Step |
Hyp |
Ref |
Expression |
1 |
|
hoidmv1lelem3.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
hoidmv1lelem3.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
hoidmv1lelem3.l |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
4 |
|
hoidmv1lelem3.c |
⊢ ( 𝜑 → 𝐶 : ℕ ⟶ ℝ ) |
5 |
|
hoidmv1lelem3.d |
⊢ ( 𝜑 → 𝐷 : ℕ ⟶ ℝ ) |
6 |
|
hoidmv1lelem3.x |
⊢ ( 𝜑 → ( 𝐴 [,) 𝐵 ) ⊆ ∪ 𝑗 ∈ ℕ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
7 |
|
hoidmv1lelem3.r |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ ) |
8 |
|
hoidmv1lelem3.u |
⊢ 𝑈 = { 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) } |
9 |
|
hoidmv1lelem3.s |
⊢ 𝑆 = sup ( 𝑈 , ℝ , < ) |
10 |
2 1
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
11 |
|
nnex |
⊢ ℕ ∈ V |
12 |
11
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
13 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
14 |
|
0xr |
⊢ 0 ∈ ℝ* |
15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 0 ∈ ℝ* ) |
16 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
17 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → +∞ ∈ ℝ* ) |
18 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) ∈ ℝ ) |
19 |
5
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) ∈ ℝ ) |
20 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
21 |
19 20
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ∈ ℝ ) |
22 |
|
volicore |
⊢ ( ( ( 𝐶 ‘ 𝑗 ) ∈ ℝ ∧ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ∈ ℝ ) |
23 |
18 21 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ∈ ℝ ) |
24 |
23
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ∈ ℝ* ) |
25 |
21
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ∈ ℝ* ) |
26 |
|
icombl |
⊢ ( ( ( 𝐶 ‘ 𝑗 ) ∈ ℝ ∧ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ∈ ℝ* ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ∈ dom vol ) |
27 |
18 25 26
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ∈ dom vol ) |
28 |
|
volge0 |
⊢ ( ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ∈ dom vol → 0 ≤ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ) |
29 |
27 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 0 ≤ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ) |
30 |
23
|
ltpnfd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) < +∞ ) |
31 |
15 17 24 29 30
|
elicod |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ∈ ( 0 [,) +∞ ) ) |
32 |
13 31
|
sseldi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ∈ ( 0 [,] +∞ ) ) |
33 |
|
eqid |
⊢ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ) |
34 |
32 33
|
fmptd |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ) : ℕ ⟶ ( 0 [,] +∞ ) ) |
35 |
12 34
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ) ) ∈ ℝ* ) |
36 |
16
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
37 |
7
|
rexrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ* ) |
38 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
39 |
|
volf |
⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) |
40 |
39
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → vol : dom vol ⟶ ( 0 [,] +∞ ) ) |
41 |
19
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) ∈ ℝ* ) |
42 |
|
icombl |
⊢ ( ( ( 𝐶 ‘ 𝑗 ) ∈ ℝ ∧ ( 𝐷 ‘ 𝑗 ) ∈ ℝ* ) → ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ∈ dom vol ) |
43 |
18 41 42
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ∈ dom vol ) |
44 |
40 43
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ∈ ( 0 [,] +∞ ) ) |
45 |
18
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) ∈ ℝ* ) |
46 |
18
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) ≤ ( 𝐶 ‘ 𝑗 ) ) |
47 |
|
min1 |
⊢ ( ( ( 𝐷 ‘ 𝑗 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ≤ ( 𝐷 ‘ 𝑗 ) ) |
48 |
19 20 47
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ≤ ( 𝐷 ‘ 𝑗 ) ) |
49 |
|
icossico |
⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) ∈ ℝ* ∧ ( 𝐷 ‘ 𝑗 ) ∈ ℝ* ) ∧ ( ( 𝐶 ‘ 𝑗 ) ≤ ( 𝐶 ‘ 𝑗 ) ∧ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ≤ ( 𝐷 ‘ 𝑗 ) ) ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ⊆ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
50 |
45 41 46 48 49
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ⊆ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
51 |
|
volss |
⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ∈ dom vol ∧ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ∈ dom vol ∧ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ⊆ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ≤ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) |
