| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoidmvlelem1.l |  |-  L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) | 
						
							| 2 |  | hoidmvlelem1.x |  |-  ( ph -> X e. Fin ) | 
						
							| 3 |  | hoidmvlelem1.y |  |-  ( ph -> Y C_ X ) | 
						
							| 4 |  | hoidmvlelem1.z |  |-  ( ph -> Z e. ( X \ Y ) ) | 
						
							| 5 |  | hoidmvlelem1.w |  |-  W = ( Y u. { Z } ) | 
						
							| 6 |  | hoidmvlelem1.a |  |-  ( ph -> A : W --> RR ) | 
						
							| 7 |  | hoidmvlelem1.b |  |-  ( ph -> B : W --> RR ) | 
						
							| 8 |  | hoidmvlelem1.c |  |-  ( ph -> C : NN --> ( RR ^m W ) ) | 
						
							| 9 |  | hoidmvlelem1.d |  |-  ( ph -> D : NN --> ( RR ^m W ) ) | 
						
							| 10 |  | hoidmvlelem1.r |  |-  ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( D ` j ) ) ) ) e. RR ) | 
						
							| 11 |  | hoidmvlelem1.h |  |-  H = ( x e. RR |-> ( c e. ( RR ^m W ) |-> ( j e. W |-> if ( j e. Y , ( c ` j ) , if ( ( c ` j ) <_ x , ( c ` j ) , x ) ) ) ) ) | 
						
							| 12 |  | hoidmvlelem1.g |  |-  G = ( ( A |` Y ) ( L ` Y ) ( B |` Y ) ) | 
						
							| 13 |  | hoidmvlelem1.e |  |-  ( ph -> E e. RR+ ) | 
						
							| 14 |  | hoidmvlelem1.u |  |-  U = { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } | 
						
							| 15 |  | hoidmvlelem1.s |  |-  S = sup ( U , RR , < ) | 
						
							| 16 |  | hoidmvlelem1.ab |  |-  ( ph -> ( A ` Z ) < ( B ` Z ) ) | 
						
							| 17 | 15 | a1i |  |-  ( ph -> S = sup ( U , RR , < ) ) | 
						
							| 18 |  | snidg |  |-  ( Z e. ( X \ Y ) -> Z e. { Z } ) | 
						
							| 19 | 4 18 | syl |  |-  ( ph -> Z e. { Z } ) | 
						
							| 20 |  | elun2 |  |-  ( Z e. { Z } -> Z e. ( Y u. { Z } ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ph -> Z e. ( Y u. { Z } ) ) | 
						
							| 22 | 21 5 | eleqtrrdi |  |-  ( ph -> Z e. W ) | 
						
							| 23 | 6 22 | ffvelcdmd |  |-  ( ph -> ( A ` Z ) e. RR ) | 
						
							| 24 | 7 22 | ffvelcdmd |  |-  ( ph -> ( B ` Z ) e. RR ) | 
						
							| 25 |  | ssrab2 |  |-  { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } C_ ( ( A ` Z ) [,] ( B ` Z ) ) | 
						
							| 26 | 14 25 | eqsstri |  |-  U C_ ( ( A ` Z ) [,] ( B ` Z ) ) | 
						
							| 27 | 26 | a1i |  |-  ( ph -> U C_ ( ( A ` Z ) [,] ( B ` Z ) ) ) | 
						
							| 28 | 23 | leidd |  |-  ( ph -> ( A ` Z ) <_ ( A ` Z ) ) | 
						
							| 29 | 23 24 16 | ltled |  |-  ( ph -> ( A ` Z ) <_ ( B ` Z ) ) | 
						
							| 30 | 23 24 23 28 29 | eliccd |  |-  ( ph -> ( A ` Z ) e. ( ( A ` Z ) [,] ( B ` Z ) ) ) | 
						
							| 31 | 23 | recnd |  |-  ( ph -> ( A ` Z ) e. CC ) | 
						
							| 32 | 31 | subidd |  |-  ( ph -> ( ( A ` Z ) - ( A ` Z ) ) = 0 ) | 
						
							| 33 | 32 | oveq2d |  |-  ( ph -> ( G x. ( ( A ` Z ) - ( A ` Z ) ) ) = ( G x. 0 ) ) | 
						
							| 34 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 35 | 2 3 | ssfid |  |-  ( ph -> Y e. Fin ) | 
						
							| 36 |  | ssun1 |  |-  Y C_ ( Y u. { Z } ) | 
						
							| 37 | 36 5 | sseqtrri |  |-  Y C_ W | 
						
							| 38 | 37 | a1i |  |-  ( ph -> Y C_ W ) | 
						
							| 39 | 6 38 | fssresd |  |-  ( ph -> ( A |` Y ) : Y --> RR ) | 
						
							| 40 | 7 38 | fssresd |  |-  ( ph -> ( B |` Y ) : Y --> RR ) | 
						
							| 41 | 1 35 39 40 | hoidmvcl |  |-  ( ph -> ( ( A |` Y ) ( L ` Y ) ( B |` Y ) ) e. ( 0 [,) +oo ) ) | 
						
							| 42 | 12 41 | eqeltrid |  |-  ( ph -> G e. ( 0 [,) +oo ) ) | 
						
							| 43 | 34 42 | sselid |  |-  ( ph -> G e. RR ) | 
						
							| 44 | 43 | recnd |  |-  ( ph -> G e. CC ) | 
						
							| 45 | 44 | mul01d |  |-  ( ph -> ( G x. 0 ) = 0 ) | 
						
							| 46 | 33 45 | eqtrd |  |-  ( ph -> ( G x. ( ( A ` Z ) - ( A ` Z ) ) ) = 0 ) | 
						
							| 47 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 48 | 13 | rpred |  |-  ( ph -> E e. RR ) | 
						
							| 49 | 47 48 | readdcld |  |-  ( ph -> ( 1 + E ) e. RR ) | 
						
							| 50 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 51 |  | 0lt1 |  |-  0 < 1 | 
						
							| 52 | 51 | a1i |  |-  ( ph -> 0 < 1 ) | 
						
							| 53 | 47 13 | ltaddrpd |  |-  ( ph -> 1 < ( 1 + E ) ) | 
						
							| 54 | 50 47 49 52 53 | lttrd |  |-  ( ph -> 0 < ( 1 + E ) ) | 
						
							| 55 | 50 49 54 | ltled |  |-  ( ph -> 0 <_ ( 1 + E ) ) | 
						
							| 56 |  | nnex |  |-  NN e. _V | 
						
							| 57 | 56 | a1i |  |-  ( ph -> NN e. _V ) | 
						
							| 58 |  | icossicc |  |-  ( 0 [,) +oo ) C_ ( 0 [,] +oo ) | 
						
							| 59 |  | snfi |  |-  { Z } e. Fin | 
						
							| 60 | 59 | a1i |  |-  ( ph -> { Z } e. Fin ) | 
						
							| 61 |  | unfi |  |-  ( ( Y e. Fin /\ { Z } e. Fin ) -> ( Y u. { Z } ) e. Fin ) | 
						
							| 62 | 35 60 61 | syl2anc |  |-  ( ph -> ( Y u. { Z } ) e. Fin ) | 
						
							| 63 | 5 62 | eqeltrid |  |-  ( ph -> W e. Fin ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ph /\ j e. NN ) -> W e. Fin ) | 
						
							| 65 | 8 | ffvelcdmda |  |-  ( ( ph /\ j e. NN ) -> ( C ` j ) e. ( RR ^m W ) ) | 
						
							| 66 |  | elmapi |  |-  ( ( C ` j ) e. ( RR ^m W ) -> ( C ` j ) : W --> RR ) | 
						
							| 67 | 65 66 | syl |  |-  ( ( ph /\ j e. NN ) -> ( C ` j ) : W --> RR ) | 
						
							| 68 |  | eleq1w |  |-  ( j = h -> ( j e. Y <-> h e. Y ) ) | 
						
							| 69 |  | fveq2 |  |-  ( j = h -> ( c ` j ) = ( c ` h ) ) | 
						
							| 70 | 69 | breq1d |  |-  ( j = h -> ( ( c ` j ) <_ x <-> ( c ` h ) <_ x ) ) | 
						
							| 71 | 70 69 | ifbieq1d |  |-  ( j = h -> if ( ( c ` j ) <_ x , ( c ` j ) , x ) = if ( ( c ` h ) <_ x , ( c ` h ) , x ) ) | 
						
							| 72 | 68 69 71 | ifbieq12d |  |-  ( j = h -> if ( j e. Y , ( c ` j ) , if ( ( c ` j ) <_ x , ( c ` j ) , x ) ) = if ( h e. Y , ( c ` h ) , if ( ( c ` h ) <_ x , ( c ` h ) , x ) ) ) | 
						
							| 73 | 72 | cbvmptv |  |-  ( j e. W |-> if ( j e. Y , ( c ` j ) , if ( ( c ` j ) <_ x , ( c ` j ) , x ) ) ) = ( h e. W |-> if ( h e. Y , ( c ` h ) , if ( ( c ` h ) <_ x , ( c ` h ) , x ) ) ) | 
						
							| 74 | 73 | mpteq2i |  |-  ( c e. ( RR ^m W ) |-> ( j e. W |-> if ( j e. Y , ( c ` j ) , if ( ( c ` j ) <_ x , ( c ` j ) , x ) ) ) ) = ( c e. ( RR ^m W ) |-> ( h e. W |-> if ( h e. Y , ( c ` h ) , if ( ( c ` h ) <_ x , ( c ` h ) , x ) ) ) ) | 
						
							| 75 | 74 | mpteq2i |  |-  ( x e. RR |-> ( c e. ( RR ^m W ) |-> ( j e. W |-> if ( j e. Y , ( c ` j ) , if ( ( c ` j ) <_ x , ( c ` j ) , x ) ) ) ) ) = ( x e. RR |-> ( c e. ( RR ^m W ) |-> ( h e. W |-> if ( h e. Y , ( c ` h ) , if ( ( c ` h ) <_ x , ( c ` h ) , x ) ) ) ) ) | 
						
							| 76 | 11 75 | eqtri |  |-  H = ( x e. RR |-> ( c e. ( RR ^m W ) |-> ( h e. W |-> if ( h e. Y , ( c ` h ) , if ( ( c ` h ) <_ x , ( c ` h ) , x ) ) ) ) ) | 
						
							| 77 | 23 | adantr |  |-  ( ( ph /\ j e. NN ) -> ( A ` Z ) e. RR ) | 
						
							| 78 | 9 | ffvelcdmda |  |-  ( ( ph /\ j e. NN ) -> ( D ` j ) e. ( RR ^m W ) ) | 
						
							| 79 |  | elmapi |  |-  ( ( D ` j ) e. ( RR ^m W ) -> ( D ` j ) : W --> RR ) | 
						
							| 80 | 78 79 | syl |  |-  ( ( ph /\ j e. NN ) -> ( D ` j ) : W --> RR ) | 
						
							| 81 | 76 77 64 80 | hsphoif |  |-  ( ( ph /\ j e. NN ) -> ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) : W --> RR ) | 
						
							| 82 | 1 64 67 81 | hoidmvcl |  |-  ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) e. ( 0 [,) +oo ) ) | 
						
							| 83 | 58 82 | sselid |  |-  ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) e. ( 0 [,] +oo ) ) | 
						
							| 84 | 83 | fmpttd |  |-  ( ph -> ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) : NN --> ( 0 [,] +oo ) ) | 
						
							| 85 | 57 84 | sge0cl |  |-  ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) e. ( 0 [,] +oo ) ) | 
						
							| 86 | 57 84 | sge0xrcl |  |-  ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) e. RR* ) | 
						
							| 87 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 88 | 87 | a1i |  |-  ( ph -> +oo e. RR* ) | 
						
							| 89 | 10 | rexrd |  |-  ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( D ` j ) ) ) ) e. RR* ) | 
						
							| 90 |  | nfv |  |-  F/ j ph | 
						
							| 91 | 1 64 67 80 | hoidmvcl |  |-  ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( D ` j ) ) e. ( 0 [,) +oo ) ) | 
						
							| 92 | 58 91 | sselid |  |-  ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( D ` j ) ) e. ( 0 [,] +oo ) ) | 
						
							| 93 | 4 | eldifbd |  |-  ( ph -> -. Z e. Y ) | 
						
							| 94 | 22 93 | eldifd |  |-  ( ph -> Z e. ( W \ Y ) ) | 
						
							| 95 | 94 | adantr |  |-  ( ( ph /\ j e. NN ) -> Z e. ( W \ Y ) ) | 
						
							| 96 | 1 64 95 5 77 76 67 80 | hsphoidmvle |  |-  ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) <_ ( ( C ` j ) ( L ` W ) ( D ` j ) ) ) | 
						
							| 97 | 90 57 83 92 96 | sge0lempt |  |-  ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( D ` j ) ) ) ) ) | 
						
							| 98 | 10 | ltpnfd |  |-  ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( D ` j ) ) ) ) < +oo ) | 
						
							| 99 | 86 89 88 97 98 | xrlelttrd |  |-  ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) < +oo ) | 
						
							| 100 | 86 88 99 | xrltned |  |-  ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) =/= +oo ) | 
						
							| 101 |  | ge0xrre |  |-  ( ( ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) e. ( 0 [,] +oo ) /\ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) =/= +oo ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) e. RR ) | 
						
							| 102 | 85 100 101 | syl2anc |  |-  ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) e. RR ) | 
						
							| 103 | 57 84 | sge0ge0 |  |-  ( ph -> 0 <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) ) | 
						
							| 104 |  | mulge0 |  |-  ( ( ( ( 1 + E ) e. RR /\ 0 <_ ( 1 + E ) ) /\ ( ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) e. RR /\ 0 <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) ) ) -> 0 <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 105 | 49 55 102 103 104 | syl22anc |  |-  ( ph -> 0 <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 106 | 46 105 | eqbrtrd |  |-  ( ph -> ( G x. ( ( A ` Z ) - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 107 | 30 106 | jca |  |-  ( ph -> ( ( A ` Z ) e. ( ( A ` Z ) [,] ( B ` Z ) ) /\ ( G x. ( ( A ` Z ) - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 108 |  | oveq1 |  |-  ( z = ( A ` Z ) -> ( z - ( A ` Z ) ) = ( ( A ` Z ) - ( A ` Z ) ) ) | 
						
							| 109 | 108 | oveq2d |  |-  ( z = ( A ` Z ) -> ( G x. ( z - ( A ` Z ) ) ) = ( G x. ( ( A ` Z ) - ( A ` Z ) ) ) ) | 
						
							| 110 |  | fveq2 |  |-  ( z = ( A ` Z ) -> ( H ` z ) = ( H ` ( A ` Z ) ) ) | 
						
							| 111 | 110 | fveq1d |  |-  ( z = ( A ` Z ) -> ( ( H ` z ) ` ( D ` j ) ) = ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) | 
						
