| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoidmv1lelem3.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | hoidmv1lelem3.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | hoidmv1lelem3.l | ⊢ ( 𝜑  →  𝐴  <  𝐵 ) | 
						
							| 4 |  | hoidmv1lelem3.c | ⊢ ( 𝜑  →  𝐶 : ℕ ⟶ ℝ ) | 
						
							| 5 |  | hoidmv1lelem3.d | ⊢ ( 𝜑  →  𝐷 : ℕ ⟶ ℝ ) | 
						
							| 6 |  | hoidmv1lelem3.x | ⊢ ( 𝜑  →  ( 𝐴 [,) 𝐵 )  ⊆  ∪  𝑗  ∈  ℕ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 7 |  | hoidmv1lelem3.r | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ ) | 
						
							| 8 |  | hoidmv1lelem3.u | ⊢ 𝑈  =  { 𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∣  ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) ) } | 
						
							| 9 |  | hoidmv1lelem3.s | ⊢ 𝑆  =  sup ( 𝑈 ,  ℝ ,   <  ) | 
						
							| 10 | 2 1 | resubcld | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ∈  ℝ ) | 
						
							| 11 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  ℕ  ∈  V ) | 
						
							| 13 |  | icossicc | ⊢ ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) | 
						
							| 14 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 15 | 14 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  0  ∈  ℝ* ) | 
						
							| 16 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 17 | 16 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  +∞  ∈  ℝ* ) | 
						
							| 18 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐶 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 19 | 5 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐷 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 20 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝐵  ∈  ℝ ) | 
						
							| 21 | 19 20 | ifcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 )  ∈  ℝ ) | 
						
							| 22 |  | volicore | ⊢ ( ( ( 𝐶 ‘ 𝑗 )  ∈  ℝ  ∧  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 )  ∈  ℝ )  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) )  ∈  ℝ ) | 
						
							| 23 | 18 21 22 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) )  ∈  ℝ ) | 
						
							| 24 | 23 | rexrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) )  ∈  ℝ* ) | 
						
							| 25 | 21 | rexrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 )  ∈  ℝ* ) | 
						
							| 26 |  | icombl | ⊢ ( ( ( 𝐶 ‘ 𝑗 )  ∈  ℝ  ∧  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 )  ∈  ℝ* )  →  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) )  ∈  dom  vol ) | 
						
							| 27 | 18 25 26 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) )  ∈  dom  vol ) | 
						
							| 28 |  | volge0 | ⊢ ( ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) )  ∈  dom  vol  →  0  ≤  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  0  ≤  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) ) ) | 
						
							| 30 | 23 | ltpnfd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) )  <  +∞ ) | 
						
							| 31 | 15 17 24 29 30 | elicod | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 32 | 13 31 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 33 |  | eqid | ⊢ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) ) ) | 
						
							| 34 | 32 33 | fmptd | ⊢ ( 𝜑  →  ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) ) ) : ℕ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 35 | 12 34 | sge0xrcl | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) ) ) )  ∈  ℝ* ) | 
						
							| 36 | 16 | a1i | ⊢ ( 𝜑  →  +∞  ∈  ℝ* ) | 
						
							| 37 | 7 | rexrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ* ) | 
						
							| 38 |  | nfv | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 39 |  | volf | ⊢ vol : dom  vol ⟶ ( 0 [,] +∞ ) | 
						
							| 40 | 39 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  vol : dom  vol ⟶ ( 0 [,] +∞ ) ) | 
						
							| 41 | 19 | rexrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐷 ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 42 |  | icombl | ⊢ ( ( ( 𝐶 ‘ 𝑗 )  ∈  ℝ  ∧  ( 𝐷 ‘ 𝑗 )  ∈  ℝ* )  →  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) )  ∈  dom  vol ) | 
						
							| 43 | 18 41 42 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) )  ∈  dom  vol ) | 
						
