Step |
Hyp |
Ref |
Expression |
1 |
|
hoidmvlelem1.l |
|- L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) |
2 |
|
hoidmvlelem1.x |
|- ( ph -> X e. Fin ) |
3 |
|
hoidmvlelem1.y |
|- ( ph -> Y C_ X ) |
4 |
|
hoidmvlelem1.z |
|- ( ph -> Z e. ( X \ Y ) ) |
5 |
|
hoidmvlelem1.w |
|- W = ( Y u. { Z } ) |
6 |
|
hoidmvlelem1.a |
|- ( ph -> A : W --> RR ) |
7 |
|
hoidmvlelem1.b |
|- ( ph -> B : W --> RR ) |
8 |
|
hoidmvlelem1.c |
|- ( ph -> C : NN --> ( RR ^m W ) ) |
9 |
|
hoidmvlelem1.d |
|- ( ph -> D : NN --> ( RR ^m W ) ) |
10 |
|
hoidmvlelem1.r |
|- ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( D ` j ) ) ) ) e. RR ) |
11 |
|
hoidmvlelem1.h |
|- H = ( x e. RR |-> ( c e. ( RR ^m W ) |-> ( j e. W |-> if ( j e. Y , ( c ` j ) , if ( ( c ` j ) <_ x , ( c ` j ) , x ) ) ) ) ) |
12 |
|
hoidmvlelem1.g |
|- G = ( ( A |` Y ) ( L ` Y ) ( B |` Y ) ) |
13 |
|
hoidmvlelem1.e |
|- ( ph -> E e. RR+ ) |
14 |
|
hoidmvlelem1.u |
|- U = { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } |
15 |
|
hoidmvlelem1.s |
|- S = sup ( U , RR , < ) |
16 |
|
hoidmvlelem1.ab |
|- ( ph -> ( A ` Z ) < ( B ` Z ) ) |
17 |
15
|
a1i |
|- ( ph -> S = sup ( U , RR , < ) ) |
18 |
|
snidg |
|- ( Z e. ( X \ Y ) -> Z e. { Z } ) |
19 |
4 18
|
syl |
|- ( ph -> Z e. { Z } ) |
20 |
|
elun2 |
|- ( Z e. { Z } -> Z e. ( Y u. { Z } ) ) |
21 |
19 20
|
syl |
|- ( ph -> Z e. ( Y u. { Z } ) ) |
22 |
21 5
|
eleqtrrdi |
|- ( ph -> Z e. W ) |
23 |
6 22
|
ffvelrnd |
|- ( ph -> ( A ` Z ) e. RR ) |
24 |
7 22
|
ffvelrnd |
|- ( ph -> ( B ` Z ) e. RR ) |
25 |
|
ssrab2 |
|- { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } C_ ( ( A ` Z ) [,] ( B ` Z ) ) |
26 |
14 25
|
eqsstri |
|- U C_ ( ( A ` Z ) [,] ( B ` Z ) ) |
27 |
26
|
a1i |
|- ( ph -> U C_ ( ( A ` Z ) [,] ( B ` Z ) ) ) |
28 |
23
|
leidd |
|- ( ph -> ( A ` Z ) <_ ( A ` Z ) ) |
29 |
23 24 16
|
ltled |
|- ( ph -> ( A ` Z ) <_ ( B ` Z ) ) |
30 |
23 24 23 28 29
|
eliccd |
|- ( ph -> ( A ` Z ) e. ( ( A ` Z ) [,] ( B ` Z ) ) ) |
31 |
23
|
recnd |
|- ( ph -> ( A ` Z ) e. CC ) |
32 |
31
|
subidd |
|- ( ph -> ( ( A ` Z ) - ( A ` Z ) ) = 0 ) |
33 |
32
|
oveq2d |
|- ( ph -> ( G x. ( ( A ` Z ) - ( A ` Z ) ) ) = ( G x. 0 ) ) |
34 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
35 |
2 3
|
ssfid |
|- ( ph -> Y e. Fin ) |
36 |
|
ssun1 |
|- Y C_ ( Y u. { Z } ) |
37 |
36 5
|
sseqtrri |
|- Y C_ W |
38 |
37
|
a1i |
|- ( ph -> Y C_ W ) |
39 |
6 38
|
fssresd |
|- ( ph -> ( A |` Y ) : Y --> RR ) |
40 |
7 38
|
fssresd |
|- ( ph -> ( B |` Y ) : Y --> RR ) |
41 |
1 35 39 40
|
hoidmvcl |
|- ( ph -> ( ( A |` Y ) ( L ` Y ) ( B |` Y ) ) e. ( 0 [,) +oo ) ) |
42 |
12 41
|
eqeltrid |
|- ( ph -> G e. ( 0 [,) +oo ) ) |
43 |
34 42
|
sselid |
|- ( ph -> G e. RR ) |
44 |
43
|
recnd |
|- ( ph -> G e. CC ) |
45 |
44
|
mul01d |
|- ( ph -> ( G x. 0 ) = 0 ) |
46 |
33 45
|
eqtrd |
|- ( ph -> ( G x. ( ( A ` Z ) - ( A ` Z ) ) ) = 0 ) |
47 |
|
1red |
|- ( ph -> 1 e. RR ) |
48 |
13
|
rpred |
|- ( ph -> E e. RR ) |
49 |
47 48
|
readdcld |
|- ( ph -> ( 1 + E ) e. RR ) |
50 |
|
0red |
|- ( ph -> 0 e. RR ) |
51 |
|
0lt1 |
|- 0 < 1 |
52 |
51
|
a1i |
|- ( ph -> 0 < 1 ) |
53 |
47 13
|
ltaddrpd |
|- ( ph -> 1 < ( 1 + E ) ) |
54 |
50 47 49 52 53
|
lttrd |
|- ( ph -> 0 < ( 1 + E ) ) |
55 |
50 49 54
|
ltled |
|- ( ph -> 0 <_ ( 1 + E ) ) |
56 |
|
nnex |
|- NN e. _V |
57 |
56
|
a1i |
|- ( ph -> NN e. _V ) |
58 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
59 |
|
snfi |
|- { Z } e. Fin |
60 |
59
|
a1i |
|- ( ph -> { Z } e. Fin ) |
61 |
|
unfi |
|- ( ( Y e. Fin /\ { Z } e. Fin ) -> ( Y u. { Z } ) e. Fin ) |
62 |
35 60 61
|
syl2anc |
|- ( ph -> ( Y u. { Z } ) e. Fin ) |
63 |
5 62
|
eqeltrid |
|- ( ph -> W e. Fin ) |
64 |
63
|
adantr |
|- ( ( ph /\ j e. NN ) -> W e. Fin ) |
65 |
8
|
ffvelrnda |
|- ( ( ph /\ j e. NN ) -> ( C ` j ) e. ( RR ^m W ) ) |
66 |
|
elmapi |
|- ( ( C ` j ) e. ( RR ^m W ) -> ( C ` j ) : W --> RR ) |
67 |
65 66
|
syl |
|- ( ( ph /\ j e. NN ) -> ( C ` j ) : W --> RR ) |
68 |
|
eleq1w |
|- ( j = h -> ( j e. Y <-> h e. Y ) ) |
69 |
|
fveq2 |
|- ( j = h -> ( c ` j ) = ( c ` h ) ) |
70 |
69
|
breq1d |
|- ( j = h -> ( ( c ` j ) <_ x <-> ( c ` h ) <_ x ) ) |
71 |
70 69
|
ifbieq1d |
|- ( j = h -> if ( ( c ` j ) <_ x , ( c ` j ) , x ) = if ( ( c ` h ) <_ x , ( c ` h ) , x ) ) |
72 |
68 69 71
|
ifbieq12d |
|- ( j = h -> if ( j e. Y , ( c ` j ) , if ( ( c ` j ) <_ x , ( c ` j ) , x ) ) = if ( h e. Y , ( c ` h ) , if ( ( c ` h ) <_ x , ( c ` h ) , x ) ) ) |
73 |
72
|
cbvmptv |
|- ( j e. W |-> if ( j e. Y , ( c ` j ) , if ( ( c ` j ) <_ x , ( c ` j ) , x ) ) ) = ( h e. W |-> if ( h e. Y , ( c ` h ) , if ( ( c ` h ) <_ x , ( c ` h ) , x ) ) ) |
74 |
73
|
mpteq2i |
|- ( c e. ( RR ^m W ) |-> ( j e. W |-> if ( j e. Y , ( c ` j ) , if ( ( c ` j ) <_ x , ( c ` j ) , x ) ) ) ) = ( c e. ( RR ^m W ) |-> ( h e. W |-> if ( h e. Y , ( c ` h ) , if ( ( c ` h ) <_ x , ( c ` h ) , x ) ) ) ) |
75 |
74
|
mpteq2i |
|- ( x e. RR |-> ( c e. ( RR ^m W ) |-> ( j e. W |-> if ( j e. Y , ( c ` j ) , if ( ( c ` j ) <_ x , ( c ` j ) , x ) ) ) ) ) = ( x e. RR |-> ( c e. ( RR ^m W ) |-> ( h e. W |-> if ( h e. Y , ( c ` h ) , if ( ( c ` h ) <_ x , ( c ` h ) , x ) ) ) ) ) |