							| 112 | 111 | oveq2d |  |-  ( z = ( A ` Z ) -> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) = ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) | 
						
							| 113 | 112 | mpteq2dv |  |-  ( z = ( A ` Z ) -> ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) = ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) | 
						
							| 114 | 113 | fveq2d |  |-  ( z = ( A ` Z ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) ) | 
						
							| 115 | 114 | oveq2d |  |-  ( z = ( A ` Z ) -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) = ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 116 | 109 115 | breq12d |  |-  ( z = ( A ` Z ) -> ( ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) <-> ( G x. ( ( A ` Z ) - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 117 | 116 | elrab |  |-  ( ( A ` Z ) e. { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } <-> ( ( A ` Z ) e. ( ( A ` Z ) [,] ( B ` Z ) ) /\ ( G x. ( ( A ` Z ) - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` ( A ` Z ) ) ` ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 118 | 107 117 | sylibr |  |-  ( ph -> ( A ` Z ) e. { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } ) | 
						
							| 119 | 118 14 | eleqtrrdi |  |-  ( ph -> ( A ` Z ) e. U ) | 
						
							| 120 |  | ne0i |  |-  ( ( A ` Z ) e. U -> U =/= (/) ) | 
						
							| 121 | 119 120 | syl |  |-  ( ph -> U =/= (/) ) | 
						
							| 122 | 23 24 27 121 | supicc |  |-  ( ph -> sup ( U , RR , < ) e. ( ( A ` Z ) [,] ( B ` Z ) ) ) | 
						
							| 123 | 17 122 | eqeltrd |  |-  ( ph -> S e. ( ( A ` Z ) [,] ( B ` Z ) ) ) | 
						
							| 124 | 17 | oveq1d |  |-  ( ph -> ( S - ( A ` Z ) ) = ( sup ( U , RR , < ) - ( A ` Z ) ) ) | 
						
							| 125 | 124 | oveq2d |  |-  ( ph -> ( G x. ( S - ( A ` Z ) ) ) = ( G x. ( sup ( U , RR , < ) - ( A ` Z ) ) ) ) | 
						
							| 126 | 23 24 | iccssred |  |-  ( ph -> ( ( A ` Z ) [,] ( B ` Z ) ) C_ RR ) | 
						
							| 127 | 27 126 | sstrd |  |-  ( ph -> U C_ RR ) | 
						
							| 128 | 23 24 | jca |  |-  ( ph -> ( ( A ` Z ) e. RR /\ ( B ` Z ) e. RR ) ) | 
						
							| 129 |  | iccsupr |  |-  ( ( ( ( A ` Z ) e. RR /\ ( B ` Z ) e. RR ) /\ U C_ ( ( A ` Z ) [,] ( B ` Z ) ) /\ ( A ` Z ) e. U ) -> ( U C_ RR /\ U =/= (/) /\ E. y e. RR A. z e. U z <_ y ) ) | 
						
							| 130 | 128 27 119 129 | syl3anc |  |-  ( ph -> ( U C_ RR /\ U =/= (/) /\ E. y e. RR A. z e. U z <_ y ) ) | 
						
							| 131 | 130 | simp3d |  |-  ( ph -> E. y e. RR A. z e. U z <_ y ) | 
						
							| 132 |  | eqid |  |-  { w | E. u e. U w = ( u - ( A ` Z ) ) } = { w | E. u e. U w = ( u - ( A ` Z ) ) } | 
						
							| 133 | 127 121 131 23 132 | supsubc |  |-  ( ph -> ( sup ( U , RR , < ) - ( A ` Z ) ) = sup ( { w | E. u e. U w = ( u - ( A ` Z ) ) } , RR , < ) ) | 
						
							| 134 | 133 | oveq2d |  |-  ( ph -> ( G x. ( sup ( U , RR , < ) - ( A ` Z ) ) ) = ( G x. sup ( { w | E. u e. U w = ( u - ( A ` Z ) ) } , RR , < ) ) ) | 
						
							| 135 | 50 | rexrd |  |-  ( ph -> 0 e. RR* ) | 
						
							| 136 |  | icogelb |  |-  ( ( 0 e. RR* /\ +oo e. RR* /\ G e. ( 0 [,) +oo ) ) -> 0 <_ G ) | 
						
							| 137 | 135 88 42 136 | syl3anc |  |-  ( ph -> 0 <_ G ) | 
						
							| 138 |  | vex |  |-  r e. _V | 
						
							| 139 |  | eqeq1 |  |-  ( w = r -> ( w = ( u - ( A ` Z ) ) <-> r = ( u - ( A ` Z ) ) ) ) | 
						
							| 140 | 139 | rexbidv |  |-  ( w = r -> ( E. u e. U w = ( u - ( A ` Z ) ) <-> E. u e. U r = ( u - ( A ` Z ) ) ) ) | 
						
							| 141 | 138 140 | elab |  |-  ( r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } <-> E. u e. U r = ( u - ( A ` Z ) ) ) | 
						
							| 142 | 141 | biimpi |  |-  ( r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } -> E. u e. U r = ( u - ( A ` Z ) ) ) | 
						
							| 143 | 142 | adantl |  |-  ( ( ph /\ r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) -> E. u e. U r = ( u - ( A ` Z ) ) ) | 
						
							| 144 |  | nfv |  |-  F/ u ph | 
						
							| 145 |  | nfcv |  |-  F/_ u r | 
						
							| 146 |  | nfre1 |  |-  F/ u E. u e. U w = ( u - ( A ` Z ) ) | 
						
							| 147 | 146 | nfab |  |-  F/_ u { w | E. u e. U w = ( u - ( A ` Z ) ) } | 
						
							| 148 | 145 147 | nfel |  |-  F/ u r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } | 
						
							| 149 | 144 148 | nfan |  |-  F/ u ( ph /\ r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) | 
						
							| 150 |  | nfv |  |-  F/ u 0 <_ r | 
						
							| 151 | 23 | rexrd |  |-  ( ph -> ( A ` Z ) e. RR* ) | 
						
							| 152 | 151 | adantr |  |-  ( ( ph /\ u e. U ) -> ( A ` Z ) e. RR* ) | 
						
							| 153 | 24 | rexrd |  |-  ( ph -> ( B ` Z ) e. RR* ) | 
						
							| 154 | 153 | adantr |  |-  ( ( ph /\ u e. U ) -> ( B ` Z ) e. RR* ) | 
						
							| 155 | 27 | sselda |  |-  ( ( ph /\ u e. U ) -> u e. ( ( A ` Z ) [,] ( B ` Z ) ) ) | 
						
							| 156 |  | iccgelb |  |-  ( ( ( A ` Z ) e. RR* /\ ( B ` Z ) e. RR* /\ u e. ( ( A ` Z ) [,] ( B ` Z ) ) ) -> ( A ` Z ) <_ u ) | 
						
							| 157 | 152 154 155 156 | syl3anc |  |-  ( ( ph /\ u e. U ) -> ( A ` Z ) <_ u ) | 
						
							| 158 | 127 | sselda |  |-  ( ( ph /\ u e. U ) -> u e. RR ) | 
						
							| 159 | 23 | adantr |  |-  ( ( ph /\ u e. U ) -> ( A ` Z ) e. RR ) | 
						
							| 160 | 158 159 | subge0d |  |-  ( ( ph /\ u e. U ) -> ( 0 <_ ( u - ( A ` Z ) ) <-> ( A ` Z ) <_ u ) ) | 
						
