Metamath Proof Explorer


Theorem supsubc

Description: The supremum function distributes over subtraction in a sense similar to that in supaddc . (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses supsubc.a1 φA
supsubc.a2 φA
supsubc.a3 φxyAyx
supsubc.b φB
supsubc.c C=z|vAz=vB
Assertion supsubc φsupA<B=supC<

Proof

Step Hyp Ref Expression
1 supsubc.a1 φA
2 supsubc.a2 φA
3 supsubc.a3 φxyAyx
4 supsubc.b φB
5 supsubc.c C=z|vAz=vB
6 5 a1i φC=z|vAz=vB
7 1 sselda φvAv
8 7 recnd φvAv
9 4 recnd φB
10 9 adantr φvAB
11 8 10 negsubd φvAv+B=vB
12 11 eqcomd φvAvB=v+B
13 12 eqeq2d φvAz=vBz=v+B
14 13 rexbidva φvAz=vBvAz=v+B
15 14 abbidv φz|vAz=vB=z|vAz=v+B
16 eqidd φz|vAz=v+B=z|vAz=v+B
17 6 15 16 3eqtrd φC=z|vAz=v+B
18 17 supeq1d φsupC<=supz|vAz=v+B<
19 4 renegcld φB
20 eqid z|vAz=v+B=z|vAz=v+B
21 1 2 3 19 20 supaddc φsupA<+B=supz|vAz=v+B<
22 21 eqcomd φsupz|vAz=v+B<=supA<+B
23 suprcl AAxyAyxsupA<
24 1 2 3 23 syl3anc φsupA<
25 24 recnd φsupA<
26 25 9 negsubd φsupA<+B=supA<B
27 18 22 26 3eqtrrd φsupA<B=supC<