Metamath Proof Explorer


Theorem hoidmvlelem1

Description: The supremum of U belongs to U . Step (c) in the proof of Lemma 115B of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoidmvlelem1.l L=xFinax,bxifx=0kxvolakbk
hoidmvlelem1.x φXFin
hoidmvlelem1.y φYX
hoidmvlelem1.z φZXY
hoidmvlelem1.w W=YZ
hoidmvlelem1.a φA:W
hoidmvlelem1.b φB:W
hoidmvlelem1.c φC:W
hoidmvlelem1.d φD:W
hoidmvlelem1.r φsum^jCjLWDj
hoidmvlelem1.h H=xcWjWifjYcjifcjxcjx
hoidmvlelem1.g G=AYLYBY
hoidmvlelem1.e φE+
hoidmvlelem1.u U=zAZBZ|GzAZ1+Esum^jCjLWHzDj
hoidmvlelem1.s S=supU<
hoidmvlelem1.ab φAZ<BZ
Assertion hoidmvlelem1 φSU

Proof

Step Hyp Ref Expression
1 hoidmvlelem1.l L=xFinax,bxifx=0kxvolakbk
2 hoidmvlelem1.x φXFin
3 hoidmvlelem1.y φYX
4 hoidmvlelem1.z φZXY
5 hoidmvlelem1.w W=YZ
6 hoidmvlelem1.a φA:W
7 hoidmvlelem1.b φB:W
8 hoidmvlelem1.c φC:W
9 hoidmvlelem1.d φD:W
10 hoidmvlelem1.r φsum^jCjLWDj
11 hoidmvlelem1.h H=xcWjWifjYcjifcjxcjx
12 hoidmvlelem1.g G=AYLYBY
13 hoidmvlelem1.e φE+
14 hoidmvlelem1.u U=zAZBZ|GzAZ1+Esum^jCjLWHzDj
15 hoidmvlelem1.s S=supU<
16 hoidmvlelem1.ab φAZ<BZ
17 15 a1i φS=supU<
18 snidg ZXYZZ
19 4 18 syl φZZ
20 elun2 ZZZYZ
21 19 20 syl φZYZ
22 21 5 eleqtrrdi φZW
23 6 22 ffvelrnd φAZ
24 7 22 ffvelrnd φBZ
25 ssrab2 zAZBZ|GzAZ1+Esum^jCjLWHzDjAZBZ
26 14 25 eqsstri UAZBZ
27 26 a1i φUAZBZ
28 23 leidd φAZAZ
29 23 24 16 ltled φAZBZ
30 23 24 23 28 29 eliccd φAZAZBZ
31 23 recnd φAZ
32 31 subidd φAZAZ=0
33 32 oveq2d φGAZAZ=G0
34 rge0ssre 0+∞
35 2 3 ssfid φYFin
36 ssun1 YYZ
37 36 5 sseqtrri YW
38 37 a1i φYW
39 6 38 fssresd φAY:Y
40 7 38 fssresd φBY:Y
41 1 35 39 40 hoidmvcl φAYLYBY0+∞
42 12 41 eqeltrid φG0+∞
43 34 42 sselid φG
44 43 recnd φG
45 44 mul01d φG0=0
46 33 45 eqtrd φGAZAZ=0
47 1red φ1
48 13 rpred φE
49 47 48 readdcld φ1+E
50 0red φ0
51 0lt1 0<1
52 51 a1i φ0<1
53 47 13 ltaddrpd φ1<1+E
54 50 47 49 52 53 lttrd φ0<1+E
55 50 49 54 ltled φ01+E
56 nnex V
57 56 a1i φV
58 icossicc 0+∞0+∞
59 snfi ZFin
60 59 a1i φZFin
61 unfi YFinZFinYZFin
62 35 60 61 syl2anc φYZFin
63 5 62 eqeltrid φWFin
64 63 adantr φjWFin
65 8 ffvelrnda φjCjW
66 elmapi CjWCj:W
67 65 66 syl φjCj:W
68 eleq1w j=hjYhY
69 fveq2 j=hcj=ch
70 69 breq1d j=hcjxchx
71 70 69 ifbieq1d j=hifcjxcjx=ifchxchx
72 68 69 71 ifbieq12d j=hifjYcjifcjxcjx=ifhYchifchxchx
73 72 cbvmptv jWifjYcjifcjxcjx=hWifhYchifchxchx
74 73 mpteq2i cWjWifjYcjifcjxcjx=cWhWifhYchifchxchx
