| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoidmvlelem1.l | ⊢ 𝐿  =  ( 𝑥  ∈  Fin  ↦  ( 𝑎  ∈  ( ℝ  ↑m  𝑥 ) ,  𝑏  ∈  ( ℝ  ↑m  𝑥 )  ↦  if ( 𝑥  =  ∅ ,  0 ,  ∏ 𝑘  ∈  𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 2 |  | hoidmvlelem1.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 3 |  | hoidmvlelem1.y | ⊢ ( 𝜑  →  𝑌  ⊆  𝑋 ) | 
						
							| 4 |  | hoidmvlelem1.z | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑋  ∖  𝑌 ) ) | 
						
							| 5 |  | hoidmvlelem1.w | ⊢ 𝑊  =  ( 𝑌  ∪  { 𝑍 } ) | 
						
							| 6 |  | hoidmvlelem1.a | ⊢ ( 𝜑  →  𝐴 : 𝑊 ⟶ ℝ ) | 
						
							| 7 |  | hoidmvlelem1.b | ⊢ ( 𝜑  →  𝐵 : 𝑊 ⟶ ℝ ) | 
						
							| 8 |  | hoidmvlelem1.c | ⊢ ( 𝜑  →  𝐶 : ℕ ⟶ ( ℝ  ↑m  𝑊 ) ) | 
						
							| 9 |  | hoidmvlelem1.d | ⊢ ( 𝜑  →  𝐷 : ℕ ⟶ ( ℝ  ↑m  𝑊 ) ) | 
						
							| 10 |  | hoidmvlelem1.r | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) )  ∈  ℝ ) | 
						
							| 11 |  | hoidmvlelem1.h | ⊢ 𝐻  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( 𝑗  ∈  𝑊  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) ) ) ) ) | 
						
							| 12 |  | hoidmvlelem1.g | ⊢ 𝐺  =  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) ) | 
						
							| 13 |  | hoidmvlelem1.e | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 14 |  | hoidmvlelem1.u | ⊢ 𝑈  =  { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } | 
						
							| 15 |  | hoidmvlelem1.s | ⊢ 𝑆  =  sup ( 𝑈 ,  ℝ ,   <  ) | 
						
							| 16 |  | hoidmvlelem1.ab | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  <  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 17 | 15 | a1i | ⊢ ( 𝜑  →  𝑆  =  sup ( 𝑈 ,  ℝ ,   <  ) ) | 
						
							| 18 |  | snidg | ⊢ ( 𝑍  ∈  ( 𝑋  ∖  𝑌 )  →  𝑍  ∈  { 𝑍 } ) | 
						
							| 19 | 4 18 | syl | ⊢ ( 𝜑  →  𝑍  ∈  { 𝑍 } ) | 
						
							| 20 |  | elun2 | ⊢ ( 𝑍  ∈  { 𝑍 }  →  𝑍  ∈  ( 𝑌  ∪  { 𝑍 } ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑌  ∪  { 𝑍 } ) ) | 
						
							| 22 | 21 5 | eleqtrrdi | ⊢ ( 𝜑  →  𝑍  ∈  𝑊 ) | 
						
							| 23 | 6 22 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 24 | 7 22 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 25 |  | ssrab2 | ⊢ { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) }  ⊆  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 26 | 14 25 | eqsstri | ⊢ 𝑈  ⊆  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 27 | 26 | a1i | ⊢ ( 𝜑  →  𝑈  ⊆  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 28 | 23 | leidd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  ≤  ( 𝐴 ‘ 𝑍 ) ) | 
						
							| 29 | 23 24 16 | ltled | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  ≤  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 30 | 23 24 23 28 29 | eliccd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 31 | 23 | recnd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  ∈  ℂ ) | 
						
							| 32 | 31 | subidd | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) )  =  0 ) | 
						
							| 33 | 32 | oveq2d | ⊢ ( 𝜑  →  ( 𝐺  ·  ( ( 𝐴 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) )  =  ( 𝐺  ·  0 ) ) | 
						
							| 34 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 35 | 2 3 | ssfid | ⊢ ( 𝜑  →  𝑌  ∈  Fin ) | 
						
							| 36 |  | ssun1 | ⊢ 𝑌  ⊆  ( 𝑌  ∪  { 𝑍 } ) | 
						
							| 37 | 36 5 | sseqtrri | ⊢ 𝑌  ⊆  𝑊 | 
						
							| 38 | 37 | a1i | ⊢ ( 𝜑  →  𝑌  ⊆  𝑊 ) | 
						
							| 39 | 6 38 | fssresd | ⊢ ( 𝜑  →  ( 𝐴  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) | 
						
							| 40 | 7 38 | fssresd | ⊢ ( 𝜑  →  ( 𝐵  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) | 
						
							| 41 | 1 35 39 40 | hoidmvcl | ⊢ ( 𝜑  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 42 | 12 41 | eqeltrid | ⊢ ( 𝜑  →  𝐺  ∈  ( 0 [,) +∞ ) ) | 
						
							| 43 | 34 42 | sselid | ⊢ ( 𝜑  →  𝐺  ∈  ℝ ) | 
						
							| 44 | 43 | recnd | ⊢ ( 𝜑  →  𝐺  ∈  ℂ ) | 
						
							| 45 | 44 | mul01d | ⊢ ( 𝜑  →  ( 𝐺  ·  0 )  =  0 ) | 
						
							| 46 | 33 45 | eqtrd | ⊢ ( 𝜑  →  ( 𝐺  ·  ( ( 𝐴 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) )  =  0 ) | 
						
							| 47 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 48 | 13 | rpred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 49 | 47 48 | readdcld | ⊢ ( 𝜑  →  ( 1  +  𝐸 )  ∈  ℝ ) | 
						
							| 50 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 51 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 52 | 51 | a1i | ⊢ ( 𝜑  →  0  <  1 ) | 
						
							| 53 | 47 13 | ltaddrpd | ⊢ ( 𝜑  →  1  <  ( 1  +  𝐸 ) ) | 
						
							| 54 | 50 47 49 52 53 | lttrd | ⊢ ( 𝜑  →  0  <  ( 1  +  𝐸 ) ) | 
						
							| 55 | 50 49 54 | ltled | ⊢ ( 𝜑  →  0  ≤  ( 1  +  𝐸 ) ) | 
						
							| 56 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 57 | 56 | a1i | ⊢ ( 𝜑  →  ℕ  ∈  V ) | 
						
