Step |
Hyp |
Ref |
Expression |
1 |
|
hoidmvval0b.l |
|- L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) |
2 |
|
hoidmvval0b.x |
|- ( ph -> X e. Fin ) |
3 |
|
hoidmvval0b.a |
|- ( ph -> A : X --> RR ) |
4 |
|
fveq2 |
|- ( X = (/) -> ( L ` X ) = ( L ` (/) ) ) |
5 |
4
|
oveqd |
|- ( X = (/) -> ( A ( L ` X ) A ) = ( A ( L ` (/) ) A ) ) |
6 |
5
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( A ( L ` X ) A ) = ( A ( L ` (/) ) A ) ) |
7 |
3
|
adantr |
|- ( ( ph /\ X = (/) ) -> A : X --> RR ) |
8 |
|
feq2 |
|- ( X = (/) -> ( A : X --> RR <-> A : (/) --> RR ) ) |
9 |
8
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( A : X --> RR <-> A : (/) --> RR ) ) |
10 |
7 9
|
mpbid |
|- ( ( ph /\ X = (/) ) -> A : (/) --> RR ) |
11 |
1 10 10
|
hoidmv0val |
|- ( ( ph /\ X = (/) ) -> ( A ( L ` (/) ) A ) = 0 ) |
12 |
6 11
|
eqtrd |
|- ( ( ph /\ X = (/) ) -> ( A ( L ` X ) A ) = 0 ) |
13 |
|
nfv |
|- F/ j ( ph /\ -. X = (/) ) |
14 |
2
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> X e. Fin ) |
15 |
3
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> A : X --> RR ) |
16 |
|
neqne |
|- ( -. X = (/) -> X =/= (/) ) |
17 |
|
n0 |
|- ( X =/= (/) <-> E. j j e. X ) |
18 |
16 17
|
sylib |
|- ( -. X = (/) -> E. j j e. X ) |
19 |
18
|
adantl |
|- ( ( ph /\ -. X = (/) ) -> E. j j e. X ) |
20 |
|
simpr |
|- ( ( ph /\ j e. X ) -> j e. X ) |
21 |
3
|
ffvelrnda |
|- ( ( ph /\ j e. X ) -> ( A ` j ) e. RR ) |
22 |
|
eqidd |
|- ( ( ph /\ j e. X ) -> ( A ` j ) = ( A ` j ) ) |
23 |
21 22
|
eqled |
|- ( ( ph /\ j e. X ) -> ( A ` j ) <_ ( A ` j ) ) |
24 |
20 23
|
jca |
|- ( ( ph /\ j e. X ) -> ( j e. X /\ ( A ` j ) <_ ( A ` j ) ) ) |
25 |
24
|
ex |
|- ( ph -> ( j e. X -> ( j e. X /\ ( A ` j ) <_ ( A ` j ) ) ) ) |
26 |
25
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> ( j e. X -> ( j e. X /\ ( A ` j ) <_ ( A ` j ) ) ) ) |
27 |
26
|
eximdv |
|- ( ( ph /\ -. X = (/) ) -> ( E. j j e. X -> E. j ( j e. X /\ ( A ` j ) <_ ( A ` j ) ) ) ) |
28 |
19 27
|
mpd |
|- ( ( ph /\ -. X = (/) ) -> E. j ( j e. X /\ ( A ` j ) <_ ( A ` j ) ) ) |
29 |
|
df-rex |
|- ( E. j e. X ( A ` j ) <_ ( A ` j ) <-> E. j ( j e. X /\ ( A ` j ) <_ ( A ` j ) ) ) |
30 |
28 29
|
sylibr |
|- ( ( ph /\ -. X = (/) ) -> E. j e. X ( A ` j ) <_ ( A ` j ) ) |
31 |
13 1 14 15 15 30
|
hoidmvval0 |
|- ( ( ph /\ -. X = (/) ) -> ( A ( L ` X ) A ) = 0 ) |
32 |
12 31
|
pm2.61dan |
|- ( ph -> ( A ( L ` X ) A ) = 0 ) |