75 74 mpteq2i xcWjWifjYcjifcjxcjx=xcWhWifhYchifchxchx
76 11 75 eqtri H=xcWhWifhYchifchxchx
77 23 adantr φjAZ
78 9 ffvelrnda φjDjW
79 elmapi DjWDj:W
80 78 79 syl φjDj:W
81 76 77 64 80 hsphoif φjHAZDj:W
82 1 64 67 81 hoidmvcl φjCjLWHAZDj0+∞
83 58 82 sselid φjCjLWHAZDj0+∞
84 83 fmpttd φjCjLWHAZDj:0+∞
85 57 84 sge0cl φsum^jCjLWHAZDj0+∞
86 57 84 sge0xrcl φsum^jCjLWHAZDj*
87 pnfxr +∞*
88 87 a1i φ+∞*
89 10 rexrd φsum^jCjLWDj*
90 nfv jφ
91 1 64 67 80 hoidmvcl φjCjLWDj0+∞
92 58 91 sselid φjCjLWDj0+∞
93 4 eldifbd φ¬ZY
94 22 93 eldifd φZWY
95 94 adantr φjZWY
96 1 64 95 5 77 76 67 80 hsphoidmvle φjCjLWHAZDjCjLWDj
97 90 57 83 92 96 sge0lempt φsum^jCjLWHAZDjsum^jCjLWDj
98 10 ltpnfd φsum^jCjLWDj<+∞
99 86 89 88 97 98 xrlelttrd φsum^jCjLWHAZDj<+∞
100 86 88 99 xrltned φsum^jCjLWHAZDj+∞
101 ge0xrre sum^jCjLWHAZDj0+∞sum^jCjLWHAZDj+∞sum^jCjLWHAZDj
102 85 100 101 syl2anc φsum^jCjLWHAZDj
103 57 84 sge0ge0 φ0sum^jCjLWHAZDj
104 mulge0 1+E01+Esum^jCjLWHAZDj0sum^jCjLWHAZDj01+Esum^jCjLWHAZDj
105 49 55 102 103 104 syl22anc φ01+Esum^jCjLWHAZDj
106 46 105 eqbrtrd φGAZAZ1+Esum^jCjLWHAZDj
107 30 106 jca φAZAZBZGAZAZ1+Esum^jCjLWHAZDj
108 oveq1 z=AZzAZ=AZAZ
109 108 oveq2d z=AZGzAZ=GAZAZ
110 fveq2 z=AZHz=HAZ
111 110 fveq1d z=AZHzDj=HAZDj
112 111 oveq2d z=AZCjLWHzDj=CjLWHAZDj
113 112 mpteq2dv z=AZjCjLWHzDj=jCjLWHAZDj
114 113 fveq2d z=AZsum^jCjLWHzDj=sum^jCjLWHAZDj
115 114 oveq2d z=AZ1+Esum^jCjLWHzDj=1+Esum^jCjLWHAZDj
116 109 115 breq12d z=AZGzAZ1+Esum^jCjLWHzDjGAZAZ1+Esum^jCjLWHAZDj
117 116 elrab AZzAZBZ|GzAZ1+Esum^jCjLWHzDjAZAZBZGAZAZ1+Esum^jCjLWHAZDj
118 107 117 sylibr φAZzAZBZ|GzAZ1+Esum^jCjLWHzDj
119 118 14 eleqtrrdi φAZU
120 ne0i AZUU
121 119 120 syl φU
122 23 24 27 121 supicc φsupU<AZBZ
123 17 122 eqeltrd φSAZBZ
124 17 oveq1d φSAZ=supU<AZ
125 124 oveq2d φGSAZ=GsupU<AZ
126 23 24 iccssred φAZBZ
127 27 126 sstrd φU
128 23 24 jca φAZBZ
129 iccsupr AZBZUAZBZAZUUUyzUzy
130 128 27 119 129 syl3anc φUUyzUzy
131 130 simp3d φyzUzy
132 eqid w|uUw=uAZ=w|uUw=uAZ
133 127 121 131 23 132 supsubc φsupU<AZ=supw|uUw=uAZ<
134 133 oveq2d φGsupU<AZ=Gsupw|uUw=uAZ<
135 50 rexrd φ0*
136 icogelb 0*+∞*G0+∞0G
137 135 88 42 136 syl3anc φ0G
138 vex rV
139 eqeq1 w=rw=uAZr=uAZ
140 139 rexbidv w=ruUw=uAZuUr=uAZ
141 138 140 elab rw|uUw=uAZuUr=uAZ
142 141 biimpi rw|uUw=uAZuUr=uAZ
143 142 adantl φrw|uUw=uAZuUr=uAZ
144 nfv uφ
145 nfcv _ur
146 nfre1 uuUw=uAZ