							| 161 | 157 160 | mpbird |  |-  ( ( ph /\ u e. U ) -> 0 <_ ( u - ( A ` Z ) ) ) | 
						
							| 162 | 161 | 3adant3 |  |-  ( ( ph /\ u e. U /\ r = ( u - ( A ` Z ) ) ) -> 0 <_ ( u - ( A ` Z ) ) ) | 
						
							| 163 |  | id |  |-  ( r = ( u - ( A ` Z ) ) -> r = ( u - ( A ` Z ) ) ) | 
						
							| 164 | 163 | eqcomd |  |-  ( r = ( u - ( A ` Z ) ) -> ( u - ( A ` Z ) ) = r ) | 
						
							| 165 | 164 | 3ad2ant3 |  |-  ( ( ph /\ u e. U /\ r = ( u - ( A ` Z ) ) ) -> ( u - ( A ` Z ) ) = r ) | 
						
							| 166 | 162 165 | breqtrd |  |-  ( ( ph /\ u e. U /\ r = ( u - ( A ` Z ) ) ) -> 0 <_ r ) | 
						
							| 167 | 166 | 3exp |  |-  ( ph -> ( u e. U -> ( r = ( u - ( A ` Z ) ) -> 0 <_ r ) ) ) | 
						
							| 168 | 167 | adantr |  |-  ( ( ph /\ r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) -> ( u e. U -> ( r = ( u - ( A ` Z ) ) -> 0 <_ r ) ) ) | 
						
							| 169 | 149 150 168 | rexlimd |  |-  ( ( ph /\ r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) -> ( E. u e. U r = ( u - ( A ` Z ) ) -> 0 <_ r ) ) | 
						
							| 170 | 143 169 | mpd |  |-  ( ( ph /\ r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) -> 0 <_ r ) | 
						
							| 171 | 170 | ralrimiva |  |-  ( ph -> A. r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } 0 <_ r ) | 
						
							| 172 |  | simp3 |  |-  ( ( ph /\ u e. U /\ w = ( u - ( A ` Z ) ) ) -> w = ( u - ( A ` Z ) ) ) | 
						
							| 173 | 158 159 | resubcld |  |-  ( ( ph /\ u e. U ) -> ( u - ( A ` Z ) ) e. RR ) | 
						
							| 174 | 173 | 3adant3 |  |-  ( ( ph /\ u e. U /\ w = ( u - ( A ` Z ) ) ) -> ( u - ( A ` Z ) ) e. RR ) | 
						
							| 175 | 172 174 | eqeltrd |  |-  ( ( ph /\ u e. U /\ w = ( u - ( A ` Z ) ) ) -> w e. RR ) | 
						
							| 176 | 175 | 3exp |  |-  ( ph -> ( u e. U -> ( w = ( u - ( A ` Z ) ) -> w e. RR ) ) ) | 
						
							| 177 | 176 | rexlimdv |  |-  ( ph -> ( E. u e. U w = ( u - ( A ` Z ) ) -> w e. RR ) ) | 
						
							| 178 | 177 | alrimiv |  |-  ( ph -> A. w ( E. u e. U w = ( u - ( A ` Z ) ) -> w e. RR ) ) | 
						
							| 179 |  | abss |  |-  ( { w | E. u e. U w = ( u - ( A ` Z ) ) } C_ RR <-> A. w ( E. u e. U w = ( u - ( A ` Z ) ) -> w e. RR ) ) | 
						
							| 180 | 178 179 | sylibr |  |-  ( ph -> { w | E. u e. U w = ( u - ( A ` Z ) ) } C_ RR ) | 
						
							| 181 | 32 | eqcomd |  |-  ( ph -> 0 = ( ( A ` Z ) - ( A ` Z ) ) ) | 
						
							| 182 |  | oveq1 |  |-  ( u = ( A ` Z ) -> ( u - ( A ` Z ) ) = ( ( A ` Z ) - ( A ` Z ) ) ) | 
						
							| 183 | 182 | rspceeqv |  |-  ( ( ( A ` Z ) e. U /\ 0 = ( ( A ` Z ) - ( A ` Z ) ) ) -> E. u e. U 0 = ( u - ( A ` Z ) ) ) | 
						
							| 184 | 119 181 183 | syl2anc |  |-  ( ph -> E. u e. U 0 = ( u - ( A ` Z ) ) ) | 
						
							| 185 |  | eqeq1 |  |-  ( w = 0 -> ( w = ( u - ( A ` Z ) ) <-> 0 = ( u - ( A ` Z ) ) ) ) | 
						
							| 186 | 185 | rexbidv |  |-  ( w = 0 -> ( E. u e. U w = ( u - ( A ` Z ) ) <-> E. u e. U 0 = ( u - ( A ` Z ) ) ) ) | 
						
							| 187 | 50 184 186 | elabd |  |-  ( ph -> 0 e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) | 
						
							| 188 |  | ne0i |  |-  ( 0 e. { w | E. u e. U w = ( u - ( A ` Z ) ) } -> { w | E. u e. U w = ( u - ( A ` Z ) ) } =/= (/) ) | 
						
							| 189 | 187 188 | syl |  |-  ( ph -> { w | E. u e. U w = ( u - ( A ` Z ) ) } =/= (/) ) | 
						
							| 190 | 24 23 | resubcld |  |-  ( ph -> ( ( B ` Z ) - ( A ` Z ) ) e. RR ) | 
						
							| 191 |  | vex |  |-  s e. _V | 
						
							| 192 |  | eqeq1 |  |-  ( w = s -> ( w = ( u - ( A ` Z ) ) <-> s = ( u - ( A ` Z ) ) ) ) | 
						
							| 193 | 192 | rexbidv |  |-  ( w = s -> ( E. u e. U w = ( u - ( A ` Z ) ) <-> E. u e. U s = ( u - ( A ` Z ) ) ) ) | 
						
							| 194 | 191 193 | elab |  |-  ( s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } <-> E. u e. U s = ( u - ( A ` Z ) ) ) | 
						
							| 195 | 194 | biimpi |  |-  ( s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } -> E. u e. U s = ( u - ( A ` Z ) ) ) | 
						
							| 196 | 195 | adantl |  |-  ( ( ph /\ s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) -> E. u e. U s = ( u - ( A ` Z ) ) ) | 
						
							| 197 |  | nfcv |  |-  F/_ u s | 
						
							| 198 | 197 147 | nfel |  |-  F/ u s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } | 
						
							| 199 | 144 198 | nfan |  |-  F/ u ( ph /\ s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) | 
						
							| 200 |  | nfv |  |-  F/ u s <_ ( ( B ` Z ) - ( A ` Z ) ) | 
						
							| 201 |  | simp3 |  |-  ( ( ph /\ u e. U /\ s = ( u - ( A ` Z ) ) ) -> s = ( u - ( A ` Z ) ) ) | 
						
							| 202 | 159 | 3adant3 |  |-  ( ( ph /\ u e. U /\ s = ( u - ( A ` Z ) ) ) -> ( A ` Z ) e. RR ) | 
						
							| 203 | 24 | 3ad2ant1 |  |-  ( ( ph /\ u e. U /\ s = ( u - ( A ` Z ) ) ) -> ( B ` Z ) e. RR ) | 
						
							| 204 | 155 | 3adant3 |  |-  ( ( ph /\ u e. U /\ s = ( u - ( A ` Z ) ) ) -> u e. ( ( A ` Z ) [,] ( B ` Z ) ) ) | 
						
