Step |
Hyp |
Ref |
Expression |
1 |
|
hoidmvlelem1.l |
⊢ 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
2 |
|
hoidmvlelem1.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
3 |
|
hoidmvlelem1.y |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
4 |
|
hoidmvlelem1.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑋 ∖ 𝑌 ) ) |
5 |
|
hoidmvlelem1.w |
⊢ 𝑊 = ( 𝑌 ∪ { 𝑍 } ) |
6 |
|
hoidmvlelem1.a |
⊢ ( 𝜑 → 𝐴 : 𝑊 ⟶ ℝ ) |
7 |
|
hoidmvlelem1.b |
⊢ ( 𝜑 → 𝐵 : 𝑊 ⟶ ℝ ) |
8 |
|
hoidmvlelem1.c |
⊢ ( 𝜑 → 𝐶 : ℕ ⟶ ( ℝ ↑m 𝑊 ) ) |
9 |
|
hoidmvlelem1.d |
⊢ ( 𝜑 → 𝐷 : ℕ ⟶ ( ℝ ↑m 𝑊 ) ) |
10 |
|
hoidmvlelem1.r |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
11 |
|
hoidmvlelem1.h |
⊢ 𝐻 = ( 𝑥 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑗 ∈ 𝑊 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑐 ‘ 𝑗 ) , if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) ) ) ) |
12 |
|
hoidmvlelem1.g |
⊢ 𝐺 = ( ( 𝐴 ↾ 𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵 ↾ 𝑌 ) ) |
13 |
|
hoidmvlelem1.e |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
14 |
|
hoidmvlelem1.u |
⊢ 𝑈 = { 𝑧 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∣ ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } |
15 |
|
hoidmvlelem1.s |
⊢ 𝑆 = sup ( 𝑈 , ℝ , < ) |
16 |
|
hoidmvlelem1.ab |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑍 ) < ( 𝐵 ‘ 𝑍 ) ) |
17 |
15
|
a1i |
⊢ ( 𝜑 → 𝑆 = sup ( 𝑈 , ℝ , < ) ) |
18 |
|
snidg |
⊢ ( 𝑍 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑍 ∈ { 𝑍 } ) |
19 |
4 18
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ { 𝑍 } ) |
20 |
|
elun2 |
⊢ ( 𝑍 ∈ { 𝑍 } → 𝑍 ∈ ( 𝑌 ∪ { 𝑍 } ) ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑌 ∪ { 𝑍 } ) ) |
22 |
21 5
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) |
23 |
6 22
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑍 ) ∈ ℝ ) |
24 |
7 22
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝑍 ) ∈ ℝ ) |
25 |
|
ssrab2 |
⊢ { 𝑧 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∣ ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } ⊆ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) |
26 |
14 25
|
eqsstri |
⊢ 𝑈 ⊆ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) |
27 |
26
|
a1i |
⊢ ( 𝜑 → 𝑈 ⊆ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) |
28 |
23
|
leidd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑍 ) ≤ ( 𝐴 ‘ 𝑍 ) ) |
29 |
23 24 16
|
ltled |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑍 ) ≤ ( 𝐵 ‘ 𝑍 ) ) |
30 |
23 24 23 28 29
|
eliccd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑍 ) ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) |
31 |
23
|
recnd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑍 ) ∈ ℂ ) |
32 |
31
|
subidd |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) = 0 ) |
33 |
32
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 · ( ( 𝐴 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) = ( 𝐺 · 0 ) ) |
34 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
35 |
2 3
|
ssfid |
⊢ ( 𝜑 → 𝑌 ∈ Fin ) |
36 |
|
ssun1 |
⊢ 𝑌 ⊆ ( 𝑌 ∪ { 𝑍 } ) |
37 |
36 5
|
sseqtrri |
⊢ 𝑌 ⊆ 𝑊 |
38 |
37
|
a1i |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑊 ) |
39 |
6 38
|
fssresd |
⊢ ( 𝜑 → ( 𝐴 ↾ 𝑌 ) : 𝑌 ⟶ ℝ ) |
40 |
7 38
|
fssresd |
⊢ ( 𝜑 → ( 𝐵 ↾ 𝑌 ) : 𝑌 ⟶ ℝ ) |
41 |
1 35 39 40
|
hoidmvcl |
⊢ ( 𝜑 → ( ( 𝐴 ↾ 𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵 ↾ 𝑌 ) ) ∈ ( 0 [,) +∞ ) ) |
42 |
12 41
|
eqeltrid |
⊢ ( 𝜑 → 𝐺 ∈ ( 0 [,) +∞ ) ) |
43 |
34 42
|
sselid |
⊢ ( 𝜑 → 𝐺 ∈ ℝ ) |
44 |
43
|
recnd |
⊢ ( 𝜑 → 𝐺 ∈ ℂ ) |
45 |
44
|
mul01d |
⊢ ( 𝜑 → ( 𝐺 · 0 ) = 0 ) |
46 |
33 45
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 · ( ( 𝐴 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) = 0 ) |
47 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
48 |
13
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
49 |
47 48
|
readdcld |
⊢ ( 𝜑 → ( 1 + 𝐸 ) ∈ ℝ ) |
50 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
51 |
|
0lt1 |
⊢ 0 < 1 |
52 |
51
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
53 |
47 13
|
ltaddrpd |
⊢ ( 𝜑 → 1 < ( 1 + 𝐸 ) ) |
54 |
50 47 49 52 53
|
lttrd |
⊢ ( 𝜑 → 0 < ( 1 + 𝐸 ) ) |
55 |
50 49 54
|
ltled |
⊢ ( 𝜑 → 0 ≤ ( 1 + 𝐸 ) ) |
56 |
|
nnex |
⊢ ℕ ∈ V |
57 |
56
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
58 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
59 |
|
snfi |
⊢ { 𝑍 } ∈ Fin |
60 |
59
|
a1i |
⊢ ( 𝜑 → { 𝑍 } ∈ Fin ) |
61 |
|
unfi |
⊢ ( ( 𝑌 ∈ Fin ∧ { 𝑍 } ∈ Fin ) → ( 𝑌 ∪ { 𝑍 } ) ∈ Fin ) |
62 |
35 60 61
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ∪ { 𝑍 } ) ∈ Fin ) |
63 |
5 62
|
eqeltrid |
⊢ ( 𝜑 → 𝑊 ∈ Fin ) |
64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑊 ∈ Fin ) |
65 |
8
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑊 ) ) |
66 |
|
elmapi |
⊢ ( ( 𝐶 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑊 ) → ( 𝐶 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) |
67 |
65 66
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) |
68 |
|
eleq1w |
⊢ ( 𝑗 = ℎ → ( 𝑗 ∈ 𝑌 ↔ ℎ ∈ 𝑌 ) ) |
69 |
|
fveq2 |
⊢ ( 𝑗 = ℎ → ( 𝑐 ‘ 𝑗 ) = ( 𝑐 ‘ ℎ ) ) |
70 |
69
|
breq1d |
⊢ ( 𝑗 = ℎ → ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 ↔ ( 𝑐 ‘ ℎ ) ≤ 𝑥 ) ) |
71 |
70 69
|
ifbieq1d |
⊢ ( 𝑗 = ℎ → if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) = if ( ( 𝑐 ‘ ℎ ) ≤ 𝑥 , ( 𝑐 ‘ ℎ ) , 𝑥 ) ) |
72 |
68 69 71
|
ifbieq12d |
⊢ ( 𝑗 = ℎ → if ( 𝑗 ∈ 𝑌 , ( 𝑐 ‘ 𝑗 ) , if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) = if ( ℎ ∈ 𝑌 , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑥 , ( 𝑐 ‘ ℎ ) , 𝑥 ) ) ) |
73 |
72
|
cbvmptv |