							| 58 |  | icossicc | ⊢ ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) | 
						
							| 59 |  | snfi | ⊢ { 𝑍 }  ∈  Fin | 
						
							| 60 | 59 | a1i | ⊢ ( 𝜑  →  { 𝑍 }  ∈  Fin ) | 
						
							| 61 |  | unfi | ⊢ ( ( 𝑌  ∈  Fin  ∧  { 𝑍 }  ∈  Fin )  →  ( 𝑌  ∪  { 𝑍 } )  ∈  Fin ) | 
						
							| 62 | 35 60 61 | syl2anc | ⊢ ( 𝜑  →  ( 𝑌  ∪  { 𝑍 } )  ∈  Fin ) | 
						
							| 63 | 5 62 | eqeltrid | ⊢ ( 𝜑  →  𝑊  ∈  Fin ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑊  ∈  Fin ) | 
						
							| 65 | 8 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐶 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑊 ) ) | 
						
							| 66 |  | elmapi | ⊢ ( ( 𝐶 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑊 )  →  ( 𝐶 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 67 | 65 66 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐶 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 68 |  | eleq1w | ⊢ ( 𝑗  =  ℎ  →  ( 𝑗  ∈  𝑌  ↔  ℎ  ∈  𝑌 ) ) | 
						
							| 69 |  | fveq2 | ⊢ ( 𝑗  =  ℎ  →  ( 𝑐 ‘ 𝑗 )  =  ( 𝑐 ‘ ℎ ) ) | 
						
							| 70 | 69 | breq1d | ⊢ ( 𝑗  =  ℎ  →  ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥  ↔  ( 𝑐 ‘ ℎ )  ≤  𝑥 ) ) | 
						
							| 71 | 70 69 | ifbieq1d | ⊢ ( 𝑗  =  ℎ  →  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 )  =  if ( ( 𝑐 ‘ ℎ )  ≤  𝑥 ,  ( 𝑐 ‘ ℎ ) ,  𝑥 ) ) | 
						
							| 72 | 68 69 71 | ifbieq12d | ⊢ ( 𝑗  =  ℎ  →  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) )  =  if ( ℎ  ∈  𝑌 ,  ( 𝑐 ‘ ℎ ) ,  if ( ( 𝑐 ‘ ℎ )  ≤  𝑥 ,  ( 𝑐 ‘ ℎ ) ,  𝑥 ) ) ) | 
						
							| 73 | 72 | cbvmptv | ⊢ ( 𝑗  ∈  𝑊  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) ) )  =  ( ℎ  ∈  𝑊  ↦  if ( ℎ  ∈  𝑌 ,  ( 𝑐 ‘ ℎ ) ,  if ( ( 𝑐 ‘ ℎ )  ≤  𝑥 ,  ( 𝑐 ‘ ℎ ) ,  𝑥 ) ) ) | 
						
							| 74 | 73 | mpteq2i | ⊢ ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( 𝑗  ∈  𝑊  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) ) ) )  =  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( ℎ  ∈  𝑊  ↦  if ( ℎ  ∈  𝑌 ,  ( 𝑐 ‘ ℎ ) ,  if ( ( 𝑐 ‘ ℎ )  ≤  𝑥 ,  ( 𝑐 ‘ ℎ ) ,  𝑥 ) ) ) ) | 
						
							| 75 | 74 | mpteq2i | ⊢ ( 𝑥  ∈  ℝ  ↦  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( 𝑗  ∈  𝑊  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) ) ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( ℎ  ∈  𝑊  ↦  if ( ℎ  ∈  𝑌 ,  ( 𝑐 ‘ ℎ ) ,  if ( ( 𝑐 ‘ ℎ )  ≤  𝑥 ,  ( 𝑐 ‘ ℎ ) ,  𝑥 ) ) ) ) ) | 
						
							| 76 | 11 75 | eqtri | ⊢ 𝐻  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( ℎ  ∈  𝑊  ↦  if ( ℎ  ∈  𝑌 ,  ( 𝑐 ‘ ℎ ) ,  if ( ( 𝑐 ‘ ℎ )  ≤  𝑥 ,  ( 𝑐 ‘ ℎ ) ,  𝑥 ) ) ) ) ) | 
						
							| 77 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐴 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 78 | 9 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐷 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑊 ) ) | 
						
							| 79 |  | elmapi | ⊢ ( ( 𝐷 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑊 )  →  ( 𝐷 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 80 | 78 79 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐷 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 81 | 76 77 64 80 | hsphoif | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) : 𝑊 ⟶ ℝ ) | 
						
							| 82 | 1 64 67 81 | hoidmvcl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 83 | 58 82 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 84 | 83 | fmpttd | ⊢ ( 𝜑  →  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) : ℕ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 85 | 57 84 | sge0cl | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 86 | 57 84 | sge0xrcl | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ* ) | 
						
							| 87 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 88 | 87 | a1i | ⊢ ( 𝜑  →  +∞  ∈  ℝ* ) | 
						
							| 89 | 10 | rexrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) )  ∈  ℝ* ) | 
						
							| 90 |  | nfv | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 91 | 1 64 67 80 | hoidmvcl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 92 | 58 91 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 93 | 4 | eldifbd | ⊢ ( 𝜑  →  ¬  𝑍  ∈  𝑌 ) | 
						
							| 94 | 22 93 | eldifd | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑊  ∖  𝑌 ) ) | 
						
							| 95 | 94 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑍  ∈  ( 𝑊  ∖  𝑌 ) ) | 
						
							| 96 | 1 64 95 5 77 76 67 80 | hsphoidmvle | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ≤  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 97 | 90 57 83 92 96 | sge0lempt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) | 
						
							| 98 | 10 | ltpnfd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) )  <  +∞ ) | 
						
							| 99 | 86 89 88 97 98 | xrlelttrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  <  +∞ ) | 
						
							| 100 | 86 88 99 | xrltned | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ≠  +∞ ) | 
						
							| 101 |  | ge0xrre | ⊢ ( ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ( 0 [,] +∞ )  ∧  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ≠  +∞ )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ ) | 
						
							| 102 | 85 100 101 | syl2anc | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ ) | 
						
							| 103 | 57 84 | sge0ge0 | ⊢ ( 𝜑  →  0  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 104 |  | mulge0 | ⊢ ( ( ( ( 1  +  𝐸 )  ∈  ℝ  ∧  0  ≤  ( 1  +  𝐸 ) )  ∧  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ  ∧  0  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) )  →  0  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 105 | 49 55 102 103 104 | syl22anc | ⊢ ( 𝜑  →  0  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 106 | 46 105 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝐺  ·  ( ( 𝐴 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 107 | 30 106 | jca | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑍 )  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∧  ( 𝐺  ·  ( ( 𝐴 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 108 |  | oveq1 | ⊢ ( 𝑧  =  ( 𝐴 ‘ 𝑍 )  →  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) )  =  ( ( 𝐴 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 109 | 108 | oveq2d | ⊢ ( 𝑧  =  ( 𝐴 ‘ 𝑍 )  →  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  =  ( 𝐺  ·  ( ( 𝐴 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 110 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝐴 ‘ 𝑍 )  →  ( 𝐻 ‘ 𝑧 )  =  ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 111 | 110 | fveq1d | ⊢ ( 𝑧  =  ( 𝐴 ‘ 𝑍 )  →  ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) )  =  ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 112 | 111 | oveq2d | ⊢ ( 𝑧  =  ( 𝐴 ‘ 𝑍 )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  =  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 113 | 112 | mpteq2dv | ⊢ ( 𝑧  =  ( 𝐴 ‘ 𝑍 )  →  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) | 
						
							| 114 | 113 | fveq2d | ⊢ ( 𝑧  =  ( 𝐴 ‘ 𝑍 )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  =  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 115 | 114 | oveq2d | ⊢ ( 𝑧  =  ( 𝐴 ‘ 𝑍 )  →  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  =  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 116 | 109 115 | breq12d | ⊢ ( 𝑧  =  ( 𝐴 ‘ 𝑍 )  →  ( ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  ↔  ( 𝐺  ·  ( ( 𝐴 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 117 | 116 | elrab | ⊢ ( ( 𝐴 ‘ 𝑍 )  ∈  { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) }  ↔  ( ( 𝐴 ‘ 𝑍 )  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∧  ( 𝐺  ·  ( ( 𝐴 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 118 | 107 117 | sylibr | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  ∈  { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } ) | 
						
							| 119 | 118 14 | eleqtrrdi | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  ∈  𝑈 ) | 
						
							| 120 |  | ne0i | ⊢ ( ( 𝐴 ‘ 𝑍 )  ∈  𝑈  →  𝑈  ≠  ∅ ) | 
						
							| 121 | 119 120 | syl | ⊢ ( 𝜑  →  𝑈  ≠  ∅ ) | 
						
							| 122 | 23 24 27 121 | supicc | ⊢ ( 𝜑  →  sup ( 𝑈 ,  ℝ ,   <  )  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 123 | 17 122 | eqeltrd | ⊢ ( 𝜑  →  𝑆  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 124 | 17 | oveq1d | ⊢ ( 𝜑  →  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) )  =  ( sup ( 𝑈 ,  ℝ ,   <  )  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 125 | 124 | oveq2d | ⊢ ( 𝜑  →  ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) )  =  ( 𝐺  ·  ( sup ( 𝑈 ,  ℝ ,   <  )  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 126 | 23 24 | iccssred | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ⊆  ℝ ) | 
						
							| 127 | 27 126 | sstrd | ⊢ ( 𝜑  →  𝑈  ⊆  ℝ ) | 
						
							| 128 | 23 24 | jca | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑍 )  ∈  ℝ  ∧  ( 𝐵 ‘ 𝑍 )  ∈  ℝ ) ) | 
						
							| 129 |  | iccsupr | ⊢ ( ( ( ( 𝐴 ‘ 𝑍 )  ∈  ℝ  ∧  ( 𝐵 ‘ 𝑍 )  ∈  ℝ )  ∧  𝑈  ⊆  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∧  ( 𝐴 ‘ 𝑍 )  ∈  𝑈 )  →  ( 𝑈  ⊆  ℝ  ∧  𝑈  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  𝑈 𝑧  ≤  𝑦 ) ) | 
						
							| 130 | 128 27 119 129 | syl3anc | ⊢ ( 𝜑  →  ( 𝑈  ⊆  ℝ  ∧  𝑈  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  𝑈 𝑧  ≤  𝑦 ) ) | 
						
							| 131 | 130 | simp3d | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  𝑈 𝑧  ≤  𝑦 ) | 
						
							| 132 |  | eqid | ⊢ { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  =  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } | 
						
							| 133 | 127 121 131 23 132 | supsubc | ⊢ ( 𝜑  →  ( sup ( 𝑈 ,  ℝ ,   <  )  −  ( 𝐴 ‘ 𝑍 ) )  =  sup ( { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } ,  ℝ ,   <  ) ) | 
						
							| 134 | 133 | oveq2d | ⊢ ( 𝜑  →  ( 𝐺  ·  ( sup ( 𝑈 ,  ℝ ,   <  )  −  ( 𝐴 ‘ 𝑍 ) ) )  =  ( 𝐺  ·  sup ( { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } ,  ℝ ,   <  ) ) ) | 
						
							| 135 | 50 | rexrd | ⊢ ( 𝜑  →  0  ∈  ℝ* ) | 
						
							| 136 |  | icogelb | ⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  𝐺  ∈  ( 0 [,) +∞ ) )  →  0  ≤  𝐺 ) | 
						
							| 137 | 135 88 42 136 | syl3anc | ⊢ ( 𝜑  →  0  ≤  𝐺 ) | 
						
							| 138 |  | vex | ⊢ 𝑟  ∈  V | 
						
							| 139 |  | eqeq1 | ⊢ ( 𝑤  =  𝑟  →  ( 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  ↔  𝑟  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 140 | 139 | rexbidv | ⊢ ( 𝑤  =  𝑟  →  ( ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  ↔  ∃ 𝑢  ∈  𝑈 𝑟  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 141 | 138 140 | elab | ⊢ ( 𝑟  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  ↔  ∃ 𝑢  ∈  𝑈 𝑟  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 142 | 141 | biimpi | ⊢ ( 𝑟  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  →  ∃ 𝑢  ∈  𝑈 𝑟  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 143 | 142 | adantl | ⊢ ( ( 𝜑  ∧  𝑟  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } )  →  ∃ 𝑢  ∈  𝑈 𝑟  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 144 |  | nfv | ⊢ Ⅎ 𝑢 𝜑 | 
						
