| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoidmvval0b.l |  |-  L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) | 
						
							| 2 |  | hoidmvval0b.x |  |-  ( ph -> X e. Fin ) | 
						
							| 3 |  | hoidmvval0b.a |  |-  ( ph -> A : X --> RR ) | 
						
							| 4 |  | fveq2 |  |-  ( X = (/) -> ( L ` X ) = ( L ` (/) ) ) | 
						
							| 5 | 4 | oveqd |  |-  ( X = (/) -> ( A ( L ` X ) A ) = ( A ( L ` (/) ) A ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ph /\ X = (/) ) -> ( A ( L ` X ) A ) = ( A ( L ` (/) ) A ) ) | 
						
							| 7 | 3 | adantr |  |-  ( ( ph /\ X = (/) ) -> A : X --> RR ) | 
						
							| 8 |  | feq2 |  |-  ( X = (/) -> ( A : X --> RR <-> A : (/) --> RR ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ph /\ X = (/) ) -> ( A : X --> RR <-> A : (/) --> RR ) ) | 
						
							| 10 | 7 9 | mpbid |  |-  ( ( ph /\ X = (/) ) -> A : (/) --> RR ) | 
						
							| 11 | 1 10 10 | hoidmv0val |  |-  ( ( ph /\ X = (/) ) -> ( A ( L ` (/) ) A ) = 0 ) | 
						
							| 12 | 6 11 | eqtrd |  |-  ( ( ph /\ X = (/) ) -> ( A ( L ` X ) A ) = 0 ) | 
						
							| 13 |  | nfv |  |-  F/ j ( ph /\ -. X = (/) ) | 
						
							| 14 | 2 | adantr |  |-  ( ( ph /\ -. X = (/) ) -> X e. Fin ) | 
						
							| 15 | 3 | adantr |  |-  ( ( ph /\ -. X = (/) ) -> A : X --> RR ) | 
						
							| 16 |  | neqne |  |-  ( -. X = (/) -> X =/= (/) ) | 
						
							| 17 |  | n0 |  |-  ( X =/= (/) <-> E. j j e. X ) | 
						
							| 18 | 16 17 | sylib |  |-  ( -. X = (/) -> E. j j e. X ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ph /\ -. X = (/) ) -> E. j j e. X ) | 
						
							| 20 |  | simpr |  |-  ( ( ph /\ j e. X ) -> j e. X ) | 
						
							| 21 | 3 | ffvelcdmda |  |-  ( ( ph /\ j e. X ) -> ( A ` j ) e. RR ) | 
						
							| 22 |  | eqidd |  |-  ( ( ph /\ j e. X ) -> ( A ` j ) = ( A ` j ) ) | 
						
							| 23 | 21 22 | eqled |  |-  ( ( ph /\ j e. X ) -> ( A ` j ) <_ ( A ` j ) ) | 
						
							| 24 | 20 23 | jca |  |-  ( ( ph /\ j e. X ) -> ( j e. X /\ ( A ` j ) <_ ( A ` j ) ) ) | 
						
							| 25 | 24 | ex |  |-  ( ph -> ( j e. X -> ( j e. X /\ ( A ` j ) <_ ( A ` j ) ) ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ph /\ -. X = (/) ) -> ( j e. X -> ( j e. X /\ ( A ` j ) <_ ( A ` j ) ) ) ) | 
						
							| 27 | 26 | eximdv |  |-  ( ( ph /\ -. X = (/) ) -> ( E. j j e. X -> E. j ( j e. X /\ ( A ` j ) <_ ( A ` j ) ) ) ) | 
						
							| 28 | 19 27 | mpd |  |-  ( ( ph /\ -. X = (/) ) -> E. j ( j e. X /\ ( A ` j ) <_ ( A ` j ) ) ) | 
						
							| 29 |  | df-rex |  |-  ( E. j e. X ( A ` j ) <_ ( A ` j ) <-> E. j ( j e. X /\ ( A ` j ) <_ ( A ` j ) ) ) | 
						
							| 30 | 28 29 | sylibr |  |-  ( ( ph /\ -. X = (/) ) -> E. j e. X ( A ` j ) <_ ( A ` j ) ) | 
						
							| 31 | 13 1 14 15 15 30 | hoidmvval0 |  |-  ( ( ph /\ -. X = (/) ) -> ( A ( L ` X ) A ) = 0 ) | 
						
							| 32 | 12 31 | pm2.61dan |  |-  ( ph -> ( A ( L ` X ) A ) = 0 ) |