							| 205 | 30 | 3ad2ant1 |  |-  ( ( ph /\ u e. U /\ s = ( u - ( A ` Z ) ) ) -> ( A ` Z ) e. ( ( A ` Z ) [,] ( B ` Z ) ) ) | 
						
							| 206 | 202 203 204 205 | iccsuble |  |-  ( ( ph /\ u e. U /\ s = ( u - ( A ` Z ) ) ) -> ( u - ( A ` Z ) ) <_ ( ( B ` Z ) - ( A ` Z ) ) ) | 
						
							| 207 | 201 206 | eqbrtrd |  |-  ( ( ph /\ u e. U /\ s = ( u - ( A ` Z ) ) ) -> s <_ ( ( B ` Z ) - ( A ` Z ) ) ) | 
						
							| 208 | 207 | 3exp |  |-  ( ph -> ( u e. U -> ( s = ( u - ( A ` Z ) ) -> s <_ ( ( B ` Z ) - ( A ` Z ) ) ) ) ) | 
						
							| 209 | 208 | adantr |  |-  ( ( ph /\ s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) -> ( u e. U -> ( s = ( u - ( A ` Z ) ) -> s <_ ( ( B ` Z ) - ( A ` Z ) ) ) ) ) | 
						
							| 210 | 199 200 209 | rexlimd |  |-  ( ( ph /\ s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) -> ( E. u e. U s = ( u - ( A ` Z ) ) -> s <_ ( ( B ` Z ) - ( A ` Z ) ) ) ) | 
						
							| 211 | 196 210 | mpd |  |-  ( ( ph /\ s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) -> s <_ ( ( B ` Z ) - ( A ` Z ) ) ) | 
						
							| 212 | 211 | ralrimiva |  |-  ( ph -> A. s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } s <_ ( ( B ` Z ) - ( A ` Z ) ) ) | 
						
							| 213 |  | brralrspcev |  |-  ( ( ( ( B ` Z ) - ( A ` Z ) ) e. RR /\ A. s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } s <_ ( ( B ` Z ) - ( A ` Z ) ) ) -> E. r e. RR A. s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } s <_ r ) | 
						
							| 214 | 190 212 213 | syl2anc |  |-  ( ph -> E. r e. RR A. s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } s <_ r ) | 
						
							| 215 |  | eqid |  |-  { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } = { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } | 
						
							| 216 |  | biid |  |-  ( ( ( G e. RR /\ 0 <_ G /\ A. r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } 0 <_ r ) /\ ( { w | E. u e. U w = ( u - ( A ` Z ) ) } C_ RR /\ { w | E. u e. U w = ( u - ( A ` Z ) ) } =/= (/) /\ E. r e. RR A. s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } s <_ r ) ) <-> ( ( G e. RR /\ 0 <_ G /\ A. r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } 0 <_ r ) /\ ( { w | E. u e. U w = ( u - ( A ` Z ) ) } C_ RR /\ { w | E. u e. U w = ( u - ( A ` Z ) ) } =/= (/) /\ E. r e. RR A. s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } s <_ r ) ) ) | 
						
							| 217 | 215 216 | supmul1 |  |-  ( ( ( G e. RR /\ 0 <_ G /\ A. r e. { w | E. u e. U w = ( u - ( A ` Z ) ) } 0 <_ r ) /\ ( { w | E. u e. U w = ( u - ( A ` Z ) ) } C_ RR /\ { w | E. u e. U w = ( u - ( A ` Z ) ) } =/= (/) /\ E. r e. RR A. s e. { w | E. u e. U w = ( u - ( A ` Z ) ) } s <_ r ) ) -> ( G x. sup ( { w | E. u e. U w = ( u - ( A ` Z ) ) } , RR , < ) ) = sup ( { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } , RR , < ) ) | 
						
							| 218 | 43 137 171 180 189 214 217 | syl33anc |  |-  ( ph -> ( G x. sup ( { w | E. u e. U w = ( u - ( A ` Z ) ) } , RR , < ) ) = sup ( { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } , RR , < ) ) | 
						
							| 219 | 125 134 218 | 3eqtrd |  |-  ( ph -> ( G x. ( S - ( A ` Z ) ) ) = sup ( { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } , RR , < ) ) | 
						
							| 220 |  | vex |  |-  c e. _V | 
						
							| 221 |  | eqeq1 |  |-  ( v = c -> ( v = ( G x. t ) <-> c = ( G x. t ) ) ) | 
						
							| 222 | 221 | rexbidv |  |-  ( v = c -> ( E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) <-> E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } c = ( G x. t ) ) ) | 
						
							| 223 | 220 222 | elab |  |-  ( c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } <-> E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } c = ( G x. t ) ) | 
						
							| 224 | 223 | biimpi |  |-  ( c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } -> E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } c = ( G x. t ) ) | 
						
							| 225 |  | nfv |  |-  F/ t E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) | 
						
							| 226 |  | vex |  |-  t e. _V | 
						
							| 227 |  | eqeq1 |  |-  ( w = t -> ( w = ( u - ( A ` Z ) ) <-> t = ( u - ( A ` Z ) ) ) ) | 
						
							| 228 | 227 | rexbidv |  |-  ( w = t -> ( E. u e. U w = ( u - ( A ` Z ) ) <-> E. u e. U t = ( u - ( A ` Z ) ) ) ) | 
						
							| 229 | 226 228 | elab |  |-  ( t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } <-> E. u e. U t = ( u - ( A ` Z ) ) ) | 
						
							| 230 | 229 | biimpi |  |-  ( t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } -> E. u e. U t = ( u - ( A ` Z ) ) ) | 
						
							| 231 | 230 | adantr |  |-  ( ( t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } /\ c = ( G x. t ) ) -> E. u e. U t = ( u - ( A ` Z ) ) ) | 
						
							| 232 |  | simpl |  |-  ( ( c = ( G x. t ) /\ t = ( u - ( A ` Z ) ) ) -> c = ( G x. t ) ) | 
						
							| 233 |  | oveq2 |  |-  ( t = ( u - ( A ` Z ) ) -> ( G x. t ) = ( G x. ( u - ( A ` Z ) ) ) ) | 
						
							| 234 | 233 | adantl |  |-  ( ( c = ( G x. t ) /\ t = ( u - ( A ` Z ) ) ) -> ( G x. t ) = ( G x. ( u - ( A ` Z ) ) ) ) | 
						
							| 235 | 232 234 | eqtrd |  |-  ( ( c = ( G x. t ) /\ t = ( u - ( A ` Z ) ) ) -> c = ( G x. ( u - ( A ` Z ) ) ) ) | 
						
							| 236 | 235 | ex |  |-  ( c = ( G x. t ) -> ( t = ( u - ( A ` Z ) ) -> c = ( G x. ( u - ( A ` Z ) ) ) ) ) | 
						
							| 237 | 236 | reximdv |  |-  ( c = ( G x. t ) -> ( E. u e. U t = ( u - ( A ` Z ) ) -> E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) ) ) | 
						
							| 238 | 237 | adantl |  |-  ( ( t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } /\ c = ( G x. t ) ) -> ( E. u e. U t = ( u - ( A ` Z ) ) -> E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) ) ) | 
						
							| 239 | 231 238 | mpd |  |-  ( ( t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } /\ c = ( G x. t ) ) -> E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) ) | 
						
							| 240 | 239 | ex |  |-  ( t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } -> ( c = ( G x. t ) -> E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) ) ) | 
						
							| 241 | 225 240 | rexlimi |  |-  ( E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } c = ( G x. t ) -> E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) ) | 
						
							| 242 | 241 | a1i |  |-  ( c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } -> ( E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } c = ( G x. t ) -> E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) ) ) | 
						
							| 243 | 224 242 | mpd |  |-  ( c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } -> E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) ) | 
						
							| 244 | 243 | adantl |  |-  ( ( ph /\ c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } ) -> E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) ) | 
						
							| 245 |  | simp3 |  |-  ( ( ph /\ u e. U /\ c = ( G x. ( u - ( A ` Z ) ) ) ) -> c = ( G x. ( u - ( A ` Z ) ) ) ) | 
						
							| 246 | 43 | adantr |  |-  ( ( ph /\ u e. U ) -> G e. RR ) | 
						
							| 247 | 246 173 | remulcld |  |-  ( ( ph /\ u e. U ) -> ( G x. ( u - ( A ` Z ) ) ) e. RR ) | 
						
							| 248 | 49 | adantr |  |-  ( ( ph /\ u e. U ) -> ( 1 + E ) e. RR ) | 
						
							| 249 | 56 | a1i |  |-  ( ( ph /\ u e. U ) -> NN e. _V ) | 
						
							| 250 | 64 | adantlr |  |-  ( ( ( ph /\ u e. U ) /\ j e. NN ) -> W e. Fin ) | 
						
							| 251 | 67 | adantlr |  |-  ( ( ( ph /\ u e. U ) /\ j e. NN ) -> ( C ` j ) : W --> RR ) | 
						
							| 252 | 158 | adantr |  |-  ( ( ( ph /\ u e. U ) /\ j e. NN ) -> u e. RR ) | 
						
							| 253 | 80 | adantlr |  |-  ( ( ( ph /\ u e. U ) /\ j e. NN ) -> ( D ` j ) : W --> RR ) | 
						
							| 254 | 76 252 250 253 | hsphoif |  |-  ( ( ( ph /\ u e. U ) /\ j e. NN ) -> ( ( H ` u ) ` ( D ` j ) ) : W --> RR ) | 
						
							| 255 | 1 250 251 254 | hoidmvcl |  |-  ( ( ( ph /\ u e. U ) /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) e. ( 0 [,) +oo ) ) | 
						
							| 256 | 58 255 | sselid |  |-  ( ( ( ph /\ u e. U ) /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) e. ( 0 [,] +oo ) ) | 
						
							| 257 | 256 | fmpttd |  |-  ( ( ph /\ u e. U ) -> ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) : NN --> ( 0 [,] +oo ) ) | 
						
							| 258 | 249 257 | sge0cl |  |-  ( ( ph /\ u e. U ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) e. ( 0 [,] +oo ) ) | 
						
							| 259 | 249 257 | sge0xrcl |  |-  ( ( ph /\ u e. U ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) e. RR* ) | 
						
							| 260 | 87 | a1i |  |-  ( ( ph /\ u e. U ) -> +oo e. RR* ) | 
						
							| 261 | 89 | adantr |  |-  ( ( ph /\ u e. U ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( D ` j ) ) ) ) e. RR* ) | 
						
							| 262 |  | nfv |  |-  F/ j ( ph /\ u e. U ) | 
						
							| 263 | 92 | adantlr |  |-  ( ( ( ph /\ u e. U ) /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( D ` j ) ) e. ( 0 [,] +oo ) ) | 
						
							| 264 | 95 | adantlr |  |-  ( ( ( ph /\ u e. U ) /\ j e. NN ) -> Z e. ( W \ Y ) ) | 
						
							| 265 | 1 250 264 5 252 76 251 253 | hsphoidmvle |  |-  ( ( ( ph /\ u e. U ) /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) <_ ( ( C ` j ) ( L ` W ) ( D ` j ) ) ) | 
						
							| 266 | 262 249 256 263 265 | sge0lempt |  |-  ( ( ph /\ u e. U ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( D ` j ) ) ) ) ) | 
						
							| 267 | 98 | adantr |  |-  ( ( ph /\ u e. U ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( D ` j ) ) ) ) < +oo ) | 
						
							| 268 | 259 261 260 266 267 | xrlelttrd |  |-  ( ( ph /\ u e. U ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) < +oo ) | 
						
							| 269 | 259 260 268 | xrltned |  |-  ( ( ph /\ u e. U ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) =/= +oo ) | 
						
							| 270 |  | ge0xrre |  |-  ( ( ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) e. ( 0 [,] +oo ) /\ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) =/= +oo ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) e. RR ) | 
						
							| 271 | 258 269 270 | syl2anc |  |-  ( ( ph /\ u e. U ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) e. RR ) | 
						
							| 272 | 248 271 | remulcld |  |-  ( ( ph /\ u e. U ) -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) ) e. RR ) | 
						
							| 273 | 126 123 | sseldd |  |-  ( ph -> S e. RR ) | 
						
							| 274 | 1 35 94 5 8 9 10 11 273 | sge0hsphoire |  |-  ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) e. RR ) | 
						
							| 275 | 49 274 | remulcld |  |-  ( ph -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) e. RR ) | 
						
							| 276 | 275 | adantr |  |-  ( ( ph /\ u e. U ) -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) e. RR ) | 
						
							| 277 | 14 | eleq2i |  |-  ( u e. U <-> u e. { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } ) | 
						
							| 278 | 277 | biimpi |  |-  ( u e. U -> u e. { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } ) | 
						
							| 279 |  | oveq1 |  |-  ( z = u -> ( z - ( A ` Z ) ) = ( u - ( A ` Z ) ) ) | 
						
							| 280 | 279 | oveq2d |  |-  ( z = u -> ( G x. ( z - ( A ` Z ) ) ) = ( G x. ( u - ( A ` Z ) ) ) ) | 
						
							| 281 |  | fveq2 |  |-  ( z = u -> ( H ` z ) = ( H ` u ) ) | 
						
							| 282 | 281 | fveq1d |  |-  ( z = u -> ( ( H ` z ) ` ( D ` j ) ) = ( ( H ` u ) ` ( D ` j ) ) ) | 
						
							| 283 | 282 | oveq2d |  |-  ( z = u -> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) = ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) | 
						
							| 284 | 283 | mpteq2dv |  |-  ( z = u -> ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) = ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) | 
						
							| 285 | 284 | fveq2d |  |-  ( z = u -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) ) | 
						
							| 286 | 285 | oveq2d |  |-  ( z = u -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) = ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 287 | 280 286 | breq12d |  |-  ( z = u -> ( ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) <-> ( G x. ( u - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 288 | 287 | elrab |  |-  ( u e. { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } <-> ( u e. ( ( A ` Z ) [,] ( B ` Z ) ) /\ ( G x. ( u - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 289 | 278 288 | sylib |  |-  ( u e. U -> ( u e. ( ( A ` Z ) [,] ( B ` Z ) ) /\ ( G x. ( u - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 290 | 289 | simprd |  |-  ( u e. U -> ( G x. ( u - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 291 | 290 | adantl |  |-  ( ( ph /\ u e. U ) -> ( G x. ( u - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 292 | 274 | adantr |  |-  ( ( ph /\ u e. U ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) e. RR ) | 
						
							| 293 | 55 | adantr |  |-  ( ( ph /\ u e. U ) -> 0 <_ ( 1 + E ) ) | 
						
							| 294 | 273 | adantr |  |-  ( ( ph /\ j e. NN ) -> S e. RR ) | 
						
							| 295 | 76 294 64 80 | hsphoif |  |-  ( ( ph /\ j e. NN ) -> ( ( H ` S ) ` ( D ` j ) ) : W --> RR ) | 
						