							| 145 |  | nfcv | ⊢ Ⅎ 𝑢 𝑟 | 
						
							| 146 |  | nfre1 | ⊢ Ⅎ 𝑢 ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) | 
						
							| 147 | 146 | nfab | ⊢ Ⅎ 𝑢 { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } | 
						
							| 148 | 145 147 | nfel | ⊢ Ⅎ 𝑢 𝑟  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } | 
						
							| 149 | 144 148 | nfan | ⊢ Ⅎ 𝑢 ( 𝜑  ∧  𝑟  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } ) | 
						
							| 150 |  | nfv | ⊢ Ⅎ 𝑢 0  ≤  𝑟 | 
						
							| 151 | 23 | rexrd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  ∈  ℝ* ) | 
						
							| 152 | 151 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( 𝐴 ‘ 𝑍 )  ∈  ℝ* ) | 
						
							| 153 | 24 | rexrd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑍 )  ∈  ℝ* ) | 
						
							| 154 | 153 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( 𝐵 ‘ 𝑍 )  ∈  ℝ* ) | 
						
							| 155 | 27 | sselda | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑢  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 156 |  | iccgelb | ⊢ ( ( ( 𝐴 ‘ 𝑍 )  ∈  ℝ*  ∧  ( 𝐵 ‘ 𝑍 )  ∈  ℝ*  ∧  𝑢  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) )  →  ( 𝐴 ‘ 𝑍 )  ≤  𝑢 ) | 
						
							| 157 | 152 154 155 156 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( 𝐴 ‘ 𝑍 )  ≤  𝑢 ) | 
						
							| 158 | 127 | sselda | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑢  ∈  ℝ ) | 
						
							| 159 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( 𝐴 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 160 | 158 159 | subge0d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( 0  ≤  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  ↔  ( 𝐴 ‘ 𝑍 )  ≤  𝑢 ) ) | 
						
							| 161 | 157 160 | mpbird | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  0  ≤  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 162 | 161 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑟  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  0  ≤  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 163 |  | id | ⊢ ( 𝑟  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  →  𝑟  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 164 | 163 | eqcomd | ⊢ ( 𝑟  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  →  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  =  𝑟 ) | 
						
							| 165 | 164 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑟  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  =  𝑟 ) | 
						
							| 166 | 162 165 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑟  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  0  ≤  𝑟 ) | 
						
							| 167 | 166 | 3exp | ⊢ ( 𝜑  →  ( 𝑢  ∈  𝑈  →  ( 𝑟  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  →  0  ≤  𝑟 ) ) ) | 
						
							| 168 | 167 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } )  →  ( 𝑢  ∈  𝑈  →  ( 𝑟  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  →  0  ≤  𝑟 ) ) ) | 
						
							| 169 | 149 150 168 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑟  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } )  →  ( ∃ 𝑢  ∈  𝑈 𝑟  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  →  0  ≤  𝑟 ) ) | 
						
							| 170 | 143 169 | mpd | ⊢ ( ( 𝜑  ∧  𝑟  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } )  →  0  ≤  𝑟 ) | 
						
							| 171 | 170 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑟  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 0  ≤  𝑟 ) | 
						
							| 172 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 173 | 158 159 | resubcld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  ∈  ℝ ) | 
						
							| 174 | 173 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  ∈  ℝ ) | 
						
							| 175 | 172 174 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  𝑤  ∈  ℝ ) | 
						
							| 176 | 175 | 3exp | ⊢ ( 𝜑  →  ( 𝑢  ∈  𝑈  →  ( 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  →  𝑤  ∈  ℝ ) ) ) | 
						
							| 177 | 176 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  →  𝑤  ∈  ℝ ) ) | 
						
							| 178 | 177 | alrimiv | ⊢ ( 𝜑  →  ∀ 𝑤 ( ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  →  𝑤  ∈  ℝ ) ) | 
						
							| 179 |  | abss | ⊢ ( { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  ⊆  ℝ  ↔  ∀ 𝑤 ( ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  →  𝑤  ∈  ℝ ) ) | 
						
							| 180 | 178 179 | sylibr | ⊢ ( 𝜑  →  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  ⊆  ℝ ) | 
						
							| 181 | 32 | eqcomd | ⊢ ( 𝜑  →  0  =  ( ( 𝐴 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 182 |  | oveq1 | ⊢ ( 𝑢  =  ( 𝐴 ‘ 𝑍 )  →  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  =  ( ( 𝐴 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 183 | 182 | rspceeqv | ⊢ ( ( ( 𝐴 ‘ 𝑍 )  ∈  𝑈  ∧  0  =  ( ( 𝐴 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) )  →  ∃ 𝑢  ∈  𝑈 0  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 184 | 119 181 183 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑢  ∈  𝑈 0  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 185 |  | eqeq1 | ⊢ ( 𝑤  =  0  →  ( 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  ↔  0  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 186 | 185 | rexbidv | ⊢ ( 𝑤  =  0  →  ( ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  ↔  ∃ 𝑢  ∈  𝑈 0  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 187 | 50 184 186 | elabd | ⊢ ( 𝜑  →  0  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } ) | 
						
							| 188 |  | ne0i | ⊢ ( 0  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  →  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  ≠  ∅ ) | 
						
							| 189 | 187 188 | syl | ⊢ ( 𝜑  →  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  ≠  ∅ ) | 
						
							| 190 | 24 23 | resubcld | ⊢ ( 𝜑  →  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) )  ∈  ℝ ) | 
						