							| 44 | 40 43 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 45 | 18 | rexrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐶 ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 46 | 18 | leidd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐶 ‘ 𝑗 )  ≤  ( 𝐶 ‘ 𝑗 ) ) | 
						
							| 47 |  | min1 | ⊢ ( ( ( 𝐷 ‘ 𝑗 )  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 )  ≤  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 48 | 19 20 47 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 )  ≤  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 49 |  | icossico | ⊢ ( ( ( ( 𝐶 ‘ 𝑗 )  ∈  ℝ*  ∧  ( 𝐷 ‘ 𝑗 )  ∈  ℝ* )  ∧  ( ( 𝐶 ‘ 𝑗 )  ≤  ( 𝐶 ‘ 𝑗 )  ∧  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 )  ≤  ( 𝐷 ‘ 𝑗 ) ) )  →  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) )  ⊆  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 50 | 45 41 46 48 49 | syl22anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) )  ⊆  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 51 |  | volss | ⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) )  ∈  dom  vol  ∧  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) )  ∈  dom  vol  ∧  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) )  ⊆  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) )  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) )  ≤  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 52 | 27 43 50 51 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) )  ≤  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 53 | 38 12 32 44 52 | sge0lempt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) ) ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 54 | 7 | ltpnfd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) )  <  +∞ ) | 
						
							| 55 | 35 37 36 53 54 | xrlelttrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) ) ) )  <  +∞ ) | 
						
							| 56 | 35 36 55 | xrltned | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) ) ) )  ≠  +∞ ) | 
						
							| 57 | 56 | neneqd | ⊢ ( 𝜑  →  ¬  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) ) ) )  =  +∞ ) | 
						
							| 58 | 12 34 | sge0repnf | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) ) ) )  ∈  ℝ  ↔  ¬  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) ) ) )  =  +∞ ) ) | 
						
							| 59 | 57 58 | mpbird | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) ) ) )  ∈  ℝ ) | 
						
							| 60 | 2 | rexrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 61 | 1 2 | iccssred | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 62 |  | ssrab2 | ⊢ { 𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∣  ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) ) }  ⊆  ( 𝐴 [,] 𝐵 ) | 
						
							| 63 | 8 62 | eqsstri | ⊢ 𝑈  ⊆  ( 𝐴 [,] 𝐵 ) | 
						
							| 64 | 1 2 3 4 5 7 8 9 | hoidmv1lelem1 | ⊢ ( 𝜑  →  ( 𝑆  ∈  𝑈  ∧  𝐴  ∈  𝑈  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑈 𝑦  ≤  𝑥 ) ) | 
						
							| 65 | 64 | simp1d | ⊢ ( 𝜑  →  𝑆  ∈  𝑈 ) | 
						
							| 66 | 63 65 | sselid | ⊢ ( 𝜑  →  𝑆  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 67 | 61 66 | sseldd | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 68 | 67 | rexrd | ⊢ ( 𝜑  →  𝑆  ∈  ℝ* ) | 
						
							| 69 |  | simpl | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ≤  𝑆 )  →  𝜑 ) | 
						
							| 70 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ≤  𝑆 )  →  ¬  𝐵  ≤  𝑆 ) | 
						
							| 71 | 69 67 | syl | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ≤  𝑆 )  →  𝑆  ∈  ℝ ) | 
						
							| 72 | 69 2 | syl | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ≤  𝑆 )  →  𝐵  ∈  ℝ ) | 
						
							| 73 | 71 72 | ltnled | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ≤  𝑆 )  →  ( 𝑆  <  𝐵  ↔  ¬  𝐵  ≤  𝑆 ) ) | 
						
							| 74 | 70 73 | mpbird | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ≤  𝑆 )  →  𝑆  <  𝐵 ) | 
						
							| 75 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  𝐵 )  →  ( 𝐴 [,) 𝐵 )  ⊆  ∪  𝑗  ∈  ℕ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 76 | 1 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 77 | 76 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  𝐵 )  →  𝐴  ∈  ℝ* ) | 
						
							| 78 | 60 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  𝐵 )  →  𝐵  ∈  ℝ* ) | 
						
							| 79 | 68 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  𝐵 )  →  𝑆  ∈  ℝ* ) | 
						
							| 80 | 63 61 | sstrid | ⊢ ( 𝜑  →  𝑈  ⊆  ℝ ) | 
						
							| 81 | 65 | ne0d | ⊢ ( 𝜑  →  𝑈  ≠  ∅ ) | 
						
							| 82 | 64 | simp3d | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑈 𝑦  ≤  𝑥 ) | 
						
							| 83 | 64 | simp2d | ⊢ ( 𝜑  →  𝐴  ∈  𝑈 ) | 
						
							| 84 |  | suprub | ⊢ ( ( ( 𝑈  ⊆  ℝ  ∧  𝑈  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑈 𝑦  ≤  𝑥 )  ∧  𝐴  ∈  𝑈 )  →  𝐴  ≤  sup ( 𝑈 ,  ℝ ,   <  ) ) | 
						
							| 85 | 80 81 82 83 84 | syl31anc | ⊢ ( 𝜑  →  𝐴  ≤  sup ( 𝑈 ,  ℝ ,   <  ) ) | 
						
							| 86 | 85 9 | breqtrrdi | ⊢ ( 𝜑  →  𝐴  ≤  𝑆 ) | 
						
							| 87 | 86 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  𝐵 )  →  𝐴  ≤  𝑆 ) | 
						
							| 88 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑆  <  𝐵 )  →  𝑆  <  𝐵 ) | 
						
							| 89 | 77 78 79 87 88 | elicod | ⊢ ( ( 𝜑  ∧  𝑆  <  𝐵 )  →  𝑆  ∈  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 90 | 75 89 | sseldd | ⊢ ( ( 𝜑  ∧  𝑆  <  𝐵 )  →  𝑆  ∈  ∪  𝑗  ∈  ℕ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 91 |  | eliun | ⊢ ( 𝑆  ∈  ∪  𝑗  ∈  ℕ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) )  ↔  ∃ 𝑗  ∈  ℕ 𝑆  ∈  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 92 | 90 91 | sylib | ⊢ ( ( 𝜑  ∧  𝑆  <  𝐵 )  →  ∃ 𝑗  ∈  ℕ 𝑆  ∈  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 93 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  𝐵 )  →  𝐴  ∈  ℝ ) | 
						
							| 94 | 93 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑆  <  𝐵 )  ∧  𝑗  ∈  ℕ  ∧  𝑆  ∈  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 95 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  𝐵 )  →  𝐵  ∈  ℝ ) | 
						
							| 96 | 95 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑆  <  𝐵 )  ∧  𝑗  ∈  ℕ  ∧  𝑆  ∈  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) )  →  𝐵  ∈  ℝ ) | 
						
							| 97 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  𝐵 )  →  𝐶 : ℕ ⟶ ℝ ) | 
						
							| 98 | 97 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑆  <  𝐵 )  ∧  𝑗  ∈  ℕ  ∧  𝑆  ∈  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) )  →  𝐶 : ℕ ⟶ ℝ ) | 
						
							| 99 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  𝐵 )  →  𝐷 : ℕ ⟶ ℝ ) | 
						
							| 100 | 99 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑆  <  𝐵 )  ∧  𝑗  ∈  ℕ  ∧  𝑆  ∈  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) )  →  𝐷 : ℕ ⟶ ℝ ) | 
						
							| 101 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐶 ‘ 𝑖 )  =  ( 𝐶 ‘ 𝑗 ) ) | 
						
							| 102 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐷 ‘ 𝑖 )  =  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 103 | 101 102 | oveq12d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) )  =  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 104 | 103 | fveq2d | ⊢ ( 𝑖  =  𝑗  →  ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) )  =  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 105 | 104 | cbvmptv | ⊢ ( 𝑖  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 106 | 105 | fveq2i | ⊢ ( Σ^ ‘ ( 𝑖  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ) )  =  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) ) | 
						
							| 107 | 106 7 | eqeltrid | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑖  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ) )  ∈  ℝ ) | 
						
							| 108 | 107 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  𝐵 )  →  ( Σ^ ‘ ( 𝑖  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ) )  ∈  ℝ ) | 
						
							| 109 | 108 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑆  <  𝐵 )  ∧  𝑗  ∈  ℕ  ∧  𝑆  ∈  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) )  →  ( Σ^ ‘ ( 𝑖  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ) )  ∈  ℝ ) | 
						
							| 110 | 102 | breq1d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐷 ‘ 𝑖 )  ≤  𝑧  ↔  ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ) ) | 
						
							| 111 | 110 102 | ifbieq1d | ⊢ ( 𝑖  =  𝑗  →  if ( ( 𝐷 ‘ 𝑖 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑖 ) ,  𝑧 )  =  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) | 
						
							| 112 | 101 111 | oveq12d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐶 ‘ 𝑖 ) [,) if ( ( 𝐷 ‘ 𝑖 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑖 ) ,  𝑧 ) )  =  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) | 
						
							| 113 | 112 | fveq2d | ⊢ ( 𝑖  =  𝑗  →  ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) if ( ( 𝐷 ‘ 𝑖 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑖 ) ,  𝑧 ) ) )  =  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) | 
						
							| 114 | 113 | cbvmptv | ⊢ ( 𝑖  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) if ( ( 𝐷 ‘ 𝑖 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑖 ) ,  𝑧 ) ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) | 
						
							| 115 | 114 | eqcomi | ⊢ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) )  =  ( 𝑖  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) if ( ( 𝐷 ‘ 𝑖 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑖 ) ,  𝑧 ) ) ) ) | 
						
							| 116 | 115 | fveq2i | ⊢ ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) )  =  ( Σ^ ‘ ( 𝑖  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) if ( ( 𝐷 ‘ 𝑖 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑖 ) ,  𝑧 ) ) ) ) ) | 
						
							| 117 | 116 | breq2i | ⊢ ( ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) )  ↔  ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑖  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) if ( ( 𝐷 ‘ 𝑖 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑖 ) ,  𝑧 ) ) ) ) ) ) | 
						
							| 118 | 117 | rabbii | ⊢ { 𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∣  ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) ) }  =  { 𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∣  ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑖  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) if ( ( 𝐷 ‘ 𝑖 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑖 ) ,  𝑧 ) ) ) ) ) } | 
						
							| 119 | 8 118 | eqtri | ⊢ 𝑈  =  { 𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∣  ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑖  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑖 ) [,) if ( ( 𝐷 ‘ 𝑖 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑖 ) ,  𝑧 ) ) ) ) ) } | 
						
							| 120 | 65 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  𝐵 )  →  𝑆  ∈  𝑈 ) | 
						
							| 121 | 120 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑆  <  𝐵 )  ∧  𝑗  ∈  ℕ  ∧  𝑆  ∈  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) )  →  𝑆  ∈  𝑈 ) | 
						
							| 122 | 87 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑆  <  𝐵 )  ∧  𝑗  ∈  ℕ  ∧  𝑆  ∈  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) )  →  𝐴  ≤  𝑆 ) | 
						
							| 123 | 88 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑆  <  𝐵 )  ∧  𝑗  ∈  ℕ  ∧  𝑆  ∈  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) )  →  𝑆  <  𝐵 ) | 
						
							| 124 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  𝑆  <  𝐵 )  ∧  𝑗  ∈  ℕ  ∧  𝑆  ∈  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) )  →  𝑗  ∈  ℕ ) | 
						
							| 125 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  𝑆  <  𝐵 )  ∧  𝑗  ∈  ℕ  ∧  𝑆  ∈  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) )  →  𝑆  ∈  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 126 |  | eqid | ⊢ if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 )  =  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) | 
						
							| 127 | 94 96 98 100 109 119 121 122 123 124 125 126 | hoidmv1lelem2 | ⊢ ( ( ( 𝜑  ∧  𝑆  <  𝐵 )  ∧  𝑗  ∈  ℕ  ∧  𝑆  ∈  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) )  →  ∃ 𝑢  ∈  𝑈 𝑆  <  𝑢 ) | 
						
							| 128 | 127 | 3exp | ⊢ ( ( 𝜑  ∧  𝑆  <  𝐵 )  →  ( 𝑗  ∈  ℕ  →  ( 𝑆  ∈  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) )  →  ∃ 𝑢  ∈  𝑈 𝑆  <  𝑢 ) ) ) | 
						
							| 129 | 128 | rexlimdv | ⊢ ( ( 𝜑  ∧  𝑆  <  𝐵 )  →  ( ∃ 𝑗  ∈  ℕ 𝑆  ∈  ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) )  →  ∃ 𝑢  ∈  𝑈 𝑆  <  𝑢 ) ) | 
						
							| 130 | 92 129 | mpd | ⊢ ( ( 𝜑  ∧  𝑆  <  𝐵 )  →  ∃ 𝑢  ∈  𝑈 𝑆  <  𝑢 ) | 
						
							| 131 | 69 74 130 | syl2anc | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ≤  𝑆 )  →  ∃ 𝑢  ∈  𝑈 𝑆  <  𝑢 ) | 
						
							| 132 | 61 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 133 | 63 132 | sstrid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑈  ⊆  ℝ ) | 
						
							| 134 | 81 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑈  ≠  ∅ ) | 
						
							| 135 | 1 2 | jca | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ ) ) | 
						
							| 136 | 135 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ ) ) | 
						
							| 137 | 63 | a1i | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑈  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 138 | 65 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑆  ∈  𝑈 ) | 
						
							| 139 |  | iccsupr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝑈  ⊆  ( 𝐴 [,] 𝐵 )  ∧  𝑆  ∈  𝑈 )  →  ( 𝑈  ⊆  ℝ  ∧  𝑈  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑈 𝑦  ≤  𝑥 ) ) | 
						
							| 140 | 136 137 138 139 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( 𝑈  ⊆  ℝ  ∧  𝑈  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑈 𝑦  ≤  𝑥 ) ) | 
						
							| 141 | 140 | simp3d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑈 𝑦  ≤  𝑥 ) | 
						
							| 142 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑢  ∈  𝑈 ) | 
						
							| 143 |  | suprub | ⊢ ( ( ( 𝑈  ⊆  ℝ  ∧  𝑈  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑈 𝑦  ≤  𝑥 )  ∧  𝑢  ∈  𝑈 )  →  𝑢  ≤  sup ( 𝑈 ,  ℝ ,   <  ) ) | 
						
							| 144 | 133 134 141 142 143 | syl31anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑢  ≤  sup ( 𝑈 ,  ℝ ,   <  ) ) | 
						
							| 145 | 144 9 | breqtrrdi | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑢  ≤  𝑆 ) | 
						
							| 146 | 145 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑢  ∈  𝑈 𝑢  ≤  𝑆 ) | 
						
							| 147 | 63 | sseli | ⊢ ( 𝑢  ∈  𝑈  →  𝑢  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 148 | 147 | adantl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑢  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 149 | 132 148 | sseldd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑢  ∈  ℝ ) | 
						
							| 150 | 67 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑆  ∈  ℝ ) | 
						
							| 151 | 149 150 | lenltd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( 𝑢  ≤  𝑆  ↔  ¬  𝑆  <  𝑢 ) ) | 
						
							| 152 | 151 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑢  ∈  𝑈 𝑢  ≤  𝑆  ↔  ∀ 𝑢  ∈  𝑈 ¬  𝑆  <  𝑢 ) ) | 
						
							| 153 | 146 152 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑢  ∈  𝑈 ¬  𝑆  <  𝑢 ) | 
						
							| 154 |  | ralnex | ⊢ ( ∀ 𝑢  ∈  𝑈 ¬  𝑆  <  𝑢  ↔  ¬  ∃ 𝑢  ∈  𝑈 𝑆  <  𝑢 ) | 
						
							| 155 | 153 154 | sylib | ⊢ ( 𝜑  →  ¬  ∃ 𝑢  ∈  𝑈 𝑆  <  𝑢 ) | 
						
							| 156 | 155 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ≤  𝑆 )  →  ¬  ∃ 𝑢  ∈  𝑈 𝑆  <  𝑢 ) | 
						
							| 157 | 131 156 | condan | ⊢ ( 𝜑  →  𝐵  ≤  𝑆 ) | 
						
							| 158 |  | iccleub | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝑆  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑆  ≤  𝐵 ) | 
						
							| 159 | 76 60 66 158 | syl3anc | ⊢ ( 𝜑  →  𝑆  ≤  𝐵 ) | 
						
							| 160 | 60 68 157 159 | xrletrid | ⊢ ( 𝜑  →  𝐵  =  𝑆 ) | 
						
							| 161 | 160 65 | eqeltrd | ⊢ ( 𝜑  →  𝐵  ∈  𝑈 ) | 
						
							| 162 | 161 8 | eleqtrdi | ⊢ ( 𝜑  →  𝐵  ∈  { 𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∣  ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) ) } ) | 
						
							| 163 |  | oveq1 | ⊢ ( 𝑧  =  𝐵  →  ( 𝑧  −  𝐴 )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 164 |  | breq2 | ⊢ ( 𝑧  =  𝐵  →  ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧  ↔  ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ) ) | 
						
							| 165 |  | id | ⊢ ( 𝑧  =  𝐵  →  𝑧  =  𝐵 ) | 
						
							| 166 | 164 165 | ifbieq2d | ⊢ ( 𝑧  =  𝐵  →  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 )  =  if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) | 
						
							| 167 | 166 | oveq2d | ⊢ ( 𝑧  =  𝐵  →  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) )  =  ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) ) | 
						
							| 168 | 167 | fveq2d | ⊢ ( 𝑧  =  𝐵  →  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) )  =  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) ) ) | 
						
							| 169 | 168 | mpteq2dv | ⊢ ( 𝑧  =  𝐵  →  ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) ) ) ) | 
						
							| 170 | 169 | fveq2d | ⊢ ( 𝑧  =  𝐵  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) )  =  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) ) ) ) ) | 
						
							| 171 | 163 170 | breq12d | ⊢ ( 𝑧  =  𝐵  →  ( ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) )  ↔  ( 𝐵  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) ) ) ) ) ) | 
						
							| 172 | 171 | elrab | ⊢ ( 𝐵  ∈  { 𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∣  ( 𝑧  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝑧 ,  ( 𝐷 ‘ 𝑗 ) ,  𝑧 ) ) ) ) ) }  ↔  ( 𝐵  ∈  ( 𝐴 [,] 𝐵 )  ∧  ( 𝐵  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) ) ) ) ) ) | 
						
							| 173 | 162 172 | sylib | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( 𝐴 [,] 𝐵 )  ∧  ( 𝐵  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) ) ) ) ) ) | 
						
							| 174 | 173 | simprd | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) if ( ( 𝐷 ‘ 𝑗 )  ≤  𝐵 ,  ( 𝐷 ‘ 𝑗 ) ,  𝐵 ) ) ) ) ) ) | 
						
							| 175 | 10 59 7 174 53 | letrd | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |