Metamath Proof Explorer


Theorem hoidmv1lelem2

Description: This is the contradiction proven in step (c) in the proof of Lemma 114B of Fremlin1 p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoidmv1lelem2.a φ A
hoidmv1lelem2.b φ B
hoidmv1lelem2.c φ C :
hoidmv1lelem2.d φ D :
hoidmv1lelem2.r φ sum^ j vol C j D j
hoidmv1lelem2.u U = z A B | z A sum^ j vol C j if D j z D j z
hoidmv1lelem2.e φ S U
hoidmv1lelem2.g φ A S
hoidmv1lelem2.l φ S < B
hoidmv1lelem2.k φ K
hoidmv1lelem2.s φ S C K D K
hoidmv1lelem2.m M = if D K B D K B
Assertion hoidmv1lelem2 φ u U S < u

Proof

Step Hyp Ref Expression
1 hoidmv1lelem2.a φ A
2 hoidmv1lelem2.b φ B
3 hoidmv1lelem2.c φ C :
4 hoidmv1lelem2.d φ D :
5 hoidmv1lelem2.r φ sum^ j vol C j D j
6 hoidmv1lelem2.u U = z A B | z A sum^ j vol C j if D j z D j z
7 hoidmv1lelem2.e φ S U
8 hoidmv1lelem2.g φ A S
9 hoidmv1lelem2.l φ S < B
10 hoidmv1lelem2.k φ K
11 hoidmv1lelem2.s φ S C K D K
12 hoidmv1lelem2.m M = if D K B D K B
13 12 a1i φ M = if D K B D K B
14 4 10 ffvelrnd φ D K
15 14 2 ifcld φ if D K B D K B
16 13 15 eqeltrd φ M
17 3 10 ffvelrnd φ C K
18 14 rexrd φ D K *
19 icossre C K D K * C K D K
20 17 18 19 syl2anc φ C K D K
21 20 11 sseldd φ S
22 17 rexrd φ C K *
23 icoltub C K * D K * S C K D K S < D K
24 22 18 11 23 syl3anc φ S < D K
25 21 14 24 ltled φ S D K
26 21 2 9 ltled φ S B
27 25 26 jca φ S D K S B
28 lemin S D K B S if D K B D K B S D K S B
29 21 14 2 28 syl3anc φ S if D K B D K B S D K S B
30 27 29 mpbird φ S if D K B D K B
31 1 21 15 8 30 letrd φ A if D K B D K B
32 13 eqcomd φ if D K B D K B = M
33 31 32 breqtrd φ A M
34 min2 D K B if D K B D K B B
35 14 2 34 syl2anc φ if D K B D K B B
36 13 35 eqbrtrd φ M B
37 1 2 16 33 36 eliccd φ M A B
38 16 recnd φ M
39 21 recnd φ S
40 1 recnd φ A
41 38 39 40 npncand φ M S + S - A = M A
42 41 eqcomd φ M A = M S + S - A
43 16 21 resubcld φ M S
44 21 1 resubcld φ S A
45 43 44 readdcld φ M S + S - A
46 nnex V
47 46 a1i φ V
48 volf vol : dom vol 0 +∞
49 48 a1i φ j vol : dom vol 0 +∞
50 3 ffvelrnda φ j C j
51 4 ffvelrnda φ j D j
52 21 adantr φ j S
53 51 52 ifcld φ j if D j S D j S
54 53 rexrd φ j if D j S D j S *
55 icombl C j if D j S D j S * C j if D j S D j S dom vol
56 50 54 55 syl2anc φ j C j if D j S D j S dom vol
57 49 56 ffvelrnd φ j vol C j if D j S D j S 0 +∞
58 eqid j vol C j if D j S D j S = j vol C j if D j S D j S
59 57 58 fmptd φ j vol C j if D j S D j S : 0 +∞
60 47 59 sge0xrcl φ sum^ j vol C j if D j S D j S *
61 pnfxr +∞ *
62 61 a1i φ +∞ *
63 5 rexrd φ sum^ j vol C j D j *
64 nfv j φ
65 51 rexrd φ j D j *
66 icombl C j D j * C j D j dom vol
67 50 65 66 syl2anc φ j C j D j dom vol
68 49 67 ffvelrnd φ j vol C j D j 0 +∞
69 50 rexrd φ j C j *
70 50 leidd φ j C j C j
71 min1 D j S if D j S D j S D j
72 51 52 71 syl2anc φ j if D j S D j S D j
73 icossico C j * D j * C j C j if D j S D j S D j C j if D j S D j S C j D j
74 69 65 70 72 73 syl22anc φ j C j if D j S D j S C j D j
75 volss C j if D j S D j S dom vol C j D j dom vol C j if D j S D j S C j D j vol C j if D j S D j S vol C j D j
76 56 67 74 75 syl3anc φ j vol C j if D j S D j S vol C j D j
77 64 47 57 68 76 sge0lempt φ sum^ j vol C j if D j S D j S sum^ j vol C j D j
78 5 ltpnfd φ sum^ j vol C j D j < +∞
79 60 63 62 77 78 xrlelttrd φ sum^ j vol C j if D j S D j S < +∞
80 60 62 79 xrltned φ sum^ j vol C j if D j S D j S +∞
81 80 neneqd φ ¬ sum^ j vol C j if D j S D j S = +∞
82 47 59 sge0repnf φ sum^ j vol C j if D j S D j S ¬ sum^ j vol C j if D j S D j S = +∞
83 81 82 mpbird φ sum^ j vol C j if D j S D j S
84 43 83 readdcld φ M - S + sum^ j vol C j if D j S D j S
85 16 adantr φ j M
86 51 85 ifcld φ j if D j M D j M
87 86 rexrd φ j if D j M D j M *
88 icombl C j if D j M D j M * C j if D j M D j M dom vol
89 50 87 88 syl2anc φ j C j if D j M D j M dom vol
90 49 89 ffvelrnd φ j vol C j if D j M D j M 0 +∞
91 eqid j vol C j if D j M D j M = j vol C j if D j M D j M
92 90 91 fmptd φ j vol C j if D j M D j M : 0 +∞
93 47 92 sge0xrcl φ sum^ j vol C j if D j M D j M *
94 min1 D j M if D j M D j M D j
95 51 85 94 syl2anc φ j if D j M D j M D j
96 icossico C j * D j * C j C j if D j M D j M D j C j if D j M D j M C j D j
97 69 65 70 95 96 syl22anc φ j C j if D j M D j M C j D j
98 volss C j if D j M D j M dom vol C j D j dom vol C j if D j M D j M C j D j vol C j if D j M D j M vol C j D j
99 89 67 97 98 syl3anc φ j vol C j if D j M D j M vol C j D j
100 64 47 90 68 99 sge0lempt φ sum^ j vol C j if D j M D j M sum^ j vol C j D j
101 93 63 62 100 78 xrlelttrd φ sum^ j vol C j if D j M D j M < +∞
102 93 62 101 xrltned φ sum^ j vol C j if D j M D j M +∞
103 102 neneqd φ ¬ sum^ j vol C j if D j M D j M = +∞
104 47 92 sge0repnf φ sum^ j vol C j if D j M D j M ¬ sum^ j vol C j if D j M D j M = +∞
105 103 104 mpbird φ sum^ j vol C j if D j M D j M
106 7 6 eleqtrdi φ S z A B | z A sum^ j vol C j if D j z D j z
107 oveq1 z = S z A = S A
108 simpl z = S j z = S
109 108 breq2d z = S j D j z D j S
110 109 108 ifbieq2d z = S j if D j z D j z = if D j S D j S
111 110 oveq2d z = S j C j if D j z D j z = C j if D j S D j S
112 111 fveq2d z = S j vol C j if D j z D j z = vol C j if D j S D j S
113 112 mpteq2dva z = S j vol C j if D j z D j z = j vol C j if D j S D j S
114 113 fveq2d z = S sum^ j vol C j if D j z D j z = sum^ j vol C j if D j S D j S
115 107 114 breq12d z = S z A sum^ j vol C j if D j z D j z S A sum^ j vol C j if D j S D j S
116 115 elrab S z A B | z A sum^ j vol C j if D j z D j z S A B S A sum^ j vol C j if D j S D j S
117 106 116 sylib φ S A B S A sum^ j vol C j if D j S D j S
118 117 simprd φ S A sum^ j vol C j if D j S D j S
119 44 83 43 118 leadd2dd φ M S + S - A M - S + sum^ j vol C j if D j S D j S
120 difssd φ K
121 64 47 57 83 120 sge0ssrempt φ sum^ j K vol C j if D j S D j S
122 difexg V K V
123 46 122 ax-mp K V
124 123 a1i φ K V
125 48 a1i φ j K vol : dom vol 0 +∞
126 simpl φ j K φ
127 eldifi j K j
128 127 adantl φ j K j
129 126 128 50 syl2anc φ j K C j
130 128 87 syldan φ j K if D j M D j M *
131 129 130 88 syl2anc φ j K C j if D j M D j M dom vol
132 125 131 ffvelrnd φ j K vol C j if D j M D j M 0 +∞
133 64 124 132 sge0xrclmpt φ sum^ j K vol C j if D j M D j M *
134 47 90 120 sge0lessmpt φ sum^ j K vol C j if D j M D j M sum^ j vol C j if D j M D j M
135 133 93 62 134 101 xrlelttrd φ sum^ j K vol C j if D j M D j M < +∞
136 133 62 135 xrltned φ sum^ j K vol C j if D j M D j M +∞
137 136 neneqd φ ¬ sum^ j K vol C j if D j M D j M = +∞
138 64 124 132 sge0repnfmpt φ sum^ j K vol C j if D j M D j M ¬ sum^ j K vol C j if D j M D j M = +∞
139 137 138 mpbird φ sum^ j K vol C j if D j M D j M
140 16 17 resubcld φ M C K
141 128 57 syldan φ j K vol C j if D j S D j S 0 +∞
142 128 56 syldan φ j K C j if D j S D j S dom vol
143 128 69 syldan φ j K C j *
144 128 70 syldan φ j K C j C j
145 iftrue D j S if D j S D j S = D j
146 145 adantl φ j D j S if D j S D j S = D j
147 51 leidd φ j D j D j
148 147 adantr φ j D j S D j D j
149 51 adantr φ j D j S D j
150 85 adantr φ j D j S M
151 52 adantr φ j D j S S
152 simpr φ j D j S D j S
153 24 9 jca φ S < D K S < B
154 ltmin S D K B S < if D K B D K B S < D K S < B
155 21 14 2 154 syl3anc φ S < if D K B D K B S < D K S < B
156 153 155 mpbird φ S < if D K B D K B
157 156 32 breqtrd φ S < M
158 157 ad2antrr φ j D j S S < M
159 149 151 150 152 158 lelttrd φ j D j S D j < M
160 149 150 159 ltled φ j D j S D j M
161 148 160 jca φ j D j S D j D j D j M
162 lemin D j D j M D j if D j M D j M D j D j D j M
163 149 149 150 162 syl3anc φ j D j S D j if D j M D j M D j D j D j M
164 161 163 mpbird φ j D j S D j if D j M D j M
165 146 164 eqbrtrd φ j D j S if D j S D j S if D j M D j M
166 iffalse ¬ D j S if D j S D j S = S
167 166 adantl φ j ¬ D j S if D j S D j S = S
168 52 adantr φ j ¬ D j S S
169 86 adantr φ j ¬ D j S if D j M D j M
170 simpr φ j ¬ D j S ¬ D j S
171 51 adantr φ j ¬ D j S D j
172 168 171 ltnled φ j ¬ D j S S < D j ¬ D j S
173 170 172 mpbird φ j ¬ D j S S < D j
174 157 ad2antrr φ j ¬ D j S S < M
175 173 174 jca φ j ¬ D j S S < D j S < M
176 85 adantr φ j ¬ D j S M
177 ltmin S D j M S < if D j M D j M S < D j S < M
178 168 171 176 177 syl3anc φ j ¬ D j S S < if D j M D j M S < D j S < M
179 175 178 mpbird φ j ¬ D j S S < if D j M D j M
180 168 169 179 ltled φ j ¬ D j S S if D j M D j M
181 167 180 eqbrtrd φ j ¬ D j S if D j S D j S if D j M D j M
182 165 181 pm2.61dan φ j if D j S D j S if D j M D j M
183 128 182 syldan φ j K if D j S D j S if D j M D j M
184 icossico C j * if D j M D j M * C j C j if D j S D j S if D j M D j M C j if D j S D j S C j if D j M D j M
185 143 130 144 183 184 syl22anc φ j K C j if D j S D j S C j if D j M D j M
186 volss C j if D j S D j S dom vol C j if D j M D j M dom vol C j if D j S D j S C j if D j M D j M vol C j if D j S D j S vol C j if D j M D j M
187 142 131 185 186 syl3anc φ j K vol C j if D j S D j S vol C j if D j M D j M
188 64 124 141 132 187 sge0lempt φ sum^ j K vol C j if D j S D j S sum^ j K vol C j if D j M D j M
189 121 139 140 188 leadd2dd φ M - C K + sum^ j K vol C j if D j S D j S M - C K + sum^ j K vol C j if D j M D j M
190 difsnid K K K =
191 10 190 syl φ K K =
192 191 eqcomd φ = K K
193 192 mpteq1d φ j vol C j if D j S D j S = j K K vol C j if D j S D j S
194 193 fveq2d φ sum^ j vol C j if D j S D j S = sum^ j K K vol C j if D j S D j S
195 neldifsnd φ ¬ K K
196 fveq2 j = K C j = C K
197 fveq2 j = K D j = D K
198 197 breq1d j = K D j S D K S
199 198 197 ifbieq1d j = K if D j S D j S = if D K S D K S
200 196 199 oveq12d j = K C j if D j S D j S = C K if D K S D K S
201 200 fveq2d j = K vol C j if D j S D j S = vol C K if D K S D K S
202 48 a1i φ vol : dom vol 0 +∞
203 14 21 ifcld φ if D K S D K S
204 203 rexrd φ if D K S D K S *
205 icombl C K if D K S D K S * C K if D K S D K S dom vol
206 17 204 205 syl2anc φ C K if D K S D K S dom vol
207 202 206 ffvelrnd φ vol C K if D K S D K S 0 +∞
208 64 124 10 195 141 201 207 sge0splitsn φ sum^ j K K vol C j if D j S D j S = sum^ j K vol C j if D j S D j S + 𝑒 vol C K if D K S D K S
209 volicore C K if D K S D K S vol C K if D K S D K S
210 17 203 209 syl2anc φ vol C K if D K S D K S
211 rexadd sum^ j K vol C j if D j S D j S vol C K if D K S D K S sum^ j K vol C j if D j S D j S + 𝑒 vol C K if D K S D K S = sum^ j K vol C j if D j S D j S + vol C K if D K S D K S
212 121 210 211 syl2anc φ sum^ j K vol C j if D j S D j S + 𝑒 vol C K if D K S D K S = sum^ j K vol C j if D j S D j S + vol C K if D K S D K S
213 volico C K if D K S D K S vol C K if D K S D K S = if C K < if D K S D K S if D K S D K S C K 0
214 17 203 213 syl2anc φ vol C K if D K S D K S = if C K < if D K S D K S if D K S D K S C K 0
215 21 14 ltnled φ S < D K ¬ D K S
216 24 215 mpbid φ ¬ D K S
217 216 iffalsed φ if D K S D K S = S
218 217 breq2d φ C K < if D K S D K S C K < S
219 218 ifbid φ if C K < if D K S D K S if D K S D K S C K 0 = if C K < S if D K S D K S C K 0
220 217 oveq1d φ if D K S D K S C K = S C K
221 220 adantr φ C K < S if D K S D K S C K = S C K
222 217 204 eqeltrrd φ S *
223 222 adantr φ ¬ C K < S S *
224 22 adantr φ ¬ C K < S C K *
225 simpr φ ¬ C K < S ¬ C K < S
226 21 adantr φ ¬ C K < S S
227 17 adantr φ ¬ C K < S C K
228 226 227 lenltd φ ¬ C K < S S C K ¬ C K < S
229 225 228 mpbird φ ¬ C K < S S C K
230 icogelb C K * D K * S C K D K C K S
231 22 18 11 230 syl3anc φ C K S
232 231 adantr φ ¬ C K < S C K S
233 223 224 229 232 xrletrid φ ¬ C K < S S = C K
234 233 oveq1d φ ¬ C K < S S C K = C K C K
235 227 recnd φ ¬ C K < S C K
236 235 subidd φ ¬ C K < S C K C K = 0
237 234 236 eqtr2d φ ¬ C K < S 0 = S C K
238 221 237 ifeqda φ if C K < S if D K S D K S C K 0 = S C K
239 214 219 238 3eqtrd φ vol C K if D K S D K S = S C K
240 239 oveq2d φ sum^ j K vol C j if D j S D j S + vol C K if D K S D K S = sum^ j K vol C j if D j S D j S + S - C K
241 121 recnd φ sum^ j K vol C j if D j S D j S
242 17 recnd φ C K
243 39 242 subcld φ S C K
244 241 243 addcomd φ sum^ j K vol C j if D j S D j S + S - C K = S - C K + sum^ j K vol C j if D j S D j S
245 212 240 244 3eqtrd φ sum^ j K vol C j if D j S D j S + 𝑒 vol C K if D K S D K S = S - C K + sum^ j K vol C j if D j S D j S
246 194 208 245 3eqtrd φ sum^ j vol C j if D j S D j S = S - C K + sum^ j K vol C j if D j S D j S
247 246 oveq2d φ M - S + sum^ j vol C j if D j S D j S = M S + S C K + sum^ j K vol C j if D j S D j S
248 43 recnd φ M S
249 248 243 241 addassd φ M S + S C K + sum^ j K vol C j if D j S D j S = M S + S C K + sum^ j K vol C j if D j S D j S
250 249 eqcomd φ M S + S C K + sum^ j K vol C j if D j S D j S = M S + S C K + sum^ j K vol C j if D j S D j S
251 38 39 242 npncand φ M S + S - C K = M C K
252 251 oveq1d φ M S + S C K + sum^ j K vol C j if D j S D j S = M - C K + sum^ j K vol C j if D j S D j S
253 247 250 252 3eqtrd φ M - S + sum^ j vol C j if D j S D j S = M - C K + sum^ j K vol C j if D j S D j S
254 192 mpteq1d φ j vol C j if D j M D j M = j K K vol C j if D j M D j M
255 254 fveq2d φ sum^ j vol C j if D j M D j M = sum^ j K K vol C j if D j M D j M
256 197 breq1d j = K D j M D K M
257 256 197 ifbieq1d j = K if D j M D j M = if D K M D K M
258 196 257 oveq12d j = K C j if D j M D j M = C K if D K M D K M
259 258 fveq2d j = K vol C j if D j M D j M = vol C K if D K M D K M
260 14 16 ifcld φ if D K M D K M
261 260 rexrd φ if D K M D K M *
262 icombl C K if D K M D K M * C K if D K M D K M dom vol
263 17 261 262 syl2anc φ C K if D K M D K M dom vol
264 202 263 ffvelrnd φ vol C K if D K M D K M 0 +∞
265 64 124 10 195 132 259 264 sge0splitsn φ sum^ j K K vol C j if D j M D j M = sum^ j K vol C j if D j M D j M + 𝑒 vol C K if D K M D K M
266 volicore C K if D K M D K M vol C K if D K M D K M
267 17 260 266 syl2anc φ vol C K if D K M D K M
268 rexadd sum^ j K vol C j if D j M D j M vol C K if D K M D K M sum^ j K vol C j if D j M D j M + 𝑒 vol C K if D K M D K M = sum^ j K vol C j if D j M D j M + vol C K if D K M D K M
269 139 267 268 syl2anc φ sum^ j K vol C j if D j M D j M + 𝑒 vol C K if D K M D K M = sum^ j K vol C j if D j M D j M + vol C K if D K M D K M
270 volico C K if D K M D K M vol C K if D K M D K M = if C K < if D K M D K M if D K M D K M C K 0
271 17 260 270 syl2anc φ vol C K if D K M D K M = if C K < if D K M D K M if D K M D K M C K 0
272 24 157 jca φ S < D K S < M
273 ltmin S D K M S < if D K M D K M S < D K S < M
274 21 14 16 273 syl3anc φ S < if D K M D K M S < D K S < M
275 272 274 mpbird φ S < if D K M D K M
276 17 21 260 231 275 lelttrd φ C K < if D K M D K M
277 276 iftrued φ if C K < if D K M D K M if D K M D K M C K 0 = if D K M D K M C K
278 iftrue D K M if D K M D K M = D K
279 278 adantl φ D K M if D K M D K M = D K
280 18 adantr φ D K M D K *
281 16 rexrd φ M *
282 281 adantr φ D K M M *
283 simpr φ D K M D K M
284 min1 D K B if D K B D K B D K
285 14 2 284 syl2anc φ if D K B D K B D K
286 13 285 eqbrtrd φ M D K
287 286 adantr φ D K M M D K
288 280 282 283 287 xrletrid φ D K M D K = M
289 279 288 eqtrd φ D K M if D K M D K M = M
290 simpr φ ¬ D K M ¬ D K M
291 290 iffalsed φ ¬ D K M if D K M D K M = M
292 289 291 pm2.61dan φ if D K M D K M = M
293 292 oveq1d φ if D K M D K M C K = M C K
294 271 277 293 3eqtrd φ vol C K if D K M D K M = M C K
295 294 oveq2d φ sum^ j K vol C j if D j M D j M + vol C K if D K M D K M = sum^ j K vol C j if D j M D j M + M - C K
296 139 recnd φ sum^ j K vol C j if D j M D j M
297 38 242 subcld φ M C K
298 296 297 addcomd φ sum^ j K vol C j if D j M D j M + M - C K = M - C K + sum^ j K vol C j if D j M D j M
299 269 295 298 3eqtrd φ sum^ j K vol C j if D j M D j M + 𝑒 vol C K if D K M D K M = M - C K + sum^ j K vol C j if D j M D j M
300 255 265 299 3eqtrd φ sum^ j vol C j if D j M D j M = M - C K + sum^ j K vol C j if D j M D j M
301 253 300 breq12d φ M - S + sum^ j vol C j if D j S D j S sum^ j vol C j if D j M D j M M - C K + sum^ j K vol C j if D j S D j S M - C K + sum^ j K vol C j if D j M D j M
302 189 301 mpbird φ M - S + sum^ j vol C j if D j S D j S sum^ j vol C j if D j M D j M
303 45 84 105 119 302 letrd φ M S + S - A sum^ j vol C j if D j M D j M
304 42 303 eqbrtrd φ M A sum^ j vol C j if D j M D j M
305 37 304 jca φ M A B M A sum^ j vol C j if D j M D j M
306 oveq1 z = M z A = M A
307 breq2 z = M D j z D j M
308 id z = M z = M
309 307 308 ifbieq2d z = M if D j z D j z = if D j M D j M
310 309 oveq2d z = M C j if D j z D j z = C j if D j M D j M
311 310 fveq2d z = M vol C j if D j z D j z = vol C j if D j M D j M
312 311 mpteq2dv z = M j vol C j if D j z D j z = j vol C j if D j M D j M
313 312 fveq2d z = M sum^ j vol C j if D j z D j z = sum^ j vol C j if D j M D j M
314 306 313 breq12d z = M z A sum^ j vol C j if D j z D j z M A sum^ j vol C j if D j M D j M
315 314 elrab M z A B | z A sum^ j vol C j if D j z D j z M A B M A sum^ j vol C j if D j M D j M
316 305 315 sylibr φ M z A B | z A sum^ j vol C j if D j z D j z
317 316 6 eleqtrrdi φ M U
318 272 simprd φ S < M
319 breq2 u = M S < u S < M
320 319 rspcev M U S < M u U S < u
321 317 318 320 syl2anc φ u U S < u