52 |
27 43 50 51
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ≤ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) |
53 |
38 12 32 44 52
|
sge0lempt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
54 |
7
|
ltpnfd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) ) < +∞ ) |
55 |
35 37 36 53 54
|
xrlelttrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ) ) < +∞ ) |
56 |
35 36 55
|
xrltned |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ) ) ≠ +∞ ) |
57 |
56
|
neneqd |
⊢ ( 𝜑 → ¬ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ) ) = +∞ ) |
58 |
12 34
|
sge0repnf |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ) ) ∈ ℝ ↔ ¬ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ) ) = +∞ ) ) |
59 |
57 58
|
mpbird |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ) ) ∈ ℝ ) |
60 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
61 |
1 2
|
iccssred |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
62 |
|
ssrab2 |
⊢ { 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) } ⊆ ( 𝐴 [,] 𝐵 ) |
63 |
8 62
|
eqsstri |
⊢ 𝑈 ⊆ ( 𝐴 [,] 𝐵 ) |
64 |
1 2 3 4 5 7 8 9
|
hoidmv1lelem1 |
⊢ ( 𝜑 → ( 𝑆 ∈ 𝑈 ∧ 𝐴 ∈ 𝑈 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑈 𝑦 ≤ 𝑥 ) ) |
65 |
64
|
simp1d |
⊢ ( 𝜑 → 𝑆 ∈ 𝑈 ) |
66 |
63 65
|
sseldi |
⊢ ( 𝜑 → 𝑆 ∈ ( 𝐴 [,] 𝐵 ) ) |
67 |
61 66
|
sseldd |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
68 |
67
|
rexrd |
⊢ ( 𝜑 → 𝑆 ∈ ℝ* ) |
69 |
|
simpl |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝑆 ) → 𝜑 ) |
70 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝑆 ) → ¬ 𝐵 ≤ 𝑆 ) |
71 |
69 67
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝑆 ) → 𝑆 ∈ ℝ ) |
72 |
69 2
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝑆 ) → 𝐵 ∈ ℝ ) |
73 |
71 72
|
ltnled |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝑆 ) → ( 𝑆 < 𝐵 ↔ ¬ 𝐵 ≤ 𝑆 ) ) |
74 |
70 73
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝑆 ) → 𝑆 < 𝐵 ) |
75 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < 𝐵 ) → ( 𝐴 [,) 𝐵 ) ⊆ ∪ 𝑗 ∈ ℕ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
76 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < 𝐵 ) → 𝐴 ∈ ℝ* ) |
78 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < 𝐵 ) → 𝐵 ∈ ℝ* ) |
79 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < 𝐵 ) → 𝑆 ∈ ℝ* ) |
80 |
63 61
|
sstrid |
⊢ ( 𝜑 → 𝑈 ⊆ ℝ ) |
81 |
65
|
ne0d |
⊢ ( 𝜑 → 𝑈 ≠ ∅ ) |
82 |
64
|
simp3d |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑈 𝑦 ≤ 𝑥 ) |
83 |
64
|
simp2d |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
84 |
|
suprub |
⊢ ( ( ( 𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑈 𝑦 ≤ 𝑥 ) ∧ 𝐴 ∈ 𝑈 ) → 𝐴 ≤ sup ( 𝑈 , ℝ , < ) ) |
85 |
80 81 82 83 84
|
syl31anc |
⊢ ( 𝜑 → 𝐴 ≤ sup ( 𝑈 , ℝ , < ) ) |
86 |
85 9
|
breqtrrdi |
⊢ ( 𝜑 → 𝐴 ≤ 𝑆 ) |
87 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < 𝐵 ) → 𝐴 ≤ 𝑆 ) |
88 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑆 < 𝐵 ) → 𝑆 < 𝐵 ) |
89 |
77 78 79 87 88
|
elicod |
⊢ ( ( 𝜑 ∧ 𝑆 < 𝐵 ) → 𝑆 ∈ ( 𝐴 [,) 𝐵 ) ) |
90 |
75 89
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑆 < 𝐵 ) → 𝑆 ∈ ∪ 𝑗 ∈ ℕ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
91 |
|
eliun |
⊢ ( 𝑆 ∈ ∪ 𝑗 ∈ ℕ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ↔ ∃ 𝑗 ∈ ℕ 𝑆 ∈ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
92 |
90 91
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑆 < 𝐵 ) → ∃ 𝑗 ∈ ℕ 𝑆 ∈ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
93 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < 𝐵 ) → 𝐴 ∈ ℝ ) |
94 |
93
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑆 < 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → 𝐴 ∈ ℝ ) |
95 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < 𝐵 ) → 𝐵 ∈ ℝ ) |
96 |
95
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑆 < 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → 𝐵 ∈ ℝ ) |
97 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < 𝐵 ) → 𝐶 : ℕ ⟶ ℝ ) |
98 |
97
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑆 < 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → 𝐶 : ℕ ⟶ ℝ ) |
99 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < 𝐵 ) → 𝐷 : ℕ ⟶ ℝ ) |
100 |
99
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑆 < 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → 𝐷 : ℕ ⟶ ℝ ) |
101 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐶 ‘ 𝑖 ) = ( 𝐶 ‘ 𝑗 ) ) |