⊢ ( 𝑗 ∈ 𝑊 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑐 ‘ 𝑗 ) , if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) ) = ( ℎ ∈ 𝑊 ↦ if ( ℎ ∈ 𝑌 , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑥 , ( 𝑐 ‘ ℎ ) , 𝑥 ) ) ) |
74 |
73
|
mpteq2i |
⊢ ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑗 ∈ 𝑊 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑐 ‘ 𝑗 ) , if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) ) ) = ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( ℎ ∈ 𝑊 ↦ if ( ℎ ∈ 𝑌 , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑥 , ( 𝑐 ‘ ℎ ) , 𝑥 ) ) ) ) |
75 |
74
|
mpteq2i |
⊢ ( 𝑥 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( 𝑗 ∈ 𝑊 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑐 ‘ 𝑗 ) , if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( ℎ ∈ 𝑊 ↦ if ( ℎ ∈ 𝑌 , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑥 , ( 𝑐 ‘ ℎ ) , 𝑥 ) ) ) ) ) |
76 |
11 75
|
eqtri |
⊢ 𝐻 = ( 𝑥 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑊 ) ↦ ( ℎ ∈ 𝑊 ↦ if ( ℎ ∈ 𝑌 , ( 𝑐 ‘ ℎ ) , if ( ( 𝑐 ‘ ℎ ) ≤ 𝑥 , ( 𝑐 ‘ ℎ ) , 𝑥 ) ) ) ) ) |
77 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐴 ‘ 𝑍 ) ∈ ℝ ) |
78 |
9
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑊 ) ) |
79 |
|
elmapi |
⊢ ( ( 𝐷 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝑊 ) → ( 𝐷 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) |
80 |
78 79
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) |
81 |
76 77 64 80
|
hsphoif |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) : 𝑊 ⟶ ℝ ) |
82 |
1 64 67 81
|
hoidmvcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ∈ ( 0 [,) +∞ ) ) |
83 |
58 82
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ∈ ( 0 [,] +∞ ) ) |
84 |
83
|
fmpttd |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) : ℕ ⟶ ( 0 [,] +∞ ) ) |
85 |
57 84
|
sge0cl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
86 |
57 84
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ* ) |
87 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
88 |
87
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
89 |
10
|
rexrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ* ) |
90 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
91 |
1 64 67 80
|
hoidmvcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ∈ ( 0 [,) +∞ ) ) |
92 |
58 91
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ∈ ( 0 [,] +∞ ) ) |
93 |
4
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝑍 ∈ 𝑌 ) |
94 |
22 93
|
eldifd |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑊 ∖ 𝑌 ) ) |
95 |
94
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑍 ∈ ( 𝑊 ∖ 𝑌 ) ) |
96 |
1 64 95 5 77 76 67 80
|
hsphoidmvle |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ≤ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) |
97 |
90 57 83 92 96
|
sge0lempt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
98 |
10
|
ltpnfd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) < +∞ ) |
99 |
86 89 88 97 98
|
xrlelttrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) < +∞ ) |
100 |
86 88 99
|
xrltned |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ≠ +∞ ) |
101 |
|
ge0xrre |
⊢ ( ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ≠ +∞ ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ ) |
102 |
85 100 101
|
syl2anc |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ ) |
103 |
57 84
|
sge0ge0 |
⊢ ( 𝜑 → 0 ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
104 |
|
mulge0 |
⊢ ( ( ( ( 1 + 𝐸 ) ∈ ℝ ∧ 0 ≤ ( 1 + 𝐸 ) ) ∧ ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ ∧ 0 ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) → 0 ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
105 |
49 55 102 103 104
|
syl22anc |
⊢ ( 𝜑 → 0 ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
106 |
46 105
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝐺 · ( ( 𝐴 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
107 |
30 106
|
jca |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑍 ) ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∧ ( 𝐺 · ( ( 𝐴 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) |
108 |
|
oveq1 |
⊢ ( 𝑧 = ( 𝐴 ‘ 𝑍 ) → ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) = ( ( 𝐴 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) |
109 |
108
|
oveq2d |
⊢ ( 𝑧 = ( 𝐴 ‘ 𝑍 ) → ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) = ( 𝐺 · ( ( 𝐴 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ) |
110 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝐴 ‘ 𝑍 ) → ( 𝐻 ‘ 𝑧 ) = ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ) |
111 |
110
|
fveq1d |
⊢ ( 𝑧 = ( 𝐴 ‘ 𝑍 ) → ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) = ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) |
112 |
111
|
oveq2d |
⊢ ( 𝑧 = ( 𝐴 ‘ 𝑍 ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) = ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) |
113 |
112
|
mpteq2dv |
⊢ ( 𝑧 = ( 𝐴 ‘ 𝑍 ) → ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
114 |
113
|
fveq2d |
⊢ ( 𝑧 = ( 𝐴 ‘ 𝑍 ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
115 |
114
|
oveq2d |
⊢ ( 𝑧 = ( 𝐴 ‘ 𝑍 ) → ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) = ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
116 |
109 115
|
breq12d |
⊢ ( 𝑧 = ( 𝐴 ‘ 𝑍 ) → ( ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ↔ ( 𝐺 · ( ( 𝐴 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) |
117 |
116
|
elrab |
⊢ ( ( 𝐴 ‘ 𝑍 ) ∈ { 𝑧 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∣ ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } ↔ ( ( 𝐴 ‘ 𝑍 ) ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∧ ( 𝐺 · ( ( 𝐴 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ ( 𝐴 ‘ 𝑍 ) ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) |
118 |
107 117
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑍 ) ∈ { 𝑧 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∣ ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } ) |
119 |
118 14
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑍 ) ∈ 𝑈 ) |
120 |
|
ne0i |
⊢ ( ( 𝐴 ‘ 𝑍 ) ∈ 𝑈 → 𝑈 ≠ ∅ ) |
121 |
119 120
|
syl |
⊢ ( 𝜑 → 𝑈 ≠ ∅ ) |
122 |
23 24 27 121
|
supicc |
⊢ ( 𝜑 → sup ( 𝑈 , ℝ , < ) ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) |
123 |
17 122
|
eqeltrd |
⊢ ( 𝜑 → 𝑆 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) |
124 |
17
|
oveq1d |
⊢ ( 𝜑 → ( 𝑆 − ( 𝐴 ‘ 𝑍 ) ) = ( sup ( 𝑈 , ℝ , < ) − ( 𝐴 ‘ 𝑍 ) ) ) |
125 |
124
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 · ( 𝑆 − ( 𝐴 ‘ 𝑍 ) ) ) = ( 𝐺 · ( sup ( 𝑈 , ℝ , < ) − ( 𝐴 ‘ 𝑍 ) ) ) ) |
126 |
23 24
|
iccssred |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ⊆ ℝ ) |
127 |
27 126
|
sstrd |
⊢ ( 𝜑 → 𝑈 ⊆ ℝ ) |
128 |
23 24
|
jca |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑍 ) ∈ ℝ ∧ ( 𝐵 ‘ 𝑍 ) ∈ ℝ ) ) |
129 |
|
iccsupr |
⊢ ( ( ( ( 𝐴 ‘ 𝑍 ) ∈ ℝ ∧ ( 𝐵 ‘ 𝑍 ) ∈ ℝ ) ∧ 𝑈 ⊆ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∧ ( 𝐴 ‘ 𝑍 ) ∈ 𝑈 ) → ( 𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝑈 𝑧 ≤ 𝑦 ) ) |
130 |
128 27 119 129
|
syl3anc |
⊢ ( 𝜑 → ( 𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝑈 𝑧 ≤ 𝑦 ) ) |
131 |
130
|
simp3d |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝑈 𝑧 ≤ 𝑦 ) |
132 |
|
eqid |
⊢ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } = { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } |
133 |
127 121 131 23 132
|
supsubc |
⊢ ( 𝜑 → ( sup ( 𝑈 , ℝ , < ) − ( 𝐴 ‘ 𝑍 ) ) = sup ( { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } , ℝ , < ) ) |
134 |
133
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 · ( sup ( 𝑈 , ℝ , < ) − ( 𝐴 ‘ 𝑍 ) ) ) = ( 𝐺 · sup ( { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } , ℝ , < ) ) ) |
135 |
50
|
rexrd |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
136 |
|
icogelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐺 ∈ ( 0 [,) +∞ ) ) → 0 ≤ 𝐺 ) |
137 |
135 88 42 136
|
syl3anc |
⊢ ( 𝜑 → 0 ≤ 𝐺 ) |
138 |
|
vex |
⊢ 𝑟 ∈ V |
139 |
|
eqeq1 |
⊢ ( 𝑤 = 𝑟 → ( 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ↔ 𝑟 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) |
140 |
139
|
rexbidv |
⊢ ( 𝑤 = 𝑟 → ( ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ↔ ∃ 𝑢 ∈ 𝑈 𝑟 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) |
141 |
138 140
|
elab |
⊢ ( 𝑟 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ↔ ∃ 𝑢 ∈ 𝑈 𝑟 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) |
142 |
141
|
biimpi |
⊢ ( 𝑟 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } → ∃ 𝑢 ∈ 𝑈 𝑟 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) |
143 |
142
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ) → ∃ 𝑢 ∈ 𝑈 𝑟 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) |
144 |
|
nfv |
⊢ Ⅎ 𝑢 𝜑 |
145 |
|
nfcv |
⊢ Ⅎ 𝑢 𝑟 |
146 |
|
nfre1 |
⊢ Ⅎ 𝑢 ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) |
147 |
146
|
nfab |
⊢ Ⅎ 𝑢 { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } |
148 |
145 147
|
nfel |
⊢ Ⅎ 𝑢 𝑟 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } |
149 |
144 148
|
nfan |
⊢ Ⅎ 𝑢 ( 𝜑 ∧ 𝑟 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ) |
150 |
|
nfv |
⊢ Ⅎ 𝑢 0 ≤ 𝑟 |
151 |
23
|
rexrd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑍 ) ∈ ℝ* ) |
152 |
151
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝐴 ‘ 𝑍 ) ∈ ℝ* ) |
153 |
24
|
rexrd |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝑍 ) ∈ ℝ* ) |
154 |
153
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝐵 ‘ 𝑍 ) ∈ ℝ* ) |
155 |
27
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) |
156 |
|
iccgelb |
⊢ ( ( ( 𝐴 ‘ 𝑍 ) ∈ ℝ* ∧ ( 𝐵 ‘ 𝑍 ) ∈ ℝ* ∧ 𝑢 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) → ( 𝐴 ‘ 𝑍 ) ≤ 𝑢 ) |
157 |
152 154 155 156
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝐴 ‘ 𝑍 ) ≤ 𝑢 ) |
158 |
127
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ∈ ℝ ) |
159 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝐴 ‘ 𝑍 ) ∈ ℝ ) |
160 |
158 159
|
subge0d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 0 ≤ ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ↔ ( 𝐴 ‘ 𝑍 ) ≤ 𝑢 ) ) |
161 |
157 160
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 0 ≤ ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) |
162 |
161
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑟 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → 0 ≤ ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) |
163 |
|
id |
⊢ ( 𝑟 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) → 𝑟 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) |
164 |
163
|
eqcomd |
⊢ ( 𝑟 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) → ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) = 𝑟 ) |
165 |
164
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑟 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) = 𝑟 ) |
166 |
162 165
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑟 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → 0 ≤ 𝑟 ) |
167 |
166
|
3exp |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑈 → ( 𝑟 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) → 0 ≤ 𝑟 ) ) ) |
168 |
167
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ) → ( 𝑢 ∈ 𝑈 → ( 𝑟 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) → 0 ≤ 𝑟 ) ) ) |
169 |
149 150 168
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ) → ( ∃ 𝑢 ∈ 𝑈 𝑟 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) → 0 ≤ 𝑟 ) ) |
170 |
143 169
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ) → 0 ≤ 𝑟 ) |
171 |
170
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑟 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 0 ≤ 𝑟 ) |
172 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) |
173 |
158 159
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ∈ ℝ ) |
174 |
173
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ∈ ℝ ) |
175 |
172 174
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → 𝑤 ∈ ℝ ) |
176 |
175
|
3exp |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑈 → ( 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) → 𝑤 ∈ ℝ ) ) ) |
177 |
176
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) → 𝑤 ∈ ℝ ) ) |
178 |
177
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑤 ( ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) → 𝑤 ∈ ℝ ) ) |
179 |
|
abss |
⊢ ( { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ⊆ ℝ ↔ ∀ 𝑤 ( ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) → 𝑤 ∈ ℝ ) ) |
180 |
178 179
|
sylibr |
⊢ ( 𝜑 → { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ⊆ ℝ ) |
181 |
32
|
eqcomd |
⊢ ( 𝜑 → 0 = ( ( 𝐴 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) |
182 |
|
oveq1 |
⊢ ( 𝑢 = ( 𝐴 ‘ 𝑍 ) → ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) = ( ( 𝐴 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) |
183 |
182
|
rspceeqv |
⊢ ( ( ( 𝐴 ‘ 𝑍 ) ∈ 𝑈 ∧ 0 = ( ( 𝐴 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) → ∃ 𝑢 ∈ 𝑈 0 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) |
184 |
119 181 183
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝑈 0 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) |
185 |
|
eqeq1 |
⊢ ( 𝑤 = 0 → ( 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ↔ 0 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) |
186 |
185
|
rexbidv |
⊢ ( 𝑤 = 0 → ( ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ↔ ∃ 𝑢 ∈ 𝑈 0 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) |
187 |
50 184 186
|
elabd |
⊢ ( 𝜑 → 0 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ) |
188 |
|
ne0i |
⊢ ( 0 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } → { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ≠ ∅ ) |
189 |
187 188
|
syl |
⊢ ( 𝜑 → { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ≠ ∅ ) |
190 |
24 23
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ∈ ℝ ) |
191 |
|
vex |
⊢ 𝑠 ∈ V |
192 |
|
eqeq1 |
⊢ ( 𝑤 = 𝑠 → ( 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ↔ 𝑠 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) |
193 |
192
|
rexbidv |
⊢ ( 𝑤 = 𝑠 → ( ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ↔ ∃ 𝑢 ∈ 𝑈 𝑠 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) |
194 |
191 193
|
elab |
⊢ ( 𝑠 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ↔ ∃ 𝑢 ∈ 𝑈 𝑠 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) |
195 |
194
|
biimpi |
⊢ ( 𝑠 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } → ∃ 𝑢 ∈ 𝑈 𝑠 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) |
196 |
195
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ) → ∃ 𝑢 ∈ 𝑈 𝑠 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) |
197 |
|
nfcv |
⊢ Ⅎ 𝑢 𝑠 |
198 |
197 147
|
nfel |
⊢ Ⅎ 𝑢 𝑠 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } |
199 |
144 198
|
nfan |
⊢ Ⅎ 𝑢 ( 𝜑 ∧ 𝑠 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ) |
200 |
|
nfv |
⊢ Ⅎ 𝑢 𝑠 ≤ ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) |
201 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → 𝑠 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) |
202 |
159
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → ( 𝐴 ‘ 𝑍 ) ∈ ℝ ) |
203 |
24
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → ( 𝐵 ‘ 𝑍 ) ∈ ℝ ) |
204 |
155
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → 𝑢 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) |
205 |
30
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → ( 𝐴 ‘ 𝑍 ) ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) |
206 |
202 203 204 205
|
iccsuble |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ≤ ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) |
207 |
201 206
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → 𝑠 ≤ ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) |
208 |
207
|
3exp |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑈 → ( 𝑠 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) → 𝑠 ≤ ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ) ) |
209 |
208
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ) → ( 𝑢 ∈ 𝑈 → ( 𝑠 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) → 𝑠 ≤ ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ) ) |
210 |
199 200 209
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ) → ( ∃ 𝑢 ∈ 𝑈 𝑠 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) → 𝑠 ≤ ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ) |
211 |
196 210
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ) → 𝑠 ≤ ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) |
212 |
211
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑠 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑠 ≤ ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) |
213 |
|
brralrspcev |
⊢ ( ( ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ∈ ℝ ∧ ∀ 𝑠 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑠 ≤ ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑠 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑠 ≤ 𝑟 ) |
214 |
190 212 213
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ℝ ∀ 𝑠 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑠 ≤ 𝑟 ) |
215 |
|
eqid |
⊢ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } = { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } |
216 |
|
biid |
⊢ ( ( ( 𝐺 ∈ ℝ ∧ 0 ≤ 𝐺 ∧ ∀ 𝑟 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 0 ≤ 𝑟 ) ∧ ( { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ⊆ ℝ ∧ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ≠ ∅ ∧ ∃ 𝑟 ∈ ℝ ∀ 𝑠 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑠 ≤ 𝑟 ) ) ↔ ( ( 𝐺 ∈ ℝ ∧ 0 ≤ 𝐺 ∧ ∀ 𝑟 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 0 ≤ 𝑟 ) ∧ ( { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ⊆ ℝ ∧ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ≠ ∅ ∧ ∃ 𝑟 ∈ ℝ ∀ 𝑠 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑠 ≤ 𝑟 ) ) ) |
217 |
215 216
|
supmul1 |
⊢ ( ( ( 𝐺 ∈ ℝ ∧ 0 ≤ 𝐺 ∧ ∀ 𝑟 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 0 ≤ 𝑟 ) ∧ ( { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ⊆ ℝ ∧ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ≠ ∅ ∧ ∃ 𝑟 ∈ ℝ ∀ 𝑠 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑠 ≤ 𝑟 ) ) → ( 𝐺 · sup ( { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } , ℝ , < ) ) = sup ( { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } , ℝ , < ) ) |
218 |
43 137 171 180 189 214 217
|
syl33anc |
⊢ ( 𝜑 → ( 𝐺 · sup ( { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } , ℝ , < ) ) = sup ( { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } , ℝ , < ) ) |
219 |
125 134 218
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 · ( 𝑆 − ( 𝐴 ‘ 𝑍 ) ) ) = sup ( { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } , ℝ , < ) ) |
220 |
|
vex |
⊢ 𝑐 ∈ V |
221 |
|
eqeq1 |
⊢ ( 𝑣 = 𝑐 → ( 𝑣 = ( 𝐺 · 𝑡 ) ↔ 𝑐 = ( 𝐺 · 𝑡 ) ) ) |
222 |
221
|
rexbidv |
⊢ ( 𝑣 = 𝑐 → ( ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) ↔ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑐 = ( 𝐺 · 𝑡 ) ) ) |
223 |
220 222
|
elab |
⊢ ( 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } ↔ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑐 = ( 𝐺 · 𝑡 ) ) |
224 |
223
|
biimpi |
⊢ ( 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } → ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑐 = ( 𝐺 · 𝑡 ) ) |
225 |
|
nfv |
⊢ Ⅎ 𝑡 ∃ 𝑢 ∈ 𝑈 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) |
226 |
|
vex |
⊢ 𝑡 ∈ V |
227 |
|
eqeq1 |
⊢ ( 𝑤 = 𝑡 → ( 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ↔ 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) |
228 |
227
|
rexbidv |
⊢ ( 𝑤 = 𝑡 → ( ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ↔ ∃ 𝑢 ∈ 𝑈 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) |
229 |
226 228
|
elab |
⊢ ( 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ↔ ∃ 𝑢 ∈ 𝑈 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) |
230 |
229
|
biimpi |
⊢ ( 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } → ∃ 𝑢 ∈ 𝑈 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) |
231 |
230
|
adantr |
⊢ ( ( 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ∧ 𝑐 = ( 𝐺 · 𝑡 ) ) → ∃ 𝑢 ∈ 𝑈 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) |
232 |
|
simpl |
⊢ ( ( 𝑐 = ( 𝐺 · 𝑡 ) ∧ 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → 𝑐 = ( 𝐺 · 𝑡 ) ) |
233 |
|
oveq2 |
⊢ ( 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) → ( 𝐺 · 𝑡 ) = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) |
234 |
233
|
adantl |
⊢ ( ( 𝑐 = ( 𝐺 · 𝑡 ) ∧ 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → ( 𝐺 · 𝑡 ) = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) |
235 |
232 234
|
eqtrd |
⊢ ( ( 𝑐 = ( 𝐺 · 𝑡 ) ∧ 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) |
236 |
235
|
ex |
⊢ ( 𝑐 = ( 𝐺 · 𝑡 ) → ( 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) → 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) ) |
237 |
236
|
reximdv |
⊢ ( 𝑐 = ( 𝐺 · 𝑡 ) → ( ∃ 𝑢 ∈ 𝑈 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) → ∃ 𝑢 ∈ 𝑈 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) ) |
238 |
237
|
adantl |
⊢ ( ( 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ∧ 𝑐 = ( 𝐺 · 𝑡 ) ) → ( ∃ 𝑢 ∈ 𝑈 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) → ∃ 𝑢 ∈ 𝑈 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) ) |
239 |
231 238
|
mpd |
⊢ ( ( 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ∧ 𝑐 = ( 𝐺 · 𝑡 ) ) → ∃ 𝑢 ∈ 𝑈 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) |
240 |
239
|
ex |
⊢ ( 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } → ( 𝑐 = ( 𝐺 · 𝑡 ) → ∃ 𝑢 ∈ 𝑈 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) ) |
241 |
225 240
|
rexlimi |
⊢ ( ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑐 = ( 𝐺 · 𝑡 ) → ∃ 𝑢 ∈ 𝑈 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) |
242 |
241
|
a1i |
⊢ ( 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } → ( ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑐 = ( 𝐺 · 𝑡 ) → ∃ 𝑢 ∈ 𝑈 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) ) |
243 |
224 242
|
mpd |
⊢ ( 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } → ∃ 𝑢 ∈ 𝑈 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) |
244 |
243
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } ) → ∃ 𝑢 ∈ 𝑈 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) |
245 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) → 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) |
246 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝐺 ∈ ℝ ) |
247 |
246 173
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ∈ ℝ ) |
248 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 1 + 𝐸 ) ∈ ℝ ) |
249 |
56
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ℕ ∈ V ) |
250 |
64
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑗 ∈ ℕ ) → 𝑊 ∈ Fin ) |
251 |
67
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑗 ∈ ℕ ) → ( 𝐶 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) |
252 |
158
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑗 ∈ ℕ ) → 𝑢 ∈ ℝ ) |
253 |
80
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑗 ∈ ℕ ) → ( 𝐷 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) |
254 |
76 252 250 253
|
hsphoif |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) : 𝑊 ⟶ ℝ ) |
255 |
1 250 251 254
|
hoidmvcl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ∈ ( 0 [,) +∞ ) ) |
256 |
58 255
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ∈ ( 0 [,] +∞ ) ) |
257 |
256
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) : ℕ ⟶ ( 0 [,] +∞ ) ) |
258 |
249 257
|
sge0cl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
259 |
249 257
|
sge0xrcl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ* ) |
260 |
87
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → +∞ ∈ ℝ* ) |
261 |
89
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ∈ ℝ* ) |
262 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) |
263 |
92
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ∈ ( 0 [,] +∞ ) ) |
264 |
95
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑗 ∈ ℕ ) → 𝑍 ∈ ( 𝑊 ∖ 𝑌 ) ) |
265 |
1 250 264 5 252 76 251 253
|
hsphoidmvle |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ≤ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) |
266 |
262 249 256 263 265
|
sge0lempt |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
267 |
98
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) < +∞ ) |
268 |
259 261 260 266 267
|
xrlelttrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) < +∞ ) |
269 |
259 260 268
|
xrltned |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ≠ +∞ ) |
270 |
|
ge0xrre |
⊢ ( ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ≠ +∞ ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ ) |
271 |
258 269 270
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ ) |
272 |
248 271
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ∈ ℝ ) |
273 |
126 123
|
sseldd |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
274 |
1 35 94 5 8 9 10 11 273
|
sge0hsphoire |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ ) |
275 |
49 274
|
remulcld |
⊢ ( 𝜑 → ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ∈ ℝ ) |
276 |
275
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ∈ ℝ ) |
277 |
14
|
eleq2i |
⊢ ( 𝑢 ∈ 𝑈 ↔ 𝑢 ∈ { 𝑧 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∣ ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } ) |
278 |
277
|
biimpi |
⊢ ( 𝑢 ∈ 𝑈 → 𝑢 ∈ { 𝑧 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∣ ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } ) |
279 |
|
oveq1 |
⊢ ( 𝑧 = 𝑢 → ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) |
280 |
279
|
oveq2d |
⊢ ( 𝑧 = 𝑢 → ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) |
281 |
|
fveq2 |
⊢ ( 𝑧 = 𝑢 → ( 𝐻 ‘ 𝑧 ) = ( 𝐻 ‘ 𝑢 ) ) |
282 |
281
|
fveq1d |
⊢ ( 𝑧 = 𝑢 → ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) = ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) |
283 |
282
|
oveq2d |
⊢ ( 𝑧 = 𝑢 → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) = ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) |
284 |
283
|
mpteq2dv |
⊢ ( 𝑧 = 𝑢 → ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
285 |
284
|
fveq2d |
⊢ ( 𝑧 = 𝑢 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
286 |
285
|
oveq2d |
⊢ ( 𝑧 = 𝑢 → ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) = ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
287 |
280 286
|
breq12d |
⊢ ( 𝑧 = 𝑢 → ( ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ↔ ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) |
288 |
287
|
elrab |
⊢ ( 𝑢 ∈ { 𝑧 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∣ ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } ↔ ( 𝑢 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∧ ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) |
289 |
278 288
|
sylib |
⊢ ( 𝑢 ∈ 𝑈 → ( 𝑢 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∧ ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) |
290 |
289
|
simprd |
⊢ ( 𝑢 ∈ 𝑈 → ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
291 |
290
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
292 |
274
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℝ ) |
293 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 0 ≤ ( 1 + 𝐸 ) ) |
294 |
273
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑆 ∈ ℝ ) |
295 |
76 294 64 80
|
hsphoif |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) : 𝑊 ⟶ ℝ ) |
296 |
1 64 67 295
|
hoidmvcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ∈ ( 0 [,) +∞ ) ) |
297 |
58 296
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ∈ ( 0 [,] +∞ ) ) |
298 |
297
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ∈ ( 0 [,] +∞ ) ) |
299 |
294
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑗 ∈ ℕ ) → 𝑆 ∈ ℝ ) |
300 |
127
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑈 ⊆ ℝ ) |
301 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑈 ≠ ∅ ) |
302 |
131
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝑈 𝑧 ≤ 𝑦 ) |
303 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ∈ 𝑈 ) |
304 |
|
suprub |
⊢ ( ( ( 𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝑈 𝑧 ≤ 𝑦 ) ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ≤ sup ( 𝑈 , ℝ , < ) ) |
305 |
300 301 302 303 304
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ≤ sup ( 𝑈 , ℝ , < ) ) |
306 |
305 15
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ≤ 𝑆 ) |
307 |
306
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑗 ∈ ℕ ) → 𝑢 ≤ 𝑆 ) |
308 |
1 250 264 5 252 299 307 76 251 253
|
hsphoidmvle2 |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ≤ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) |
309 |
262 249 256 298 308
|
sge0lempt |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
310 |
271 292 248 293 309
|
lemul2ad |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑢 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
311 |
247 272 276 291 310
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
312 |
311
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) → ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
313 |
245 312
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) → 𝑐 ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
314 |
313
|
3exp |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑈 → ( 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → 𝑐 ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) ) |
315 |
314
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ 𝑈 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → 𝑐 ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) |
316 |
315
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } ) → ( ∃ 𝑢 ∈ 𝑈 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → 𝑐 ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) |
317 |
244 316
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } ) → 𝑐 ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
318 |
317
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } 𝑐 ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
319 |
224
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } ) → ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑐 = ( 𝐺 · 𝑡 ) ) |
320 |
|
nfv |
⊢ Ⅎ 𝑡 𝜑 |
321 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑐 |
322 |
|
nfre1 |
⊢ Ⅎ 𝑡 ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) |
323 |
322
|
nfab |
⊢ Ⅎ 𝑡 { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } |
324 |
321 323
|
nfel |
⊢ Ⅎ 𝑡 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } |
325 |
320 324
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } ) |
326 |
|
nfv |
⊢ Ⅎ 𝑡 𝑐 ∈ ℝ |
327 |
230
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ) → ∃ 𝑢 ∈ 𝑈 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) |
328 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ∧ 𝑐 = ( 𝐺 · 𝑡 ) ) → 𝑐 = ( 𝐺 · 𝑡 ) ) |
329 |
246
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → 𝐺 ∈ ℝ ) |
330 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) |
331 |
173
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ∈ ℝ ) |
332 |
330 331
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → 𝑡 ∈ ℝ ) |
333 |
329 332
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → ( 𝐺 · 𝑡 ) ∈ ℝ ) |
334 |
333
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ∧ 𝑐 = ( 𝐺 · 𝑡 ) ) → ( 𝐺 · 𝑡 ) ∈ ℝ ) |
335 |
328 334
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ∧ 𝑐 = ( 𝐺 · 𝑡 ) ) → 𝑐 ∈ ℝ ) |
336 |
335
|
ex |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → ( 𝑐 = ( 𝐺 · 𝑡 ) → 𝑐 ∈ ℝ ) ) |
337 |
336
|
3exp |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑈 → ( 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) → ( 𝑐 = ( 𝐺 · 𝑡 ) → 𝑐 ∈ ℝ ) ) ) ) |
338 |
337
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ 𝑈 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) → ( 𝑐 = ( 𝐺 · 𝑡 ) → 𝑐 ∈ ℝ ) ) ) |
339 |
338
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ) → ( ∃ 𝑢 ∈ 𝑈 𝑡 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) → ( 𝑐 = ( 𝐺 · 𝑡 ) → 𝑐 ∈ ℝ ) ) ) |
340 |
327 339
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ) → ( 𝑐 = ( 𝐺 · 𝑡 ) → 𝑐 ∈ ℝ ) ) |
341 |
340
|
ex |
⊢ ( 𝜑 → ( 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } → ( 𝑐 = ( 𝐺 · 𝑡 ) → 𝑐 ∈ ℝ ) ) ) |
342 |
341
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } ) → ( 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } → ( 𝑐 = ( 𝐺 · 𝑡 ) → 𝑐 ∈ ℝ ) ) ) |
343 |
325 326 342
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } ) → ( ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑐 = ( 𝐺 · 𝑡 ) → 𝑐 ∈ ℝ ) ) |
344 |
319 343
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } ) → 𝑐 ∈ ℝ ) |
345 |
344
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } 𝑐 ∈ ℝ ) |
346 |
|
dfss3 |
⊢ ( { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } ⊆ ℝ ↔ ∀ 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } 𝑐 ∈ ℝ ) |
347 |
345 346
|
sylibr |
⊢ ( 𝜑 → { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } ⊆ ℝ ) |
348 |
45
|
eqcomd |
⊢ ( 𝜑 → 0 = ( 𝐺 · 0 ) ) |
349 |
|
oveq2 |
⊢ ( 𝑡 = 0 → ( 𝐺 · 𝑡 ) = ( 𝐺 · 0 ) ) |
350 |
349
|
rspceeqv |
⊢ ( ( 0 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } ∧ 0 = ( 𝐺 · 0 ) ) → ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 0 = ( 𝐺 · 𝑡 ) ) |
351 |
187 348 350
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 0 = ( 𝐺 · 𝑡 ) ) |
352 |
|
eqeq1 |
⊢ ( 𝑣 = 0 → ( 𝑣 = ( 𝐺 · 𝑡 ) ↔ 0 = ( 𝐺 · 𝑡 ) ) ) |
353 |
352
|
rexbidv |
⊢ ( 𝑣 = 0 → ( ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) ↔ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 0 = ( 𝐺 · 𝑡 ) ) ) |
354 |
50 351 353
|
elabd |
