Description: The supremum function distributes over subtraction in a sense similar to that in supaddc . (Contributed by Glauco Siliprandi, 21-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | supsubc.a1 | |
|
supsubc.a2 | |
||
supsubc.a3 | |
||
supsubc.b | |
||
supsubc.c | |
||
Assertion | supsubc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supsubc.a1 | |
|
2 | supsubc.a2 | |
|
3 | supsubc.a3 | |
|
4 | supsubc.b | |
|
5 | supsubc.c | |
|
6 | 5 | a1i | |
7 | 1 | sselda | |
8 | 7 | recnd | |
9 | 4 | recnd | |
10 | 9 | adantr | |
11 | 8 10 | negsubd | |
12 | 11 | eqcomd | |
13 | 12 | eqeq2d | |
14 | 13 | rexbidva | |
15 | 14 | abbidv | |
16 | eqidd | |
|
17 | 6 15 16 | 3eqtrd | |
18 | 17 | supeq1d | |
19 | 4 | renegcld | |
20 | eqid | |
|
21 | 1 2 3 19 20 | supaddc | |
22 | 21 | eqcomd | |
23 | suprcl | |
|
24 | 1 2 3 23 | syl3anc | |
25 | 24 | recnd | |
26 | 25 9 | negsubd | |
27 | 18 22 26 | 3eqtrrd | |