102 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐷 ‘ 𝑖 ) = ( 𝐷 ‘ 𝑗 ) ) |
103 |
101 102
|
oveq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) = ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
104 |
103
|
fveq2d |
⊢ ( 𝑖 = 𝑗 → ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) = ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) |
105 |
104
|
cbvmptv |
⊢ ( 𝑖 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) |
106 |
105
|
fveq2i |
⊢ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
107 |
106 7
|
eqeltrid |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ) ) ∈ ℝ ) |
108 |
107
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < 𝐵 ) → ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ) ) ∈ ℝ ) |
109 |
108
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑆 < 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ) ) ∈ ℝ ) |
110 |
102
|
breq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐷 ‘ 𝑖 ) ≤ 𝑧 ↔ ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 ) ) |
111 |
110 102
|
ifbieq1d |
⊢ ( 𝑖 = 𝑗 → if ( ( 𝐷 ‘ 𝑖 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑖 ) , 𝑧 ) = if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) |
112 |
101 111
|
oveq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐶 ‘ 𝑖 ) [,) if ( ( 𝐷 ‘ 𝑖 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑖 ) , 𝑧 ) ) = ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) |
113 |
112
|
fveq2d |
⊢ ( 𝑖 = 𝑗 → ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) if ( ( 𝐷 ‘ 𝑖 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑖 ) , 𝑧 ) ) ) = ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) |
114 |
113
|
cbvmptv |
⊢ ( 𝑖 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) if ( ( 𝐷 ‘ 𝑖 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑖 ) , 𝑧 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) |
115 |
114
|
eqcomi |
⊢ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) = ( 𝑖 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) if ( ( 𝐷 ‘ 𝑖 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑖 ) , 𝑧 ) ) ) ) |
116 |
115
|
fveq2i |
⊢ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) = ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) if ( ( 𝐷 ‘ 𝑖 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑖 ) , 𝑧 ) ) ) ) ) |
117 |
116
|
breq2i |
⊢ ( ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) ↔ ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) if ( ( 𝐷 ‘ 𝑖 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑖 ) , 𝑧 ) ) ) ) ) ) |
118 |
117
|
rabbii |
⊢ { 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) } = { 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) if ( ( 𝐷 ‘ 𝑖 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑖 ) , 𝑧 ) ) ) ) ) } |
119 |
8 118
|
eqtri |
⊢ 𝑈 = { 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑖 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) if ( ( 𝐷 ‘ 𝑖 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑖 ) , 𝑧 ) ) ) ) ) } |
120 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < 𝐵 ) → 𝑆 ∈ 𝑈 ) |
121 |
120
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑆 < 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → 𝑆 ∈ 𝑈 ) |
122 |
87
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑆 < 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → 𝐴 ≤ 𝑆 ) |
123 |
88
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑆 < 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → 𝑆 < 𝐵 ) |
124 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑆 < 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → 𝑗 ∈ ℕ ) |
125 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑆 < 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → 𝑆 ∈ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
126 |
|
eqid |
⊢ if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) = if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) |
127 |
94 96 98 100 109 119 121 122 123 124 125 126
|
hoidmv1lelem2 |
⊢ ( ( ( 𝜑 ∧ 𝑆 < 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → ∃ 𝑢 ∈ 𝑈 𝑆 < 𝑢 ) |
128 |
127
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑆 < 𝐵 ) → ( 𝑗 ∈ ℕ → ( 𝑆 ∈ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) → ∃ 𝑢 ∈ 𝑈 𝑆 < 𝑢 ) ) ) |
129 |
128
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑆 < 𝐵 ) → ( ∃ 𝑗 ∈ ℕ 𝑆 ∈ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) → ∃ 𝑢 ∈ 𝑈 𝑆 < 𝑢 ) ) |
130 |
92 129
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑆 < 𝐵 ) → ∃ 𝑢 ∈ 𝑈 𝑆 < 𝑢 ) |
131 |
69 74 130
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝑆 ) → ∃ 𝑢 ∈ 𝑈 𝑆 < 𝑢 ) |
132 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
133 |
63 132
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑈 ⊆ ℝ ) |
134 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑈 ≠ ∅ ) |
135 |
1 2
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
136 |
135
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
137 |
63
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑈 ⊆ ( 𝐴 [,] 𝐵 ) ) |
138 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑆 ∈ 𝑈 ) |
139 |
|
iccsupr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑈 ⊆ ( 𝐴 [,] 𝐵 ) ∧ 𝑆 ∈ 𝑈 ) → ( 𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑈 𝑦 ≤ 𝑥 ) ) |
140 |
136 137 138 139
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑈 𝑦 ≤ 𝑥 ) ) |
141 |
140
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑈 𝑦 ≤ 𝑥 ) |
142 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ∈ 𝑈 ) |
143 |
|
suprub |
⊢ ( ( ( 𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑈 𝑦 ≤ 𝑥 ) ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ≤ sup ( 𝑈 , ℝ , < ) ) |
144 |
133 134 141 142 143
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ≤ sup ( 𝑈 , ℝ , < ) ) |
145 |
144 9
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ≤ 𝑆 ) |
146 |
145
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝑈 𝑢 ≤ 𝑆 ) |
147 |
63
|
sseli |
⊢ ( 𝑢 ∈ 𝑈 → 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) |
148 |
147
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) |
149 |
132 148
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ∈ ℝ ) |
150 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑆 ∈ ℝ ) |
151 |
149 150
|
lenltd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝑢 ≤ 𝑆 ↔ ¬ 𝑆 < 𝑢 ) ) |
152 |
151
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝑈 𝑢 ≤ 𝑆 ↔ ∀ 𝑢 ∈ 𝑈 ¬ 𝑆 < 𝑢 ) ) |
153 |
146 152
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝑈 ¬ 𝑆 < 𝑢 ) |
154 |
|
ralnex |
⊢ ( ∀ 𝑢 ∈ 𝑈 ¬ 𝑆 < 𝑢 ↔ ¬ ∃ 𝑢 ∈ 𝑈 𝑆 < 𝑢 ) |
155 |
153 154
|
sylib |
⊢ ( 𝜑 → ¬ ∃ 𝑢 ∈ 𝑈 𝑆 < 𝑢 ) |
156 |
155
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝑆 ) → ¬ ∃ 𝑢 ∈ 𝑈 𝑆 < 𝑢 ) |
157 |
131 156
|
condan |
⊢ ( 𝜑 → 𝐵 ≤ 𝑆 ) |
158 |
|
iccleub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑆 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑆 ≤ 𝐵 ) |
159 |
76 60 66 158
|
syl3anc |
⊢ ( 𝜑 → 𝑆 ≤ 𝐵 ) |
160 |
60 68 157 159
|
xrletrid |
⊢ ( 𝜑 → 𝐵 = 𝑆 ) |
161 |
160 65
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) |
162 |
161 8
|
eleqtrdi |
⊢ ( 𝜑 → 𝐵 ∈ { 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) } ) |
163 |
|
oveq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 − 𝐴 ) = ( 𝐵 − 𝐴 ) ) |
164 |
|
breq2 |
⊢ ( 𝑧 = 𝐵 → ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 ↔ ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 ) ) |
165 |
|
id |
⊢ ( 𝑧 = 𝐵 → 𝑧 = 𝐵 ) |
166 |
164 165
|
ifbieq2d |
⊢ ( 𝑧 = 𝐵 → if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) = if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) |
167 |
166
|
oveq2d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) = ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) |
168 |
167
|
fveq2d |
⊢ ( 𝑧 = 𝐵 → ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) = ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ) |
169 |
168
|
mpteq2dv |
⊢ ( 𝑧 = 𝐵 → ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ) ) |
170 |
169
|
fveq2d |
⊢ ( 𝑧 = 𝐵 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ) ) ) |
171 |
163 170
|
breq12d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) ↔ ( 𝐵 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ) ) ) ) |
172 |
171
|
elrab |
⊢ ( 𝐵 ∈ { 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝑧 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝑧 , ( 𝐷 ‘ 𝑗 ) , 𝑧 ) ) ) ) ) } ↔ ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐵 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ) ) ) ) |
173 |
162 172
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐵 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ) ) ) ) |
174 |
173
|
simprd |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 ) ≤ 𝐵 , ( 𝐷 ‘ 𝑗 ) , 𝐵 ) ) ) ) ) ) |
175 |
10 59 7 174 53
|
letrd |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |