐷 ‘ 𝑗 ) , 𝑆 ) ) ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) |
303 |
45 84 105 119 302
|
letrd |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑆 ) + ( 𝑆 − 𝐴 ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) |
304 |
42 303
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑀 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) |
305 |
37 304
|
jca |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝑀 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) ) |
306 |
|
oveq1 |
⊢ ( 𝑧 = 𝑀 → ( 𝑧 − 𝐴 ) = ( 𝑀 − 𝐴 ) ) |
307 |
|
breq2 |
⊢ ( 𝑧 = 𝑀 → ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 ↔ ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 ) ) |
308 |
|
id |
⊢ ( 𝑧 = 𝑀 → 𝑧 = 𝑀 ) |
309 |
307 308
|
ifbieq2d |
⊢ ( 𝑧 = 𝑀 → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) = if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) |
310 |
309
|
oveq2d |
⊢ ( 𝑧 = 𝑀 → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) = ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) |
311 |
310
|
fveq2d |
⊢ ( 𝑧 = 𝑀 → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) = ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) |
312 |
311
|
mpteq2dv |
⊢ ( 𝑧 = 𝑀 → ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) |
313 |
312
|
fveq2d |
⊢ ( 𝑧 = 𝑀 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) |
314 |
306 313
|
breq12d |
⊢ ( 𝑧 = 𝑀 → ( ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) ↔ ( 𝑀 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) ) |
315 |
314
|
elrab |
⊢ ( 𝑀 ∈ { 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) } ↔ ( 𝑀 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝑀 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑀 , ( 𝐷 ‘ 𝑗 ) , 𝑀 ) ) ) ) ) ) ) |
316 |
305 315
|
sylibr |
⊢ ( 𝜑 → 𝑀 ∈ { 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) } ) |
317 |
316 6
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) |
318 |
272
|
simprd |
⊢ ( 𝜑 → 𝑆 < 𝑀 ) |
319 |
|
breq2 |
⊢ ( 𝑢 = 𝑀 → ( 𝑆 < 𝑢 ↔ 𝑆 < 𝑀 ) ) |
320 |
319
|
rspcev |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 𝑆 < 𝑀 ) → ∃ 𝑢 ∈ 𝑈 𝑆 < 𝑢 ) |
321 |
317 318 320
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝑈 𝑆 < 𝑢 ) |