							| 191 |  | vex | ⊢ 𝑠  ∈  V | 
						
							| 192 |  | eqeq1 | ⊢ ( 𝑤  =  𝑠  →  ( 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  ↔  𝑠  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 193 | 192 | rexbidv | ⊢ ( 𝑤  =  𝑠  →  ( ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  ↔  ∃ 𝑢  ∈  𝑈 𝑠  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 194 | 191 193 | elab | ⊢ ( 𝑠  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  ↔  ∃ 𝑢  ∈  𝑈 𝑠  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 195 | 194 | biimpi | ⊢ ( 𝑠  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  →  ∃ 𝑢  ∈  𝑈 𝑠  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 196 | 195 | adantl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } )  →  ∃ 𝑢  ∈  𝑈 𝑠  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 197 |  | nfcv | ⊢ Ⅎ 𝑢 𝑠 | 
						
							| 198 | 197 147 | nfel | ⊢ Ⅎ 𝑢 𝑠  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } | 
						
							| 199 | 144 198 | nfan | ⊢ Ⅎ 𝑢 ( 𝜑  ∧  𝑠  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } ) | 
						
							| 200 |  | nfv | ⊢ Ⅎ 𝑢 𝑠  ≤  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) | 
						
							| 201 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑠  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  𝑠  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 202 | 159 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑠  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  ( 𝐴 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 203 | 24 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑠  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  ( 𝐵 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 204 | 155 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑠  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  𝑢  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 205 | 30 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑠  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  ( 𝐴 ‘ 𝑍 )  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 206 | 202 203 204 205 | iccsuble | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑠  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  ≤  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 207 | 201 206 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑠  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  𝑠  ≤  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 208 | 207 | 3exp | ⊢ ( 𝜑  →  ( 𝑢  ∈  𝑈  →  ( 𝑠  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  →  𝑠  ≤  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) ) ) | 
						
							| 209 | 208 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } )  →  ( 𝑢  ∈  𝑈  →  ( 𝑠  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  →  𝑠  ≤  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) ) ) | 
						
							| 210 | 199 200 209 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } )  →  ( ∃ 𝑢  ∈  𝑈 𝑠  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  →  𝑠  ≤  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 211 | 196 210 | mpd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } )  →  𝑠  ≤  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 212 | 211 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑠  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑠  ≤  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 213 |  | brralrspcev | ⊢ ( ( ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) )  ∈  ℝ  ∧  ∀ 𝑠  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑠  ≤  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) )  →  ∃ 𝑟  ∈  ℝ ∀ 𝑠  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑠  ≤  𝑟 ) | 
						
							| 214 | 190 212 213 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑟  ∈  ℝ ∀ 𝑠  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑠  ≤  𝑟 ) | 
						
							| 215 |  | eqid | ⊢ { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) }  =  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } | 
						
							| 216 |  | biid | ⊢ ( ( ( 𝐺  ∈  ℝ  ∧  0  ≤  𝐺  ∧  ∀ 𝑟  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 0  ≤  𝑟 )  ∧  ( { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  ⊆  ℝ  ∧  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  ≠  ∅  ∧  ∃ 𝑟  ∈  ℝ ∀ 𝑠  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑠  ≤  𝑟 ) )  ↔  ( ( 𝐺  ∈  ℝ  ∧  0  ≤  𝐺  ∧  ∀ 𝑟  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 0  ≤  𝑟 )  ∧  ( { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  ⊆  ℝ  ∧  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  ≠  ∅  ∧  ∃ 𝑟  ∈  ℝ ∀ 𝑠  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑠  ≤  𝑟 ) ) ) | 
						
							| 217 | 215 216 | supmul1 | ⊢ ( ( ( 𝐺  ∈  ℝ  ∧  0  ≤  𝐺  ∧  ∀ 𝑟  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 0  ≤  𝑟 )  ∧  ( { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  ⊆  ℝ  ∧  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  ≠  ∅  ∧  ∃ 𝑟  ∈  ℝ ∀ 𝑠  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑠  ≤  𝑟 ) )  →  ( 𝐺  ·  sup ( { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } ,  ℝ ,   <  ) )  =  sup ( { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } ,  ℝ ,   <  ) ) | 
						
							| 218 | 43 137 171 180 189 214 217 | syl33anc | ⊢ ( 𝜑  →  ( 𝐺  ·  sup ( { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } ,  ℝ ,   <  ) )  =  sup ( { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } ,  ℝ ,   <  ) ) | 
						
							| 219 | 125 134 218 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) )  =  sup ( { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } ,  ℝ ,   <  ) ) | 
						
							| 220 |  | vex | ⊢ 𝑐  ∈  V | 
						
							| 221 |  | eqeq1 | ⊢ ( 𝑣  =  𝑐  →  ( 𝑣  =  ( 𝐺  ·  𝑡 )  ↔  𝑐  =  ( 𝐺  ·  𝑡 ) ) ) | 
						
							| 222 | 221 | rexbidv | ⊢ ( 𝑣  =  𝑐  →  ( ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 )  ↔  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑐  =  ( 𝐺  ·  𝑡 ) ) ) | 
						
							| 223 | 220 222 | elab | ⊢ ( 𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) }  ↔  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑐  =  ( 𝐺  ·  𝑡 ) ) | 
						
							| 224 | 223 | biimpi | ⊢ ( 𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) }  →  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑐  =  ( 𝐺  ·  𝑡 ) ) | 
						
							| 225 |  | nfv | ⊢ Ⅎ 𝑡 ∃ 𝑢  ∈  𝑈 𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 226 |  | vex | ⊢ 𝑡  ∈  V | 
						
							| 227 |  | eqeq1 | ⊢ ( 𝑤  =  𝑡  →  ( 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  ↔  𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 228 | 227 | rexbidv | ⊢ ( 𝑤  =  𝑡  →  ( ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  ↔  ∃ 𝑢  ∈  𝑈 𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 229 | 226 228 | elab | ⊢ ( 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  ↔  ∃ 𝑢  ∈  𝑈 𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 230 | 229 | biimpi | ⊢ ( 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  →  ∃ 𝑢  ∈  𝑈 𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 231 | 230 | adantr | ⊢ ( ( 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  ∧  𝑐  =  ( 𝐺  ·  𝑡 ) )  →  ∃ 𝑢  ∈  𝑈 𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 232 |  | simpl | ⊢ ( ( 𝑐  =  ( 𝐺  ·  𝑡 )  ∧  𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  𝑐  =  ( 𝐺  ·  𝑡 ) ) | 
						
							| 233 |  | oveq2 | ⊢ ( 𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  →  ( 𝐺  ·  𝑡 )  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 234 | 233 | adantl | ⊢ ( ( 𝑐  =  ( 𝐺  ·  𝑡 )  ∧  𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  ( 𝐺  ·  𝑡 )  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 235 | 232 234 | eqtrd | ⊢ ( ( 𝑐  =  ( 𝐺  ·  𝑡 )  ∧  𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 236 | 235 | ex | ⊢ ( 𝑐  =  ( 𝐺  ·  𝑡 )  →  ( 𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  →  𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) ) ) | 
						
							| 237 | 236 | reximdv | ⊢ ( 𝑐  =  ( 𝐺  ·  𝑡 )  →  ( ∃ 𝑢  ∈  𝑈 𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  →  ∃ 𝑢  ∈  𝑈 𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) ) ) | 
						
							| 238 | 237 | adantl | ⊢ ( ( 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  ∧  𝑐  =  ( 𝐺  ·  𝑡 ) )  →  ( ∃ 𝑢  ∈  𝑈 𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  →  ∃ 𝑢  ∈  𝑈 𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) ) ) | 
						
							| 239 | 231 238 | mpd | ⊢ ( ( 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  ∧  𝑐  =  ( 𝐺  ·  𝑡 ) )  →  ∃ 𝑢  ∈  𝑈 𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 240 | 239 | ex | ⊢ ( 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  →  ( 𝑐  =  ( 𝐺  ·  𝑡 )  →  ∃ 𝑢  ∈  𝑈 𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) ) ) | 
						
							| 241 | 225 240 | rexlimi | ⊢ ( ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑐  =  ( 𝐺  ·  𝑡 )  →  ∃ 𝑢  ∈  𝑈 𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 242 | 241 | a1i | ⊢ ( 𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) }  →  ( ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑐  =  ( 𝐺  ·  𝑡 )  →  ∃ 𝑢  ∈  𝑈 𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) ) ) | 
						
							| 243 | 224 242 | mpd | ⊢ ( 𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) }  →  ∃ 𝑢  ∈  𝑈 𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 244 | 243 | adantl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } )  →  ∃ 𝑢  ∈  𝑈 𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 245 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) )  →  𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 246 | 43 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝐺  ∈  ℝ ) | 
						
							| 247 | 246 173 | remulcld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  ∈  ℝ ) | 
						
							| 248 | 49 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( 1  +  𝐸 )  ∈  ℝ ) | 
						
							| 249 | 56 | a1i | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ℕ  ∈  V ) | 
						
							| 250 | 64 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  𝑊  ∈  Fin ) | 
						
							| 251 | 67 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( 𝐶 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 252 | 158 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  𝑢  ∈  ℝ ) | 
						
							| 253 | 80 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( 𝐷 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 254 | 76 252 250 253 | hsphoif | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) : 𝑊 ⟶ ℝ ) | 
						
							| 255 | 1 250 251 254 | hoidmvcl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 256 | 58 255 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 257 | 256 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) : ℕ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 258 | 249 257 | sge0cl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 259 | 249 257 | sge0xrcl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ* ) | 
						
							| 260 | 87 | a1i | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  +∞  ∈  ℝ* ) | 
						
							| 261 | 89 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) )  ∈  ℝ* ) | 
						
							| 262 |  | nfv | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑢  ∈  𝑈 ) | 
						
							| 263 | 92 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 264 | 95 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  𝑍  ∈  ( 𝑊  ∖  𝑌 ) ) | 
						
							| 265 | 1 250 264 5 252 76 251 253 | hsphoidmvle | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ≤  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 266 | 262 249 256 263 265 | sge0lempt | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) | 
						
							| 267 | 98 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) )  <  +∞ ) | 
						
							| 268 | 259 261 260 266 267 | xrlelttrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  <  +∞ ) | 
						
							| 269 | 259 260 268 | xrltned | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ≠  +∞ ) | 
						
							| 270 |  | ge0xrre | ⊢ ( ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ( 0 [,] +∞ )  ∧  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ≠  +∞ )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ ) | 
						
							| 271 | 258 269 270 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ ) | 
						
							| 272 | 248 271 | remulcld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  ∈  ℝ ) | 
						
							| 273 | 126 123 | sseldd | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 274 | 1 35 94 5 8 9 10 11 273 | sge0hsphoire | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ ) | 
						
							| 275 | 49 274 | remulcld | ⊢ ( 𝜑  →  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  ∈  ℝ ) | 
						
							| 276 | 275 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  ∈  ℝ ) | 
						
							| 277 | 14 | eleq2i | ⊢ ( 𝑢  ∈  𝑈  ↔  𝑢  ∈  { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } ) | 
						
							| 278 | 277 | biimpi | ⊢ ( 𝑢  ∈  𝑈  →  𝑢  ∈  { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } ) | 
						
							| 279 |  | oveq1 | ⊢ ( 𝑧  =  𝑢  →  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) )  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 280 | 279 | oveq2d | ⊢ ( 𝑧  =  𝑢  →  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 281 |  | fveq2 | ⊢ ( 𝑧  =  𝑢  →  ( 𝐻 ‘ 𝑧 )  =  ( 𝐻 ‘ 𝑢 ) ) | 
						
							| 282 | 281 | fveq1d | ⊢ ( 𝑧  =  𝑢  →  ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) )  =  ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 283 | 282 | oveq2d | ⊢ ( 𝑧  =  𝑢  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  =  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 284 | 283 | mpteq2dv | ⊢ ( 𝑧  =  𝑢  →  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) | 
						
							| 285 | 284 | fveq2d | ⊢ ( 𝑧  =  𝑢  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  =  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 286 | 285 | oveq2d | ⊢ ( 𝑧  =  𝑢  →  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  =  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 287 | 280 286 | breq12d | ⊢ ( 𝑧  =  𝑢  →  ( ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  ↔  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 288 | 287 | elrab | ⊢ ( 𝑢  ∈  { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) }  ↔  ( 𝑢  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∧  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 289 | 278 288 | sylib | ⊢ ( 𝑢  ∈  𝑈  →  ( 𝑢  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∧  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 290 | 289 | simprd | ⊢ ( 𝑢  ∈  𝑈  →  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 291 | 290 | adantl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 292 | 274 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ ) | 
						