							| 296 | 1 64 67 295 | hoidmvcl |  |-  ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. ( 0 [,) +oo ) ) | 
						
							| 297 | 58 296 | sselid |  |-  ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. ( 0 [,] +oo ) ) | 
						
							| 298 | 297 | adantlr |  |-  ( ( ( ph /\ u e. U ) /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. ( 0 [,] +oo ) ) | 
						
							| 299 | 294 | adantlr |  |-  ( ( ( ph /\ u e. U ) /\ j e. NN ) -> S e. RR ) | 
						
							| 300 | 127 | adantr |  |-  ( ( ph /\ u e. U ) -> U C_ RR ) | 
						
							| 301 | 121 | adantr |  |-  ( ( ph /\ u e. U ) -> U =/= (/) ) | 
						
							| 302 | 131 | adantr |  |-  ( ( ph /\ u e. U ) -> E. y e. RR A. z e. U z <_ y ) | 
						
							| 303 |  | simpr |  |-  ( ( ph /\ u e. U ) -> u e. U ) | 
						
							| 304 |  | suprub |  |-  ( ( ( U C_ RR /\ U =/= (/) /\ E. y e. RR A. z e. U z <_ y ) /\ u e. U ) -> u <_ sup ( U , RR , < ) ) | 
						
							| 305 | 300 301 302 303 304 | syl31anc |  |-  ( ( ph /\ u e. U ) -> u <_ sup ( U , RR , < ) ) | 
						
							| 306 | 305 15 | breqtrrdi |  |-  ( ( ph /\ u e. U ) -> u <_ S ) | 
						
							| 307 | 306 | adantr |  |-  ( ( ( ph /\ u e. U ) /\ j e. NN ) -> u <_ S ) | 
						
							| 308 | 1 250 264 5 252 299 307 76 251 253 | hsphoidmvle2 |  |-  ( ( ( ph /\ u e. U ) /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) <_ ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) | 
						
							| 309 | 262 249 256 298 308 | sge0lempt |  |-  ( ( ph /\ u e. U ) -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) | 
						
							| 310 | 271 292 248 293 309 | lemul2ad |  |-  ( ( ph /\ u e. U ) -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` u ) ` ( D ` j ) ) ) ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 311 | 247 272 276 291 310 | letrd |  |-  ( ( ph /\ u e. U ) -> ( G x. ( u - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 312 | 311 | 3adant3 |  |-  ( ( ph /\ u e. U /\ c = ( G x. ( u - ( A ` Z ) ) ) ) -> ( G x. ( u - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 313 | 245 312 | eqbrtrd |  |-  ( ( ph /\ u e. U /\ c = ( G x. ( u - ( A ` Z ) ) ) ) -> c <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 314 | 313 | 3exp |  |-  ( ph -> ( u e. U -> ( c = ( G x. ( u - ( A ` Z ) ) ) -> c <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) ) | 
						
							| 315 | 314 | rexlimdv |  |-  ( ph -> ( E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) -> c <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 316 | 315 | adantr |  |-  ( ( ph /\ c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } ) -> ( E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) -> c <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 317 | 244 316 | mpd |  |-  ( ( ph /\ c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } ) -> c <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 318 | 317 | ralrimiva |  |-  ( ph -> A. c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } c <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 319 | 224 | adantl |  |-  ( ( ph /\ c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } ) -> E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } c = ( G x. t ) ) | 
						
							| 320 |  | nfv |  |-  F/ t ph | 
						
							| 321 |  | nfcv |  |-  F/_ t c | 
						
							| 322 |  | nfre1 |  |-  F/ t E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) | 
						
							| 323 | 322 | nfab |  |-  F/_ t { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } | 
						
							| 324 | 321 323 | nfel |  |-  F/ t c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } | 
						
							| 325 | 320 324 | nfan |  |-  F/ t ( ph /\ c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } ) | 
						
							| 326 |  | nfv |  |-  F/ t c e. RR | 
						
							| 327 | 230 | adantl |  |-  ( ( ph /\ t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) -> E. u e. U t = ( u - ( A ` Z ) ) ) | 
						
							| 328 |  | simpr |  |-  ( ( ( ph /\ u e. U /\ t = ( u - ( A ` Z ) ) ) /\ c = ( G x. t ) ) -> c = ( G x. t ) ) | 
						
							| 329 | 246 | 3adant3 |  |-  ( ( ph /\ u e. U /\ t = ( u - ( A ` Z ) ) ) -> G e. RR ) | 
						
							| 330 |  | simp3 |  |-  ( ( ph /\ u e. U /\ t = ( u - ( A ` Z ) ) ) -> t = ( u - ( A ` Z ) ) ) | 
						
							| 331 | 173 | 3adant3 |  |-  ( ( ph /\ u e. U /\ t = ( u - ( A ` Z ) ) ) -> ( u - ( A ` Z ) ) e. RR ) | 
						
							| 332 | 330 331 | eqeltrd |  |-  ( ( ph /\ u e. U /\ t = ( u - ( A ` Z ) ) ) -> t e. RR ) | 
						
							| 333 | 329 332 | remulcld |  |-  ( ( ph /\ u e. U /\ t = ( u - ( A ` Z ) ) ) -> ( G x. t ) e. RR ) | 
						
							| 334 | 333 | adantr |  |-  ( ( ( ph /\ u e. U /\ t = ( u - ( A ` Z ) ) ) /\ c = ( G x. t ) ) -> ( G x. t ) e. RR ) | 
						
							| 335 | 328 334 | eqeltrd |  |-  ( ( ( ph /\ u e. U /\ t = ( u - ( A ` Z ) ) ) /\ c = ( G x. t ) ) -> c e. RR ) | 
						
							| 336 | 335 | ex |  |-  ( ( ph /\ u e. U /\ t = ( u - ( A ` Z ) ) ) -> ( c = ( G x. t ) -> c e. RR ) ) | 
						
							| 337 | 336 | 3exp |  |-  ( ph -> ( u e. U -> ( t = ( u - ( A ` Z ) ) -> ( c = ( G x. t ) -> c e. RR ) ) ) ) | 
						
							| 338 | 337 | rexlimdv |  |-  ( ph -> ( E. u e. U t = ( u - ( A ` Z ) ) -> ( c = ( G x. t ) -> c e. RR ) ) ) | 
						
							| 339 | 338 | adantr |  |-  ( ( ph /\ t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) -> ( E. u e. U t = ( u - ( A ` Z ) ) -> ( c = ( G x. t ) -> c e. RR ) ) ) | 
						
							| 340 | 327 339 | mpd |  |-  ( ( ph /\ t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } ) -> ( c = ( G x. t ) -> c e. RR ) ) | 
						
							| 341 | 340 | ex |  |-  ( ph -> ( t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } -> ( c = ( G x. t ) -> c e. RR ) ) ) | 
						
							| 342 | 341 | adantr |  |-  ( ( ph /\ c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } ) -> ( t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } -> ( c = ( G x. t ) -> c e. RR ) ) ) | 
						
							| 343 | 325 326 342 | rexlimd |  |-  ( ( ph /\ c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } ) -> ( E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } c = ( G x. t ) -> c e. RR ) ) | 
						
							| 344 | 319 343 | mpd |  |-  ( ( ph /\ c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } ) -> c e. RR ) | 
						
							| 345 | 344 | ralrimiva |  |-  ( ph -> A. c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } c e. RR ) | 
						