76 |
11 75
|
eqtri |
|- H = ( x e. RR |-> ( c e. ( RR ^m W ) |-> ( h e. W |-> if ( h e. Y , ( c ` h ) , if ( ( c ` h ) <_ x , ( c ` h ) , x ) ) ) ) ) |
77 |
23
|
adantr |
|- ( ( ph /\ j e. NN ) -> ( A ` Z ) e. RR ) |
78 |
9
|
ffvelrnda |
|- ( ( ph /\ j e. NN ) -> ( D ` j ) e. ( RR ^m W ) ) |
79 |
|
elmapi |
|- ( ( D ` j ) e. ( RR ^m W ) -> ( D ` j ) : W --> RR ) |
80 |
78 79
|
syl |
|- ( ( ph /\ j e. NN ) -> ( D ` j ) : W --> RR ) |
81 |
76 77 64 80
|
hsphoif |
|- ( ( ph /\ j e. NN ) -> ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) : W --> RR ) |
82 |
1 64 67 81
|
hoidmvcl |
|- ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) e. ( 0 [,) +oo ) ) |
83 |
58 82
|
sselid |
|- ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) e. ( 0 [,] +oo ) ) |
84 |
83
|
fmpttd |
|- ( ph -> ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) : NN --> ( 0 [,] +oo ) ) |
85 |
57 84
|
sge0cl |
|- ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) e. ( 0 [,] +oo ) ) |
86 |
57 84
|
sge0xrcl |
|- ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) e. RR* ) |
87 |
|
pnfxr |
|- +oo e. RR* |
88 |
87
|
a1i |
|- ( ph -> +oo e. RR* ) |
89 |
10
|
rexrd |
|- ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( D ` j ) ) ) ) e. RR* ) |
90 |
|
nfv |
|- F/ j ph |
91 |
1 64 67 80
|
hoidmvcl |
|- ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( D ` j ) ) e. ( 0 [,) +oo ) ) |
92 |
58 91
|
sselid |
|- ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( D ` j ) ) e. ( 0 [,] +oo ) ) |
93 |
4
|
eldifbd |
|- ( ph -> -. Z e. Y ) |
94 |
22 93
|
eldifd |
|- ( ph -> Z e. ( W \ Y ) ) |
95 |
94
|
adantr |
|- ( ( ph /\ j e. NN ) -> Z e. ( W \ Y ) ) |
96 |
1 64 95 5 77 76 67 80
|
hsphoidmvle |
|- ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) <_ ( ( C ` j ) ( L ` W ) ( D ` j ) ) ) |
97 |
90 57 83 92 96
|
sge0lempt |
|- ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( D ` j ) ) ) ) ) |
98 |
10
|
ltpnfd |
|- ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( D ` j ) ) ) ) < +oo ) |
99 |
86 89 88 97 98
|
xrlelttrd |
|- ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) < +oo ) |
100 |
86 88 99
|
xrltned |
|- ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) =/= +oo ) |
101 |
|
ge0xrre |
|- ( ( ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) e. ( 0 [,] +oo ) /\ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) =/= +oo ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) e. RR ) |
102 |
85 100 101
|
syl2anc |
|- ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) e. RR ) |
103 |
57 84
|
sge0ge0 |
|- ( ph -> 0 <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) ) |
104 |
|
mulge0 |
|- ( ( ( ( 1 + E ) e. RR /\ 0 <_ ( 1 + E ) ) /\ ( ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) e. RR /\ 0 <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) ) ) -> 0 <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) ) ) |
105 |
49 55 102 103 104
|
syl22anc |
|- ( ph -> 0 <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) ) ) |
106 |
46 105
|
eqbrtrd |
|- ( ph -> ( G x. ( ( A ` Z ) - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) ) ) |
107 |
30 106
|
jca |
|- ( ph -> ( ( A ` Z ) e. ( ( A ` Z ) [,] ( B ` Z ) ) /\ ( G x. ( ( A ` Z ) - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) ) ) ) |
108 |
|
oveq1 |
|- ( z = ( A ` Z ) -> ( z - ( A ` Z ) ) = ( ( A ` Z ) - ( A ` Z ) ) ) |
109 |
108
|
oveq2d |
|- ( z = ( A ` Z ) -> ( G x. ( z - ( A ` Z ) ) ) = ( G x. ( ( A ` Z ) - ( A ` Z ) ) ) ) |
110 |
|
fveq2 |
|- ( z = ( A ` Z ) -> ( H ` z ) = ( H ` ( A ` Z ) ) ) |
111 |
110
|
fveq1d |
|- ( z = ( A ` Z ) -> ( ( H ` z ) ` ( D ` j ) ) = ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) |
112 |
111
|
oveq2d |
|- ( z = ( A ` Z ) -> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) = ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) |
113 |
112
|
mpteq2dv |
|- ( z = ( A ` Z ) -> ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) = ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) |
114 |
113
|
fveq2d |
|- ( z = ( A ` Z ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) ) |
115 |
114
|
oveq2d |
|- ( z = ( A ` Z ) -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) = ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) ) ) |
116 |
109 115
|
breq12d |
|- ( z = ( A ` Z ) -> ( ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) <-> ( G x. ( ( A ` Z ) - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) ) ) ) |
117 |
116
|
elrab |
|- ( ( A ` Z ) e. { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } <-> ( ( A ` Z ) e. ( ( A ` Z ) [,] ( B ` Z ) ) /\ ( G x. ( ( A ` Z ) - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) ) ) ) |
118 |
107 117
|
sylibr |
|- ( ph -> ( A ` Z ) e. { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } ) |
119 |
118 14
|
eleqtrrdi |
|- ( ph -> ( A ` Z ) e. U ) |
120 |
|
ne0i |
|- ( ( A ` Z ) e. U -> U =/= (/) ) |
121 |
119 120
|
syl |
|- ( ph -> U =/= (/) ) |
122 |
23 24 27 121
|
supicc |
|- ( ph -> sup ( U , RR , < ) e. ( ( A ` Z ) [,] ( B ` Z ) ) ) |
123 |
17 122
|
eqeltrd |
|- ( ph -> S e. ( ( A ` Z ) [,] ( B ` Z ) ) ) |
124 |
17
|
oveq1d |
|- ( ph -> ( S - ( A ` Z ) ) = ( sup ( U , RR , < ) - ( A ` Z ) ) ) |
125 |
124
|
oveq2d |
|- ( ph -> ( G x. ( S - ( A ` Z ) ) ) = ( G x. ( sup ( U , RR , < ) - ( A ` Z ) ) ) ) |
126 |
23 24
|
iccssred |
|- ( ph -> ( ( A ` Z ) [,] ( B ` Z ) ) C_ RR ) |
127 |
27 126
|
sstrd |
|- ( ph -> U C_ RR ) |
128 |
23 24
|
jca |
|- ( ph -> ( ( A ` Z ) e. RR /\ ( B ` Z ) e. RR ) ) |
129 |
|
iccsupr |
|- ( ( ( ( A ` Z ) e. RR /\ ( B ` Z ) e. RR ) /\ U C_ ( ( A ` Z ) [,] ( B ` Z ) ) /\ ( A ` Z ) e. U ) -> ( U C_ RR /\ U =/= (/) /\ E. y e. RR A. z e. U z <_ y ) ) |
130 |
128 27 119 129
|
syl3anc |
|- ( ph -> ( U C_ RR /\ U =/= (/) /\ E. y e. RR A. z e. U z <_ y ) ) |
131 |
130
|
simp3d |
|- ( ph -> E. y e. RR A. z e. U z <_ y ) |
132 |
|
eqid |
|- { w | E. u e. U w = ( u - ( A ` Z ) ) } = { w | E. u e. U w = ( u - ( A ` Z ) ) } |
133 |
127 121 131 23 132
|
supsubc |
|- ( ph -> ( sup ( U , RR , < ) - ( A ` Z ) ) = sup ( { w | E. u e. U w = ( u - ( A ` Z ) ) } , RR , < ) ) |
134 |
133
|
oveq2d |
|- ( ph -> ( G x. ( sup ( U , RR , < ) - ( A ` Z ) ) ) = ( G x. sup ( { w | E. u e. U w = ( u - ( A ` Z ) ) } , RR , < ) ) ) |
135 |
50
|
rexrd |
|- ( ph -> 0 e. RR* ) |
136 |
|
icogelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ G e. ( 0 [,) +oo ) ) -> 0 <_ G ) |
137 |
135 88 42 136
|
syl3anc |
|- ( ph -> 0 <_ G ) |
138 |
|
vex |
|- r e. _V |
139 |
|
eqeq1 |
|- ( w = r -> ( w = ( u - ( A ` Z ) ) <-> r = ( u - ( A ` Z ) ) ) ) |
140 |
139
|
rexbidv |
|- ( w = r -> ( E. u e. U w = ( u - ( A ` Z ) ) <-> E. u e. U r = ( u - ( A ` Z ) ) ) ) |
141 |
138 140
|
elab |
|- ( r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } <-> E. u e. U r = ( u - ( A ` Z ) ) ) |
142 |
141
|
biimpi |
|- ( r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } -> E. u e. U r = ( u - ( A ` Z ) ) ) |
143 |
142
|
adantl |
|- ( ( ph /\ r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) -> E. u e. U r = ( u - ( A ` Z ) ) ) |
144 |
|
nfv |
|- F/ u ph |
145 |
|
nfcv |
|- F/_ u r |
146 |
|
nfre1 |
|- F/ u E. u e. U w = ( u - ( A ` Z ) ) |
147 |
146
|
nfab |
|- F/_ u { w | E. u e. U w = ( u - ( A ` Z ) ) } |
148 |
145 147
|
nfel |
|- F/ u r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } |
149 |
144 148
|
nfan |
|- F/ u ( ph /\ r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) |
150 |
|
nfv |
|- F/ u 0 <_ r |
151 |
23
|
rexrd |
|- ( ph -> ( A ` Z ) e. RR* ) |
152 |
151
|
adantr |
|- ( ( ph /\ u e. U ) -> ( A ` Z ) e. RR* ) |
153 |
24
|
rexrd |
|- ( ph -> ( B ` Z ) e. RR* ) |
154 |
153
|
adantr |
|- ( ( ph /\ u e. U ) -> ( B ` Z ) e. RR* ) |
155 |
27
|
sselda |
|- ( ( ph /\ u e. U ) -> u e. ( ( A ` Z ) [,] ( B ` Z ) ) ) |
156 |
|
iccgelb |
|- ( ( ( A ` Z ) e. RR* /\ ( B ` Z ) e. RR* /\ u e. ( ( A ` Z ) [,] ( B ` Z ) ) ) -> ( A ` Z ) <_ u ) |
157 |
152 154 155 156
|
syl3anc |
|- ( ( ph /\ u e. U ) -> ( A ` Z ) <_ u ) |
158 |
127
|
sselda |
|- ( ( ph /\ u e. U ) -> u e. RR ) |
159 |
23
|
adantr |
|- ( ( ph /\ u e. U ) -> ( A ` Z ) e. RR ) |
160 |
158 159
|
subge0d |
|- ( ( ph /\ u e. U ) -> ( 0 <_ ( u - ( A ` Z ) ) <-> ( A ` Z ) <_ u ) ) |
161 |
157 160
|
mpbird |
|- ( ( ph /\ u e. U ) -> 0 <_ ( u - ( A ` Z ) ) ) |
162 |
161
|
3adant3 |
|- ( ( ph /\ u e. U /\ r = ( u - ( A ` Z ) ) ) -> 0 <_ ( u - ( A ` Z ) ) ) |
163 |
|
id |
|- ( r = ( u - ( A ` Z ) ) -> r = ( u - ( A ` Z ) ) ) |
164 |
163
|
eqcomd |
|- ( r = ( u - ( A ` Z ) ) -> ( u - ( A ` Z ) ) = r ) |
165 |
164
|
3ad2ant3 |
|- ( ( ph /\ u e. U /\ r = ( u - ( A ` Z ) ) ) -> ( u - ( A ` Z ) ) = r ) |
166 |
162 165
|
breqtrd |
|- ( ( ph /\ u e. U /\ r = ( u - ( A ` Z ) ) ) -> 0 <_ r ) |
167 |
166
|
3exp |
|- ( ph -> ( u e. U -> ( r = ( u - ( A ` Z ) ) -> 0 <_ r ) ) ) |
168 |
167
|
adantr |
|- ( ( ph /\ r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) -> ( u e. U -> ( r = ( u - ( A ` Z ) ) -> 0 <_ r ) ) ) |
169 |
149 150 168
|
rexlimd |
|- ( ( ph /\ r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) -> ( E. u e. U r = ( u - ( A ` Z ) ) -> 0 <_ r ) ) |
170 |
143 169
|
mpd |
|- ( ( ph /\ r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) -> 0 <_ r ) |
171 |
170
|
ralrimiva |
|- ( ph -> A. r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } 0 <_ r ) |
172 |
|
simp3 |
|- ( ( ph /\ u e. U /\ w = ( u - ( A ` Z ) ) ) -> w = ( u - ( A ` Z ) ) ) |
173 |
158 159
|
resubcld |
|- ( ( ph /\ u e. U ) -> ( u - ( A ` Z ) ) e. RR ) |
174 |
173
|
3adant3 |
|- ( ( ph /\ u e. U /\ w = ( u - ( A ` Z ) ) ) -> ( u - ( A ` Z ) ) e. RR ) |
175 |
172 174
|
eqeltrd |
|- ( ( ph /\ u e. U /\ w = ( u - ( A ` Z ) ) ) -> w e. RR ) |
176 |
175
|
3exp |
|- ( ph -> ( u e. U -> ( w = ( u - ( A ` Z ) ) -> w e. RR ) ) ) |
177 |
176
|
rexlimdv |
|- ( ph -> ( E. u e. U w = ( u - ( A ` Z ) ) -> w e. RR ) ) |
178 |
177
|
alrimiv |
|- ( ph -> A. w ( E. u e. U w = ( u - ( A ` Z ) ) -> w e. RR ) ) |
179 |
|
abss |
|- ( { w | E. u e. U w = ( u - ( A ` Z ) ) } C_ RR <-> A. w ( E. u e. U w = ( u - ( A ` Z ) ) -> w e. RR ) ) |
180 |
178 179
|
sylibr |
|- ( ph -> { w | E. u e. U w = ( u - ( A ` Z ) ) } C_ RR ) |
181 |
32
|
eqcomd |
|- ( ph -> 0 = ( ( A ` Z ) - ( A ` Z ) ) ) |
182 |
|
oveq1 |
|- ( u = ( A ` Z ) -> ( u - ( A ` Z ) ) = ( ( A ` Z ) - ( A ` Z ) ) ) |
183 |
182
|
rspceeqv |
|- ( ( ( A ` Z ) e. U /\ 0 = ( ( A ` Z ) - ( A ` Z ) ) ) -> E. u e. U 0 = ( u - ( A ` Z ) ) ) |
184 |
119 181 183
|
syl2anc |
|- ( ph -> E. u e. U 0 = ( u - ( A ` Z ) ) ) |
185 |
|
eqeq1 |
|- ( w = 0 -> ( w = ( u - ( A ` Z ) ) <-> 0 = ( u - ( A ` Z ) ) ) ) |
186 |
185
|
rexbidv |
|- ( w = 0 -> ( E. u e. U w = ( u - ( A ` Z ) ) <-> E. u e. U 0 = ( u - ( A ` Z ) ) ) ) |
187 |
50 184 186
|
elabd |
|- ( ph -> 0 e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) |
188 |
|
ne0i |
|- ( 0 e. { w | E. u e. U w = ( u - ( A ` Z ) ) } -> { w | E. u e. U w = ( u - ( A ` Z ) ) } =/= (/) ) |
189 |
187 188
|
syl |
|- ( ph -> { w | E. u e. U w = ( u - ( A ` Z ) ) } =/= (/) ) |
190 |
24 23
|
resubcld |
|- ( ph -> ( ( B ` Z ) - ( A ` Z ) ) e. RR ) |
191 |
|
vex |
|- s e. _V |
192 |
|
eqeq1 |
|- ( w = s -> ( w = ( u - ( A ` Z ) ) <-> s = ( u - ( A ` Z ) ) ) ) |
193 |
192
|
rexbidv |
|- ( w = s -> ( E. u e. U w = ( u - ( A ` Z ) ) <-> E. u e. U s = ( u - ( A ` Z ) ) ) ) |
194 |
191 193
|
elab |
|- ( s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } <-> E. u e. U s = ( u - ( A ` Z ) ) ) |
195 |
194
|
biimpi |
|- ( s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } -> E. u e. U s = ( u - ( A ` Z ) ) ) |
196 |
195
|
adantl |
|- ( ( ph /\ s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) -> E. u e. U s = ( u - ( A ` Z ) ) ) |
197 |
|
nfcv |
|- F/_ u s |
198 |
197 147
|
nfel |
|- F/ u s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } |
199 |
144 198
|
nfan |
|- F/ u ( ph /\ s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) |
200 |
|
nfv |
|- F/ u s <_ ( ( B ` Z ) - ( A ` Z ) ) |
201 |
|
simp3 |
|- ( ( ph /\ u e. U /\ s = ( u - ( A ` Z ) ) ) -> s = ( u - ( A ` Z ) ) ) |
202 |
159
|
3adant3 |
|- ( ( ph /\ u e. U /\ s = ( u - ( A ` Z ) ) ) -> ( A ` Z ) e. RR ) |
203 |
24
|
3ad2ant1 |
|- ( ( ph /\ u e. U /\ s = ( u - ( A ` Z ) ) ) -> ( B ` Z ) e. RR ) |
204 |
155
|
3adant3 |
|- ( ( ph /\ u e. U /\ s = ( u - ( A ` Z ) ) ) -> u e. ( ( A ` Z ) [,] ( B ` Z ) ) ) |
205 |
30
|
3ad2ant1 |
|- ( ( ph /\ u e. U /\ s = ( u - ( A ` Z ) ) ) -> ( A ` Z ) e. ( ( A ` Z ) [,] ( B ` Z ) ) ) |
206 |
202 203 204 205
|
iccsuble |
|- ( ( ph /\ u e. U /\ s = ( u - ( A ` Z ) ) ) -> ( u - ( A ` Z ) ) <_ ( ( B ` Z ) - ( A ` Z ) ) ) |
207 |
201 206
|
eqbrtrd |
|- ( ( ph /\ u e. U /\ s = ( u - ( A ` Z ) ) ) -> s <_ ( ( B ` Z ) - ( A ` Z ) ) ) |
208 |
207
|
3exp |
|- ( ph -> ( u e. U -> ( s = ( u - ( A ` Z ) ) -> s <_ ( ( B ` Z ) - ( A ` Z ) ) ) ) ) |
209 |
208
|
adantr |
|- ( ( ph /\ s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) -> ( u e. U -> ( s = ( u - ( A ` Z ) ) -> s <_ ( ( B ` Z ) - ( A ` Z ) ) ) ) ) |
210 |
199 200 209
|
rexlimd |
|- ( ( ph /\ s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) -> ( E. u e. U s = ( u - ( A ` Z ) ) -> s <_ ( ( B ` Z ) - ( A ` Z ) ) ) ) |
211 |
196 210
|
mpd |
|- ( ( ph /\ s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) -> s <_ ( ( B ` Z ) - ( A ` Z ) ) ) |
212 |
211
|
ralrimiva |
|- ( ph -> A. s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } s <_ ( ( B ` Z ) - ( A ` Z ) ) ) |
213 |
|
brralrspcev |
|- ( ( ( ( B ` Z ) - ( A ` Z ) ) e. RR /\ A. s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } s <_ ( ( B ` Z ) - ( A ` Z ) ) ) -> E. r e. RR A. s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } s <_ r ) |
214 |
190 212 213
|
syl2anc |
|- ( ph -> E. r e. RR A. s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } s <_ r ) |
215 |
|
eqid |
|- { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } = { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } |
216 |
|
biid |
|- ( ( ( G e. RR /\ 0 <_ G /\ A. r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } 0 <_ r ) /\ ( { w | E. u e. U w = ( u - ( A ` Z ) ) } C_ RR /\ { w | E. u e. U w = ( u - ( A ` Z ) ) } =/= (/) /\ E. r e. RR A. s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } s <_ r ) ) <-> ( ( G e. RR /\ 0 <_ G /\ A. r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } 0 <_ r ) /\ ( { w | E. u e. U w = ( u - ( A ` Z ) ) } C_ RR /\ { w | E. u e. U w = ( u - ( A ` Z ) ) } =/= (/) /\ E. r e. RR A. s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } s <_ r ) ) ) |
217 |
215 216
|
supmul1 |
|- ( ( ( G e. RR /\ 0 <_ G /\ A. r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } 0 <_ r ) /\ ( { w | E. u e. U w = ( u - ( A ` Z ) ) } C_ RR /\ { w | E. u e. U w = ( u - ( A ` Z ) ) } =/= (/) /\ E. r e. RR A. s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } s <_ r ) ) -> ( G x. sup ( { w | E. u e. U w = ( u - ( A ` Z ) ) } , RR , < ) ) = sup ( { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } , RR , < ) ) |
218 |
43 137 171 180 189 214 217
|
syl33anc |
|- ( ph -> ( G x. sup ( { w | E. u e. U w = ( u - ( A ` Z ) ) } , RR , < ) ) = sup ( { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } , RR , < ) ) |
219 |
125 134 218
|
3eqtrd |
|- ( ph -> ( G x. ( S - ( A ` Z ) ) ) = sup ( { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } , RR , < ) ) |
220 |
|
vex |
|- c e. _V |
221 |
|
eqeq1 |
|- ( v = c -> ( v = ( G x. t ) <-> c = ( G x. t ) ) ) |
222 |
221
|
rexbidv |
|- ( v = c -> ( E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) <-> E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } c = ( G x. t ) ) ) |
223 |
220 222
|
elab |
|- ( c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } <-> E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } c = ( G x. t ) ) |
224 |
223
|
biimpi |
|- ( c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } -> E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } c = ( G x. t ) ) |
225 |
|
nfv |
|- F/ t E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) |
226 |
|
vex |
|- t e. _V |
227 |
|
eqeq1 |
|- ( w = t -> ( w = ( u - ( A ` Z ) ) <-> t = ( u - ( A ` Z ) ) ) ) |
228 |
227
|
rexbidv |
|- ( w = t -> ( E. u e. U w = ( u - ( A ` Z ) ) <-> E. u e. U t = ( u - ( A ` Z ) ) ) ) |
229 |
226 228
|
elab |
|- ( t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } <-> E. u e. U t = ( u - ( A ` Z ) ) ) |
230 |
229
|
biimpi |
|- ( t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } -> E. u e. U t = ( u - ( A ` Z ) ) ) |
231 |
230
|
adantr |
|- ( ( t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } /\ c = ( G x. t ) ) -> E. u e. U t = ( u - ( A ` Z ) ) ) |
232 |
|
simpl |
|- ( ( c = ( G x. t ) /\ t = ( u - ( A ` Z ) ) ) -> c = ( G x. t ) ) |
233 |
|
oveq2 |
|- ( t = ( u - ( A ` Z ) ) -> ( G x. t ) = ( G x. ( u - ( A ` Z ) ) ) ) |
234 |
233
|
adantl |
|- ( ( c = ( G x. t ) /\ t = ( u - ( A ` Z ) ) ) -> ( G x. t ) = ( G x. ( u - ( A ` Z ) ) ) ) |
235 |
232 234
|
eqtrd |
|- ( ( c = ( G x. t ) /\ t = ( u - ( A ` Z ) ) ) -> c = ( G x. ( u - ( A ` Z ) ) ) ) |
236 |
235
|
ex |
|- ( c = ( G x. t ) -> ( t = ( u - ( A ` Z ) ) -> c = ( G x. ( u - ( A ` Z ) ) ) ) ) |
237 |
236
|
reximdv |
|- ( c = ( G x. t ) -> ( E. u e. U t = ( u - ( A ` Z ) ) -> E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) ) ) |
238 |
237
|
adantl |
|- ( ( t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } /\ c = ( G x. t ) ) -> ( E. u e. U t = ( u - ( A ` Z ) ) -> E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) ) ) |
239 |
231 238
|
mpd |
|- ( ( t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } /\ c = ( G x. t ) ) -> E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) ) |
240 |
239
|
ex |
|- ( t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } -> ( c = ( G x. t ) -> E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) ) ) |
241 |
225 240
|
rexlimi |
|- ( E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } c = ( G x. t ) -> E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) ) |
242 |
241
|
a1i |
|- ( c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } -> ( E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } c = ( G x. t ) -> E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) ) ) |
243 |
224 242
|
mpd |
|- ( c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } -> E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) ) |
244 |
243
|
adantl |
|- ( ( ph /\ c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } ) -> E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) ) |
245 |
|
simp3 |
|- ( ( ph /\ u e. U /\ c = ( G x. ( u - ( A ` Z ) ) ) ) -> c = ( G x. ( u - ( A ` Z ) ) ) ) |
246 |
43
|
adantr |
|- ( ( ph /\ u e. U ) -> G e. RR ) |
247 |
246 173
|
remulcld |
|- ( ( ph /\ u e. U ) -> ( G x. ( u - ( A ` Z ) ) ) e. RR ) |
248 |
49
|
adantr |
|- ( ( ph /\ u e. U ) -> ( 1 + E ) e. RR ) |
249 |
56
|
a1i |
|- ( ( ph /\ u e. U ) -> NN e. _V ) |
250 |
64
|
adantlr |
|- ( ( ( ph /\ u e. U ) /\ j e. NN ) -> W e. Fin ) |
251 |
67
|
adantlr |
|- ( ( ( ph /\ u e. U ) /\ j e. NN ) -> ( C ` j ) : W --> RR ) |
252 |
158
|
adantr |
|- ( ( ( ph /\ u e. U ) /\ j e. NN ) -> u e. RR ) |
253 |
80
|
adantlr |
|- ( ( ( ph /\ u e. U ) /\ j e. NN ) -> ( D ` j ) : W --> RR ) |
254 |
76 252 250 253
|
hsphoif |
|- ( ( ( ph /\ u e. U ) /\ j e. NN ) -> ( ( H ` u ) ` ( D ` j ) ) : W --> RR ) |
255 |
1 250 251 254
|
hoidmvcl |
|- ( ( ( ph /\ u e. U ) /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) e. ( 0 [,) +oo ) ) |
256 |
58 255
|
sselid |
|- ( ( ( ph /\ u e. U ) /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) e. ( 0 [,] +oo ) ) |
257 |
256
|
fmpttd |
|- ( ( ph /\ u e. U ) -> ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) : NN --> ( 0 [,] +oo ) ) |
258 |
249 257
|
sge0cl |
|- ( ( ph /\ u e. U ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) e. ( 0 [,] +oo ) ) |
259 |
249 257
|
sge0xrcl |
|- ( ( ph /\ u e. U ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) e. RR* ) |
260 |
87
|
a1i |
|- ( ( ph /\ u e. U ) -> +oo e. RR* ) |
261 |
89
|
adantr |
|- ( ( ph /\ u e. U ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( D ` j ) ) ) ) e. RR* ) |
262 |
|
nfv |
|- F/ j ( ph /\ u e. U ) |
263 |
92
|
adantlr |
|- ( ( ( ph /\ u e. U ) /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( D ` j ) ) e. ( 0 [,] +oo ) ) |
264 |
95
|
adantlr |
|- ( ( ( ph /\ u e. U ) /\ j e. NN ) -> Z e. ( W \ Y ) ) |
265 |
1 250 264 5 252 76 251 253
|
hsphoidmvle |
|- ( ( ( ph /\ u e. U ) /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) <_ ( ( C ` j ) ( L ` W ) ( D ` j ) ) ) |
266 |
262 249 256 263 265
|
sge0lempt |
|- ( ( ph /\ u e. U ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( D ` j ) ) ) ) ) |
267 |
98
|
adantr |
|- ( ( ph /\ u e. U ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( D ` j ) ) ) ) < +oo ) |
268 |
259 261 260 266 267
|
xrlelttrd |
|- ( ( ph /\ u e. U ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) < +oo ) |
269 |
259 260 268
|
xrltned |
|- ( ( ph /\ u e. U ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) =/= +oo ) |
270 |
|
ge0xrre |
|- ( ( ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) e. ( 0 [,] +oo ) /\ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) =/= +oo ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) e. RR ) |
271 |
258 269 270
|
syl2anc |
|- ( ( ph /\ u e. U ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) e. RR ) |
272 |
248 271
|
remulcld |
|- ( ( ph /\ u e. U ) -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) ) e. RR ) |
273 |
126 123
|
sseldd |
|- ( ph -> S e. RR ) |
274 |
1 35 94 5 8 9 10 11 273
|
sge0hsphoire |
|- ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) e. RR ) |
275 |
49 274
|
remulcld |
|- ( ph -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) e. RR ) |
276 |
275
|
adantr |
|- ( ( ph /\ u e. U ) -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) e. RR ) |
277 |
14
|
eleq2i |
|- ( u e. U <-> u e. { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } ) |
278 |
277
|
biimpi |
|- ( u e. U -> u e. { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } ) |
279 |
|
oveq1 |
|- ( z = u -> ( z - ( A ` Z ) ) = ( u - ( A ` Z ) ) ) |
280 |
279
|
oveq2d |
|- ( z = u -> ( G x. ( z - ( A ` Z ) ) ) = ( G x. ( u - ( A ` Z ) ) ) ) |
281 |
|
fveq2 |
|- ( z = u -> ( H ` z ) = ( H ` u ) ) |
282 |
281
|
fveq1d |
|- ( z = u -> ( ( H ` z ) ` ( D ` j ) ) = ( ( H ` u ) ` ( D ` j ) ) ) |
283 |
282
|
oveq2d |
|- ( z = u -> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) = ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) |
284 |
283
|
mpteq2dv |
|- ( z = u -> ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) = ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) |
285 |
284
|
fveq2d |
|- ( z = u -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) ) |
286 |
285
|
oveq2d |
|- ( z = u -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) = ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) ) ) |
287 |
280 286
|
breq12d |
|- ( z = u -> ( ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) <-> ( G x. ( u - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) ) ) ) |
288 |
287
|
elrab |
|- ( u e. { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } <-> ( u e. ( ( A ` Z ) [,] ( B ` Z ) ) /\ ( G x. ( u - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) ) ) ) |
289 |
278 288
|
sylib |
|- ( u e. U -> ( u e. ( ( A ` Z ) [,] ( B ` Z ) ) /\ ( G x. ( u - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) ) ) ) |
290 |
289
|
simprd |
|- ( u e. U -> ( G x. ( u - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) ) ) |
291 |
290
|
adantl |
|- ( ( ph /\ u e. U ) -> ( G x. ( u - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) ) ) |
292 |
274
|
adantr |
|- ( ( ph /\ u e. U ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) e. RR ) |
293 |
55
|
adantr |
|- ( ( ph /\ u e. U ) -> 0 <_ ( 1 + E ) ) |
294 |
273
|
adantr |
|- ( ( ph /\ j e. NN ) -> S e. RR ) |
295 |
76 294 64 80
|
hsphoif |
|- ( ( ph /\ j e. NN ) -> ( ( H ` S ) ` ( D ` j ) ) : W --> RR ) |
296 |
1 64 67 295
|
hoidmvcl |
|- ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. ( 0 [,) +oo ) ) |
297 |
58 296
|
sselid |
|- ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. ( 0 [,] +oo ) ) |
298 |
297
|
adantlr |
|- ( ( ( ph /\ u e. U ) /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. ( 0 [,] +oo ) ) |
299 |
294
|
adantlr |
|- ( ( ( ph /\ u e. U ) /\ j e. NN ) -> S e. RR ) |
300 |
127
|
adantr |
|- ( ( ph /\ u e. U ) -> U C_ RR ) |
301 |
121
|
adantr |
|- ( ( ph /\ u e. U ) -> U =/= (/) ) |
302 |
131
|
adantr |
|- ( ( ph /\ u e. U ) -> E. y e. RR A. z e. U z <_ y ) |
303 |
|
simpr |
|- ( ( ph /\ u e. U ) -> u e. U ) |
304 |
|
suprub |
|- ( ( ( U C_ RR /\ U =/= (/) /\ E. y e. RR A. z e. U z <_ y ) /\ u e. U ) -> u <_ sup ( U , RR , < ) ) |
305 |
300 301 302 303 304
|
syl31anc |
|- ( ( ph /\ u e. U ) -> u <_ sup ( U , RR , < ) ) |
306 |
305 15
|
breqtrrdi |
|- ( ( ph /\ u e. U ) -> u <_ S ) |
307 |
306
|
adantr |
|- ( ( ( ph /\ u e. U ) /\ j e. NN ) -> u <_ S ) |
308 |
1 250 264 5 252 299 307 76 251 253
|
hsphoidmvle2 |
|- ( ( ( ph /\ u e. U ) /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) <_ ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) |
309 |
262 249 256 298 308
|
sge0lempt |
|- ( ( ph /\ u e. U ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) |
310 |
271 292 248 293 309
|
lemul2ad |
|- ( ( ph /\ u e. U ) -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) |
311 |
247 272 276 291 310
|
letrd |
|- ( ( ph /\ u e. U ) -> ( G x. ( u - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) |
312 |
311
|
3adant3 |
|- ( ( ph /\ u e. U /\ c = ( G x. ( u - ( A ` Z ) ) ) ) -> ( G x. ( u - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) |
313 |
245 312
|
eqbrtrd |
|- ( ( ph /\ u e. U /\ c = ( G x. ( u - ( A ` Z ) ) ) ) -> c <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) |
314 |
313
|
3exp |
|- ( ph -> ( u e. U -> ( c = ( G x. ( u - ( A ` Z ) ) ) -> c <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) ) |
315 |
314
|
rexlimdv |
|- ( ph -> ( E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) -> c <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) |
316 |
315
|
adantr |
|- ( ( ph /\ c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } ) -> ( E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) -> c <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) |
317 |
244 316
|
mpd |
|- ( ( ph /\ c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } ) -> c <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) |
318 |
317
|
ralrimiva |
|- ( ph -> A. c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } c <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) |
319 |
224
|
adantl |
|- ( ( ph /\ c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } ) -> E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } c = ( G x. t ) ) |
320 |
|
nfv |
|- F/ t ph |
321 |
|
nfcv |
|- F/_ t c |
322 |
|
nfre1 |
|- F/ t E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) |
323 |
322
|
nfab |
|- F/_ t { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } |
324 |
321 323
|
nfel |
|- F/ t c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } |
325 |
320 324
|
nfan |
|- F/ t ( ph /\ c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } ) |
326 |
|
nfv |
|- F/ t c e. RR |
327 |
230
|
adantl |
|- ( ( ph /\ t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) -> E. u e. U t = ( u - ( A ` Z ) ) ) |
328 |
|
simpr |
|- ( ( ( ph /\ u e. U /\ t = ( u - ( A ` Z ) ) ) /\ c = ( G x. t ) ) -> c = ( G x. t ) ) |
329 |
246
|
3adant3 |
|- ( ( ph /\ u e. U /\ t = ( u - ( A ` Z ) ) ) -> G e. RR ) |
330 |
|
simp3 |
|- ( ( ph /\ u e. U /\ t = ( u - ( A ` Z ) ) ) -> t = ( u - ( A ` Z ) ) ) |
331 |
173
|
3adant3 |
|- ( ( ph /\ u e. U /\ t = ( u - ( A ` Z ) ) ) -> ( u - ( A ` Z ) ) e. RR ) |
332 |
330 331
|
eqeltrd |
|- ( ( ph /\ u e. U /\ t = ( u - ( A ` Z ) ) ) -> t e. RR ) |
333 |
329 332
|
remulcld |
|- ( ( ph /\ u e. U /\ t = ( u - ( A ` Z ) ) ) -> ( G x. t ) e. RR ) |
334 |
333
|
adantr |
|- ( ( ( ph /\ u e. U /\ t = ( u - ( A ` Z ) ) ) /\ c = ( G x. t ) ) -> ( G x. t ) e. RR ) |
335 |
328 334
|
eqeltrd |
|- ( ( ( ph /\ u e. U /\ t = ( u - ( A ` Z ) ) ) /\ c = ( G x. t ) ) -> c e. RR ) |
336 |
335
|
ex |
|- ( ( ph /\ u e. U /\ t = ( u - ( A ` Z ) ) ) -> ( c = ( G x. t ) -> c e. RR ) ) |
337 |
336
|
3exp |
|- ( ph -> ( u e. U -> ( t = ( u - ( A ` Z ) ) -> ( c = ( G x. t ) -> c e. RR ) ) ) ) |
338 |
337
|
rexlimdv |
|- ( ph -> ( E. u e. U t = ( u - ( A ` Z ) ) -> ( c = ( G x. t ) -> c e. RR ) ) ) |
339 |
338
|
adantr |
|- ( ( ph /\ t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) -> ( E. u e. U t = ( u - ( A ` Z ) ) -> ( c = ( G x. t ) -> c e. RR ) ) ) |
340 |
327 339
|
mpd |
|- ( ( ph /\ t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) -> ( c = ( G x. t ) -> c e. RR ) ) |
341 |
340
|
ex |
|- ( ph -> ( t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } -> ( c = ( G x. t ) -> c e. RR ) ) ) |
342 |
341
|
adantr |
|- ( ( ph /\ c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } ) -> ( t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } -> ( c = ( G x. t ) -> c e. RR ) ) ) |
343 |
325 326 342
|
rexlimd |
|- ( ( ph /\ c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } ) -> ( E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } c = ( G x. t ) -> c e. RR ) ) |
344 |
319 343
|
mpd |
|- ( ( ph /\ c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } ) -> c e. RR ) |
345 |
344
|
ralrimiva |
|- ( ph -> A. c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } c e. RR ) |
346 |
|
dfss3 |
|- ( { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } C_ RR <-> A. c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } c e. RR ) |
347 |
345 346
|
sylibr |
|- ( ph -> { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } C_ RR ) |
348 |
45
|
eqcomd |
|- ( ph -> 0 = ( G x. 0 ) ) |
349 |
|
oveq2 |
|- ( t = 0 -> ( G x. t ) = ( G x. 0 ) ) |
350 |
349
|
rspceeqv |
|- ( ( 0 e. { w | E. u e. U w = ( u - ( A ` Z ) ) } /\ 0 = ( G x. 0 ) ) -> E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } 0 = ( G x. t ) ) |
351 |
187 348 350
|
syl2anc |
|- ( ph -> E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } 0 = ( G x. t ) ) |
352 |
|
eqeq1 |
|- ( v = 0 -> ( v = ( G x. t ) <-> 0 = ( G x. t ) ) ) |
353 |
352
|
rexbidv |
|- ( v = 0 -> ( E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) <-> E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } 0 = ( G x. t ) ) ) |
354 |
50 351 353
|
elabd |
