Step |
Hyp |
Ref |
Expression |
1 |
|
supsubc.a1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
supsubc.a2 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
3 |
|
supsubc.a3 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
4 |
|
supsubc.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
5 |
|
supsubc.c |
⊢ 𝐶 = { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 𝑧 = ( 𝑣 − 𝐵 ) } |
6 |
5
|
a1i |
⊢ ( 𝜑 → 𝐶 = { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 𝑧 = ( 𝑣 − 𝐵 ) } ) |
7 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → 𝑣 ∈ ℝ ) |
8 |
7
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → 𝑣 ∈ ℂ ) |
9 |
4
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
11 |
8 10
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑣 + - 𝐵 ) = ( 𝑣 − 𝐵 ) ) |
12 |
11
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑣 − 𝐵 ) = ( 𝑣 + - 𝐵 ) ) |
13 |
12
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑧 = ( 𝑣 − 𝐵 ) ↔ 𝑧 = ( 𝑣 + - 𝐵 ) ) ) |
14 |
13
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ 𝐴 𝑧 = ( 𝑣 − 𝐵 ) ↔ ∃ 𝑣 ∈ 𝐴 𝑧 = ( 𝑣 + - 𝐵 ) ) ) |
15 |
14
|
abbidv |
⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 𝑧 = ( 𝑣 − 𝐵 ) } = { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 𝑧 = ( 𝑣 + - 𝐵 ) } ) |
16 |
|
eqidd |
⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 𝑧 = ( 𝑣 + - 𝐵 ) } = { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 𝑧 = ( 𝑣 + - 𝐵 ) } ) |
17 |
6 15 16
|
3eqtrd |
⊢ ( 𝜑 → 𝐶 = { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 𝑧 = ( 𝑣 + - 𝐵 ) } ) |
18 |
17
|
supeq1d |
⊢ ( 𝜑 → sup ( 𝐶 , ℝ , < ) = sup ( { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 𝑧 = ( 𝑣 + - 𝐵 ) } , ℝ , < ) ) |
19 |
4
|
renegcld |
⊢ ( 𝜑 → - 𝐵 ∈ ℝ ) |
20 |
|
eqid |
⊢ { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 𝑧 = ( 𝑣 + - 𝐵 ) } = { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 𝑧 = ( 𝑣 + - 𝐵 ) } |
21 |
1 2 3 19 20
|
supaddc |
⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) + - 𝐵 ) = sup ( { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 𝑧 = ( 𝑣 + - 𝐵 ) } , ℝ , < ) ) |
22 |
21
|
eqcomd |
⊢ ( 𝜑 → sup ( { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 𝑧 = ( 𝑣 + - 𝐵 ) } , ℝ , < ) = ( sup ( 𝐴 , ℝ , < ) + - 𝐵 ) ) |
23 |
|
suprcl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
24 |
1 2 3 23
|
syl3anc |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
25 |
24
|
recnd |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ℂ ) |
26 |
25 9
|
negsubd |
⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) + - 𝐵 ) = ( sup ( 𝐴 , ℝ , < ) − 𝐵 ) ) |
27 |
18 22 26
|
3eqtrrd |
⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) − 𝐵 ) = sup ( 𝐶 , ℝ , < ) ) |