							| 346 |  | dfss3 |  |-  ( { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } C_ RR <-> A. c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } c e. RR ) | 
						
							| 347 | 345 346 | sylibr |  |-  ( ph -> { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } C_ RR ) | 
						
							| 348 | 45 | eqcomd |  |-  ( ph -> 0 = ( G x. 0 ) ) | 
						
							| 349 |  | oveq2 |  |-  ( t = 0 -> ( G x. t ) = ( G x. 0 ) ) | 
						
							| 350 | 349 | rspceeqv |  |-  ( ( 0 e. { w | E. u e. U w = ( u - ( A ` Z ) ) } /\ 0 = ( G x. 0 ) ) -> E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } 0 = ( G x. t ) ) | 
						
							| 351 | 187 348 350 | syl2anc |  |-  ( ph -> E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } 0 = ( G x. t ) ) | 
						
							| 352 |  | eqeq1 |  |-  ( v = 0 -> ( v = ( G x. t ) <-> 0 = ( G x. t ) ) ) | 
						
							| 353 | 352 | rexbidv |  |-  ( v = 0 -> ( E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) <-> E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } 0 = ( G x. t ) ) ) | 
						
							| 354 | 50 351 353 | elabd |  |-  ( ph -> 0 e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } ) | 
						
							| 355 |  | ne0i |  |-  ( 0 e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } -> { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } =/= (/) ) | 
						
							| 356 | 354 355 | syl |  |-  ( ph -> { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } =/= (/) ) | 
						
							| 357 | 43 190 | remulcld |  |-  ( ph -> ( G x. ( ( B ` Z ) - ( A ` Z ) ) ) e. RR ) | 
						
							| 358 | 190 | adantr |  |-  ( ( ph /\ u e. U ) -> ( ( B ` Z ) - ( A ` Z ) ) e. RR ) | 
						
							| 359 | 137 | adantr |  |-  ( ( ph /\ u e. U ) -> 0 <_ G ) | 
						
							| 360 | 24 | adantr |  |-  ( ( ph /\ u e. U ) -> ( B ` Z ) e. RR ) | 
						
							| 361 |  | iccleub |  |-  ( ( ( A ` Z ) e. RR* /\ ( B ` Z ) e. RR* /\ u e. ( ( A ` Z ) [,] ( B ` Z ) ) ) -> u <_ ( B ` Z ) ) | 
						
							| 362 | 152 154 155 361 | syl3anc |  |-  ( ( ph /\ u e. U ) -> u <_ ( B ` Z ) ) | 
						
							| 363 | 158 360 159 362 | lesub1dd |  |-  ( ( ph /\ u e. U ) -> ( u - ( A ` Z ) ) <_ ( ( B ` Z ) - ( A ` Z ) ) ) | 
						
							| 364 | 173 358 246 359 363 | lemul2ad |  |-  ( ( ph /\ u e. U ) -> ( G x. ( u - ( A ` Z ) ) ) <_ ( G x. ( ( B ` Z ) - ( A ` Z ) ) ) ) | 
						
							| 365 | 364 | 3adant3 |  |-  ( ( ph /\ u e. U /\ c = ( G x. ( u - ( A ` Z ) ) ) ) -> ( G x. ( u - ( A ` Z ) ) ) <_ ( G x. ( ( B ` Z ) - ( A ` Z ) ) ) ) | 
						
							| 366 | 245 365 | eqbrtrd |  |-  ( ( ph /\ u e. U /\ c = ( G x. ( u - ( A ` Z ) ) ) ) -> c <_ ( G x. ( ( B ` Z ) - ( A ` Z ) ) ) ) | 
						
							| 367 | 366 | 3exp |  |-  ( ph -> ( u e. U -> ( c = ( G x. ( u - ( A ` Z ) ) ) -> c <_ ( G x. ( ( B ` Z ) - ( A ` Z ) ) ) ) ) ) | 
						
							| 368 | 367 | rexlimdv |  |-  ( ph -> ( E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) -> c <_ ( G x. ( ( B ` Z ) - ( A ` Z ) ) ) ) ) | 
						
							| 369 | 368 | adantr |  |-  ( ( ph /\ c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } ) -> ( E. u e. U c = ( G x. ( u - ( A ` Z ) ) ) -> c <_ ( G x. ( ( B ` Z ) - ( A ` Z ) ) ) ) ) | 
						
							| 370 | 244 369 | mpd |  |-  ( ( ph /\ c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } ) -> c <_ ( G x. ( ( B ` Z ) - ( A ` Z ) ) ) ) | 
						
							| 371 | 370 | ralrimiva |  |-  ( ph -> A. c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } c <_ ( G x. ( ( B ` Z ) - ( A ` Z ) ) ) ) | 
						
							| 372 |  | brralrspcev |  |-  ( ( ( G x. ( ( B ` Z ) - ( A ` Z ) ) ) e. RR /\ A. c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } c <_ ( G x. ( ( B ` Z ) - ( A ` Z ) ) ) ) -> E. y e. RR A. c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } c <_ y ) | 
						
							| 373 | 357 371 372 | syl2anc |  |-  ( ph -> E. y e. RR A. c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } c <_ y ) | 
						
							| 374 |  | suprleub |  |-  ( ( ( { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } C_ RR /\ { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } =/= (/) /\ E. y e. RR A. c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } c <_ y ) /\ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) e. RR ) -> ( sup ( { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } , RR , < ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) <-> A. c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } c <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 375 | 347 356 373 275 374 | syl31anc |  |-  ( ph -> ( sup ( { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } , RR , < ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) <-> A. c e. { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } c <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 376 | 318 375 | mpbird |  |-  ( ph -> sup ( { v | E. t e. { w | E. u e. U w = ( u - ( A ` Z ) ) } v = ( G x. t ) } , RR , < ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 377 | 219 376 | eqbrtrd |  |-  ( ph -> ( G x. ( S - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 378 | 123 377 | jca |  |-  ( ph -> ( S e. ( ( A ` Z ) [,] ( B ` Z ) ) /\ ( G x. ( S - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 379 |  | oveq1 |  |-  ( z = S -> ( z - ( A ` Z ) ) = ( S - ( A ` Z ) ) ) | 
						
							| 380 | 379 | oveq2d |  |-  ( z = S -> ( G x. ( z - ( A ` Z ) ) ) = ( G x. ( S - ( A ` Z ) ) ) ) | 
						
							| 381 |  | fveq2 |  |-  ( z = S -> ( H ` z ) = ( H ` S ) ) | 
						
							| 382 | 381 | fveq1d |  |-  ( z = S -> ( ( H ` z ) ` ( D ` j ) ) = ( ( H ` S ) ` ( D ` j ) ) ) | 
						
							| 383 | 382 | oveq2d |  |-  ( z = S -> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) = ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) | 
						
							| 384 | 383 | mpteq2dv |  |-  ( z = S -> ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) = ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) | 
						
							| 385 | 384 | fveq2d |  |-  ( z = S -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) | 
						
							| 386 | 385 | oveq2d |  |-  ( z = S -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) = ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 387 | 380 386 | breq12d |  |-  ( z = S -> ( ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) <-> ( G x. ( S - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 388 | 387 | elrab |  |-  ( S e. { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } <-> ( S e. ( ( A ` Z ) [,] ( B ` Z ) ) /\ ( G x. ( S - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 389 | 378 388 | sylibr |  |-  ( ph -> S e. { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } ) | 
						
							| 390 | 389 14 | eleqtrrdi |  |-  ( ph -> S e. U ) |