⊢ ( 𝜑 → 0 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } ) |
355 |
|
ne0i |
⊢ ( 0 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } → { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } ≠ ∅ ) |
356 |
354 355
|
syl |
⊢ ( 𝜑 → { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } ≠ ∅ ) |
357 |
43 190
|
remulcld |
⊢ ( 𝜑 → ( 𝐺 · ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ∈ ℝ ) |
358 |
190
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ∈ ℝ ) |
359 |
137
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 0 ≤ 𝐺 ) |
360 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝐵 ‘ 𝑍 ) ∈ ℝ ) |
361 |
|
iccleub |
⊢ ( ( ( 𝐴 ‘ 𝑍 ) ∈ ℝ* ∧ ( 𝐵 ‘ 𝑍 ) ∈ ℝ* ∧ 𝑢 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) → 𝑢 ≤ ( 𝐵 ‘ 𝑍 ) ) |
362 |
152 154 155 361
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ≤ ( 𝐵 ‘ 𝑍 ) ) |
363 |
158 360 159 362
|
lesub1dd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ≤ ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) |
364 |
173 358 246 359 363
|
lemul2ad |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( 𝐺 · ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ) |
365 |
364
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) → ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( 𝐺 · ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ) |
366 |
245 365
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) ) → 𝑐 ≤ ( 𝐺 · ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ) |
367 |
366
|
3exp |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑈 → ( 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → 𝑐 ≤ ( 𝐺 · ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ) ) ) |
368 |
367
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ 𝑈 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → 𝑐 ≤ ( 𝐺 · ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ) ) |
369 |
368
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } ) → ( ∃ 𝑢 ∈ 𝑈 𝑐 = ( 𝐺 · ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) ) → 𝑐 ≤ ( 𝐺 · ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ) ) |
370 |
244 369
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } ) → 𝑐 ≤ ( 𝐺 · ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ) |
371 |
370
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } 𝑐 ≤ ( 𝐺 · ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ) |
372 |
|
brralrspcev |
⊢ ( ( ( 𝐺 · ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ∈ ℝ ∧ ∀ 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } 𝑐 ≤ ( 𝐺 · ( ( 𝐵 ‘ 𝑍 ) − ( 𝐴 ‘ 𝑍 ) ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } 𝑐 ≤ 𝑦 ) |
373 |
357 371 372
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } 𝑐 ≤ 𝑦 ) |
374 |
|
suprleub |
⊢ ( ( ( { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } ⊆ ℝ ∧ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } 𝑐 ≤ 𝑦 ) ∧ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ∈ ℝ ) → ( sup ( { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } , ℝ , < ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ↔ ∀ 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } 𝑐 ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) |
375 |
347 356 373 275 374
|
syl31anc |
⊢ ( 𝜑 → ( sup ( { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } , ℝ , < ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ↔ ∀ 𝑐 ∈ { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } 𝑐 ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) |
376 |
318 375
|
mpbird |
⊢ ( 𝜑 → sup ( { 𝑣 ∣ ∃ 𝑡 ∈ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑈 𝑤 = ( 𝑢 − ( 𝐴 ‘ 𝑍 ) ) } 𝑣 = ( 𝐺 · 𝑡 ) } , ℝ , < ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
377 |
219 376
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝐺 · ( 𝑆 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
378 |
123 377
|
jca |
⊢ ( 𝜑 → ( 𝑆 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∧ ( 𝐺 · ( 𝑆 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) |
379 |
|
oveq1 |
⊢ ( 𝑧 = 𝑆 → ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) = ( 𝑆 − ( 𝐴 ‘ 𝑍 ) ) ) |
380 |
379
|
oveq2d |
⊢ ( 𝑧 = 𝑆 → ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) = ( 𝐺 · ( 𝑆 − ( 𝐴 ‘ 𝑍 ) ) ) ) |
381 |
|
fveq2 |
⊢ ( 𝑧 = 𝑆 → ( 𝐻 ‘ 𝑧 ) = ( 𝐻 ‘ 𝑆 ) ) |
382 |
381
|
fveq1d |
⊢ ( 𝑧 = 𝑆 → ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) = ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) |
383 |
382
|
oveq2d |
⊢ ( 𝑧 = 𝑆 → ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) = ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) |
384 |
383
|
mpteq2dv |
⊢ ( 𝑧 = 𝑆 → ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
385 |
384
|
fveq2d |
⊢ ( 𝑧 = 𝑆 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
386 |
385
|
oveq2d |
⊢ ( 𝑧 = 𝑆 → ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) = ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
387 |
380 386
|
breq12d |
⊢ ( 𝑧 = 𝑆 → ( ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ↔ ( 𝐺 · ( 𝑆 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) |
388 |
387
|
elrab |
⊢ ( 𝑆 ∈ { 𝑧 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∣ ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } ↔ ( 𝑆 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∧ ( 𝐺 · ( 𝑆 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) |
389 |
378 388
|
sylibr |
⊢ ( 𝜑 → 𝑆 ∈ { 𝑧 ∈ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ∣ ( 𝐺 · ( 𝑧 − ( 𝐴 ‘ 𝑍 ) ) ) ≤ ( ( 1 + 𝐸 ) · ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } ) |
390 |
389 14
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑆 ∈ 𝑈 ) |