							| 293 | 55 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  0  ≤  ( 1  +  𝐸 ) ) | 
						
							| 294 | 273 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑆  ∈  ℝ ) | 
						
							| 295 | 76 294 64 80 | hsphoif | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) : 𝑊 ⟶ ℝ ) | 
						
							| 296 | 1 64 67 295 | hoidmvcl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 297 | 58 296 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 298 | 297 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 299 | 294 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  𝑆  ∈  ℝ ) | 
						
							| 300 | 127 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑈  ⊆  ℝ ) | 
						
							| 301 | 121 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑈  ≠  ∅ ) | 
						
							| 302 | 131 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  𝑈 𝑧  ≤  𝑦 ) | 
						
							| 303 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑢  ∈  𝑈 ) | 
						
							| 304 |  | suprub | ⊢ ( ( ( 𝑈  ⊆  ℝ  ∧  𝑈  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  𝑈 𝑧  ≤  𝑦 )  ∧  𝑢  ∈  𝑈 )  →  𝑢  ≤  sup ( 𝑈 ,  ℝ ,   <  ) ) | 
						
							| 305 | 300 301 302 303 304 | syl31anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑢  ≤  sup ( 𝑈 ,  ℝ ,   <  ) ) | 
						
							| 306 | 305 15 | breqtrrdi | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑢  ≤  𝑆 ) | 
						
							| 307 | 306 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  𝑢  ≤  𝑆 ) | 
						
							| 308 | 1 250 264 5 252 299 307 76 251 253 | hsphoidmvle2 | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ≤  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 309 | 262 249 256 298 308 | sge0lempt | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 310 | 271 292 248 293 309 | lemul2ad | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 311 | 247 272 276 291 310 | letrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 312 | 311 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) )  →  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 313 | 245 312 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) )  →  𝑐  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 314 | 313 | 3exp | ⊢ ( 𝜑  →  ( 𝑢  ∈  𝑈  →  ( 𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  𝑐  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) ) | 
						
							| 315 | 314 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑢  ∈  𝑈 𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  𝑐  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 316 | 315 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } )  →  ( ∃ 𝑢  ∈  𝑈 𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  𝑐  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 317 | 244 316 | mpd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } )  →  𝑐  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 318 | 317 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } 𝑐  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 319 | 224 | adantl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } )  →  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑐  =  ( 𝐺  ·  𝑡 ) ) | 
						
							| 320 |  | nfv | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 321 |  | nfcv | ⊢ Ⅎ 𝑡 𝑐 | 
						
							| 322 |  | nfre1 | ⊢ Ⅎ 𝑡 ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) | 
						
							| 323 | 322 | nfab | ⊢ Ⅎ 𝑡 { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } | 
						
							| 324 | 321 323 | nfel | ⊢ Ⅎ 𝑡 𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } | 
						
							| 325 | 320 324 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } ) | 
						
							| 326 |  | nfv | ⊢ Ⅎ 𝑡 𝑐  ∈  ℝ | 
						
							| 327 | 230 | adantl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } )  →  ∃ 𝑢  ∈  𝑈 𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 328 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  ∧  𝑐  =  ( 𝐺  ·  𝑡 ) )  →  𝑐  =  ( 𝐺  ·  𝑡 ) ) | 
						
							| 329 | 246 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  𝐺  ∈  ℝ ) | 
						
							| 330 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 331 | 173 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  ∈  ℝ ) | 
						
							| 332 | 330 331 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  𝑡  ∈  ℝ ) | 
						
							| 333 | 329 332 | remulcld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  ( 𝐺  ·  𝑡 )  ∈  ℝ ) | 
						
							| 334 | 333 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  ∧  𝑐  =  ( 𝐺  ·  𝑡 ) )  →  ( 𝐺  ·  𝑡 )  ∈  ℝ ) | 
						
							| 335 | 328 334 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  ∧  𝑐  =  ( 𝐺  ·  𝑡 ) )  →  𝑐  ∈  ℝ ) | 
						
							| 336 | 335 | ex | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  ( 𝑐  =  ( 𝐺  ·  𝑡 )  →  𝑐  ∈  ℝ ) ) | 
						
							| 337 | 336 | 3exp | ⊢ ( 𝜑  →  ( 𝑢  ∈  𝑈  →  ( 𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  →  ( 𝑐  =  ( 𝐺  ·  𝑡 )  →  𝑐  ∈  ℝ ) ) ) ) | 
						
							| 338 | 337 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑢  ∈  𝑈 𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  →  ( 𝑐  =  ( 𝐺  ·  𝑡 )  →  𝑐  ∈  ℝ ) ) ) | 
						
							| 339 | 338 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } )  →  ( ∃ 𝑢  ∈  𝑈 𝑡  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  →  ( 𝑐  =  ( 𝐺  ·  𝑡 )  →  𝑐  ∈  ℝ ) ) ) | 
						
							| 340 | 327 339 | mpd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } )  →  ( 𝑐  =  ( 𝐺  ·  𝑡 )  →  𝑐  ∈  ℝ ) ) | 
						
							| 341 | 340 | ex | ⊢ ( 𝜑  →  ( 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  →  ( 𝑐  =  ( 𝐺  ·  𝑡 )  →  𝑐  ∈  ℝ ) ) ) | 
						
							| 342 | 341 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } )  →  ( 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  →  ( 𝑐  =  ( 𝐺  ·  𝑡 )  →  𝑐  ∈  ℝ ) ) ) | 
						
							| 343 | 325 326 342 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } )  →  ( ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑐  =  ( 𝐺  ·  𝑡 )  →  𝑐  ∈  ℝ ) ) | 
						
							| 344 | 319 343 | mpd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } )  →  𝑐  ∈  ℝ ) | 
						
							| 345 | 344 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } 𝑐  ∈  ℝ ) | 
						
							| 346 |  | dfss3 | ⊢ ( { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) }  ⊆  ℝ  ↔  ∀ 𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } 𝑐  ∈  ℝ ) | 
						
							| 347 | 345 346 | sylibr | ⊢ ( 𝜑  →  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) }  ⊆  ℝ ) | 
						
							| 348 | 45 | eqcomd | ⊢ ( 𝜑  →  0  =  ( 𝐺  ·  0 ) ) | 
						
							| 349 |  | oveq2 | ⊢ ( 𝑡  =  0  →  ( 𝐺  ·  𝑡 )  =  ( 𝐺  ·  0 ) ) | 
						
							| 350 | 349 | rspceeqv | ⊢ ( ( 0  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) }  ∧  0  =  ( 𝐺  ·  0 ) )  →  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 0  =  ( 𝐺  ·  𝑡 ) ) | 
						
							| 351 | 187 348 350 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 0  =  ( 𝐺  ·  𝑡 ) ) | 
						
							| 352 |  | eqeq1 | ⊢ ( 𝑣  =  0  →  ( 𝑣  =  ( 𝐺  ·  𝑡 )  ↔  0  =  ( 𝐺  ·  𝑡 ) ) ) | 
						
							| 353 | 352 | rexbidv | ⊢ ( 𝑣  =  0  →  ( ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 )  ↔  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 0  =  ( 𝐺  ·  𝑡 ) ) ) | 
						
							| 354 | 50 351 353 | elabd | ⊢ ( 𝜑  →  0  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } ) | 
						
							| 355 |  | ne0i | ⊢ ( 0  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) }  →  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) }  ≠  ∅ ) | 
						
							| 356 | 354 355 | syl | ⊢ ( 𝜑  →  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) }  ≠  ∅ ) | 
						
							| 357 | 43 190 | remulcld | ⊢ ( 𝜑  →  ( 𝐺  ·  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) )  ∈  ℝ ) | 
						
							| 358 | 190 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) )  ∈  ℝ ) | 
						
							| 359 | 137 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  0  ≤  𝐺 ) | 
						
							| 360 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( 𝐵 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 361 |  | iccleub | ⊢ ( ( ( 𝐴 ‘ 𝑍 )  ∈  ℝ*  ∧  ( 𝐵 ‘ 𝑍 )  ∈  ℝ*  ∧  𝑢  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) )  →  𝑢  ≤  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 362 | 152 154 155 361 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑢  ≤  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 363 | 158 360 159 362 | lesub1dd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) )  ≤  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 364 | 173 358 246 359 363 | lemul2ad | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( 𝐺  ·  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 365 | 364 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) )  →  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( 𝐺  ·  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 366 | 245 365 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈  ∧  𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) ) )  →  𝑐  ≤  ( 𝐺  ·  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 367 | 366 | 3exp | ⊢ ( 𝜑  →  ( 𝑢  ∈  𝑈  →  ( 𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  𝑐  ≤  ( 𝐺  ·  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) ) ) ) | 
						
							| 368 | 367 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑢  ∈  𝑈 𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  𝑐  ≤  ( 𝐺  ·  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) ) ) | 
						
							| 369 | 368 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } )  →  ( ∃ 𝑢  ∈  𝑈 𝑐  =  ( 𝐺  ·  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) )  →  𝑐  ≤  ( 𝐺  ·  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) ) ) | 
						
							| 370 | 244 369 | mpd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } )  →  𝑐  ≤  ( 𝐺  ·  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 371 | 370 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } 𝑐  ≤  ( 𝐺  ·  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 372 |  | brralrspcev | ⊢ ( ( ( 𝐺  ·  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) )  ∈  ℝ  ∧  ∀ 𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } 𝑐  ≤  ( 𝐺  ·  ( ( 𝐵 ‘ 𝑍 )  −  ( 𝐴 ‘ 𝑍 ) ) ) )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } 𝑐  ≤  𝑦 ) | 
						
							| 373 | 357 371 372 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ∀ 𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } 𝑐  ≤  𝑦 ) | 
						
							| 374 |  | suprleub | ⊢ ( ( ( { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) }  ⊆  ℝ  ∧  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) }  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } 𝑐  ≤  𝑦 )  ∧  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  ∈  ℝ )  →  ( sup ( { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } ,  ℝ ,   <  )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  ↔  ∀ 𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } 𝑐  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 375 | 347 356 373 275 374 | syl31anc | ⊢ ( 𝜑  →  ( sup ( { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } ,  ℝ ,   <  )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  ↔  ∀ 𝑐  ∈  { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } 𝑐  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 376 | 318 375 | mpbird | ⊢ ( 𝜑  →  sup ( { 𝑣  ∣  ∃ 𝑡  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  𝑈 𝑤  =  ( 𝑢  −  ( 𝐴 ‘ 𝑍 ) ) } 𝑣  =  ( 𝐺  ·  𝑡 ) } ,  ℝ ,   <  )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 377 | 219 376 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 378 | 123 377 | jca | ⊢ ( 𝜑  →  ( 𝑆  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∧  ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 379 |  | oveq1 | ⊢ ( 𝑧  =  𝑆  →  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) )  =  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 380 | 379 | oveq2d | ⊢ ( 𝑧  =  𝑆  →  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  =  ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 381 |  | fveq2 | ⊢ ( 𝑧  =  𝑆  →  ( 𝐻 ‘ 𝑧 )  =  ( 𝐻 ‘ 𝑆 ) ) | 
						
							| 382 | 381 | fveq1d | ⊢ ( 𝑧  =  𝑆  →  ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) )  =  ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 383 | 382 | oveq2d | ⊢ ( 𝑧  =  𝑆  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  =  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 384 | 383 | mpteq2dv | ⊢ ( 𝑧  =  𝑆  →  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) | 
						
							| 385 | 384 | fveq2d | ⊢ ( 𝑧  =  𝑆  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  =  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 386 | 385 | oveq2d | ⊢ ( 𝑧  =  𝑆  →  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  =  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 387 | 380 386 | breq12d | ⊢ ( 𝑧  =  𝑆  →  ( ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  ↔  ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 388 | 387 | elrab | ⊢ ( 𝑆  ∈  { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) }  ↔  ( 𝑆  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∧  ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 389 | 378 388 | sylibr | ⊢ ( 𝜑  →  𝑆  ∈  { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } ) | 
						
							| 390 | 389 14 | eleqtrrdi | ⊢ ( 𝜑  →  𝑆  ∈  𝑈 ) |