|- ( ph -> 0 e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } ) |
355 |
|
ne0i |
|- ( 0 e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } -> { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } =/= (/) ) |
356 |
354 355
|
syl |
|- ( ph -> { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } =/= (/) ) |
357 |
43 190
|
remulcld |
|- ( ph -> ( G x. ( ( B ` Z ) - ( A ` Z ) ) ) e. RR ) |
358 |
190
|
adantr |
|- ( ( ph /\ u e. U ) -> ( ( B ` Z ) - ( A ` Z ) ) e. RR ) |
359 |
137
|
adantr |
|- ( ( ph /\ u e. U ) -> 0 <_ G ) |
360 |
24
|
adantr |
|- ( ( ph /\ u e. U ) -> ( B ` Z ) e. RR ) |
361 |
|
iccleub |
|- ( ( ( A ` Z ) e. RR* /\ ( B ` Z ) e. RR* /\ u e. ( ( A ` Z ) [,] ( B ` Z ) ) ) -> u <_ ( B ` Z ) ) |
362 |
152 154 155 361
|
syl3anc |
|- ( ( ph /\ u e. U ) -> u <_ ( B ` Z ) ) |
363 |
158 360 159 362
|
lesub1dd |
|- ( ( ph /\ u e. U ) -> ( u - ( A ` Z ) ) <_ ( ( B ` Z ) - ( A ` Z ) ) ) |
364 |
173 358 246 359 363
|
lemul2ad |
|- ( ( ph /\ u e. U ) -> ( G x. ( u - ( A ` Z ) ) ) <_ ( G x. ( ( B ` Z ) - ( A ` Z ) ) ) ) |
365 |
364
|
3adant3 |
|- ( ( ph /\ u e. U /\ c = ( G x. ( u - ( A ` Z ) ) ) ) -> ( G x. ( u - ( A ` Z ) ) ) <_ ( G x. ( ( B ` Z ) - ( A ` Z ) ) ) ) |
366 |
245 365
|
eqbrtrd |
|- ( ( ph /\ u e. U /\ c = ( G x. ( u - ( A ` Z ) ) ) ) -> c <_ ( G x. ( ( B ` Z ) - ( A ` Z ) ) ) ) |
367 |
366
|
3exp |
|- ( ph -> ( u e. U -> ( c = ( G x. ( u - ( A ` Z ) ) ) -> c <_ ( G x. ( ( B ` Z ) - ( A ` Z ) ) ) ) ) ) |
368 |
367
|
rexlimdv |
|- ( ph -> ( E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) -> c <_ ( G x. ( ( B ` Z ) - ( A ` Z ) ) ) ) ) |
369 |
368
|
adantr |
|- ( ( ph /\ c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } ) -> ( E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) -> c <_ ( G x. ( ( B ` Z ) - ( A ` Z ) ) ) ) ) |
370 |
244 369
|
mpd |
|- ( ( ph /\ c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } ) -> c <_ ( G x. ( ( B ` Z ) - ( A ` Z ) ) ) ) |
371 |
370
|
ralrimiva |
|- ( ph -> A. c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } c <_ ( G x. ( ( B ` Z ) - ( A ` Z ) ) ) ) |
372 |
|
brralrspcev |
|- ( ( ( G x. ( ( B ` Z ) - ( A ` Z ) ) ) e. RR /\ A. c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } c <_ ( G x. ( ( B ` Z ) - ( A ` Z ) ) ) ) -> E. y e. RR A. c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } c <_ y ) |
373 |
357 371 372
|
syl2anc |
|- ( ph -> E. y e. RR A. c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } c <_ y ) |
374 |
|
suprleub |
|- ( ( ( { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } C_ RR /\ { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } =/= (/) /\ E. y e. RR A. c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } c <_ y ) /\ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) e. RR ) -> ( sup ( { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } , RR , < ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) <-> A. c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } c <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) |
375 |
347 356 373 275 374
|
syl31anc |
|- ( ph -> ( sup ( { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } , RR , < ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) <-> A. c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } c <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) |
376 |
318 375
|
mpbird |
|- ( ph -> sup ( { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } , RR , < ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) |
377 |
219 376
|
eqbrtrd |
|- ( ph -> ( G x. ( S - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) |
378 |
123 377
|
jca |
|- ( ph -> ( S e. ( ( A ` Z ) [,] ( B ` Z ) ) /\ ( G x. ( S - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) |
379 |
|
oveq1 |
|- ( z = S -> ( z - ( A ` Z ) ) = ( S - ( A ` Z ) ) ) |
380 |
379
|
oveq2d |
|- ( z = S -> ( G x. ( z - ( A ` Z ) ) ) = ( G x. ( S - ( A ` Z ) ) ) ) |
381 |
|
fveq2 |
|- ( z = S -> ( H ` z ) = ( H ` S ) ) |
382 |
381
|
fveq1d |
|- ( z = S -> ( ( H ` z ) ` ( D ` j ) ) = ( ( H ` S ) ` ( D ` j ) ) ) |
383 |
382
|
oveq2d |
|- ( z = S -> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) = ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) |
384 |
383
|
mpteq2dv |
|- ( z = S -> ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) = ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) |
385 |
384
|
fveq2d |
|- ( z = S -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) |
386 |
385
|
oveq2d |
|- ( z = S -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) = ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) |
387 |
380 386
|
breq12d |
|- ( z = S -> ( ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) <-> ( G x. ( S - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) |
388 |
387
|
elrab |
|- ( S e. { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } <-> ( S e. ( ( A ` Z ) [,] ( B ` Z ) ) /\ ( G x. ( S - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) |
389 |
378 388
|
sylibr |
|- ( ph -> S e. { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } ) |
390 |
389 14
|
eleqtrrdi |
|- ( ph -> S e. U ) |