147 146 nfab _uw|uUw=uAZ
148 145 147 nfel urw|uUw=uAZ
149 144 148 nfan uφrw|uUw=uAZ
150 nfv u0r
151 23 rexrd φAZ*
152 151 adantr φuUAZ*
153 24 rexrd φBZ*
154 153 adantr φuUBZ*
155 27 sselda φuUuAZBZ
156 iccgelb AZ*BZ*uAZBZAZu
157 152 154 155 156 syl3anc φuUAZu
158 127 sselda φuUu
159 23 adantr φuUAZ
160 158 159 subge0d φuU0uAZAZu
161 157 160 mpbird φuU0uAZ
162 161 3adant3 φuUr=uAZ0uAZ
163 id r=uAZr=uAZ
164 163 eqcomd r=uAZuAZ=r
165 164 3ad2ant3 φuUr=uAZuAZ=r
166 162 165 breqtrd φuUr=uAZ0r
167 166 3exp φuUr=uAZ0r
168 167 adantr φrw|uUw=uAZuUr=uAZ0r
169 149 150 168 rexlimd φrw|uUw=uAZuUr=uAZ0r
170 143 169 mpd φrw|uUw=uAZ0r
171 170 ralrimiva φrw|uUw=uAZ0r
172 simp3 φuUw=uAZw=uAZ
173 158 159 resubcld φuUuAZ
174 173 3adant3 φuUw=uAZuAZ
175 172 174 eqeltrd φuUw=uAZw
176 175 3exp φuUw=uAZw
177 176 rexlimdv φuUw=uAZw
178 177 alrimiv φwuUw=uAZw
179 abss w|uUw=uAZwuUw=uAZw
180 178 179 sylibr φw|uUw=uAZ
181 32 eqcomd φ0=AZAZ
182 oveq1 u=AZuAZ=AZAZ
183 182 rspceeqv AZU0=AZAZuU0=uAZ
184 119 181 183 syl2anc φuU0=uAZ
185 eqeq1 w=0w=uAZ0=uAZ
186 185 rexbidv w=0uUw=uAZuU0=uAZ
187 50 184 186 elabd φ0w|uUw=uAZ
188 ne0i 0w|uUw=uAZw|uUw=uAZ
189 187 188 syl φw|uUw=uAZ
190 24 23 resubcld φBZAZ
191 vex sV
192 eqeq1 w=sw=uAZs=uAZ
193 192 rexbidv w=suUw=uAZuUs=uAZ
194 191 193 elab sw|uUw=uAZuUs=uAZ
195 194 biimpi sw|uUw=uAZuUs=uAZ
196 195 adantl φsw|uUw=uAZuUs=uAZ
197 nfcv _us
198 197 147 nfel usw|uUw=uAZ
199 144 198 nfan uφsw|uUw=uAZ
200 nfv usBZAZ
201 simp3 φuUs=uAZs=uAZ
202 159 3adant3 φuUs=uAZAZ
203 24 3ad2ant1 φuUs=uAZBZ
204 155 3adant3 φuUs=uAZuAZBZ
205 30 3ad2ant1 φuUs=uAZAZAZBZ
206 202 203 204 205 iccsuble φuUs=uAZuAZBZAZ
207 201 206 eqbrtrd φuUs=uAZsBZAZ
208 207 3exp φuUs=uAZsBZAZ
209 208 adantr φsw|uUw=uAZuUs=uAZsBZAZ
210 199 200 209 rexlimd φsw|uUw=uAZuUs=uAZsBZAZ
211 196 210 mpd φsw|uUw=uAZsBZAZ
212 211 ralrimiva φsw|uUw=uAZsBZAZ
213 brralrspcev BZAZsw|uUw=uAZsBZAZrsw|uUw=uAZsr
214 190 212 213 syl2anc φrsw|uUw=uAZsr
215 eqid v|tw|uUw=uAZv=Gt=v|tw|uUw=uAZv=Gt
216 biid G0Grw|uUw=uAZ0rw|uUw=uAZw|uUw=uAZrsw|uUw=uAZsrG0Grw|uUw=uAZ0rw|uUw=uAZw|uUw=uAZrsw|uUw=uAZsr
217 215 216 supmul1 G0Grw|uUw=uAZ0rw|uUw=uAZw|uUw=uAZrsw|uUw=uAZsrGsupw|uUw=uAZ<=supv|tw|uUw=uAZv=Gt<
218 43 137 171 180 189 214 217 syl33anc φGsupw|uUw=uAZ<=supv|tw|uUw=uAZv=Gt<
219 125 134 218 3eqtrd φGSAZ=supv|tw|uUw=uAZv=Gt<
220 vex cV
221 eqeq1 v=cv=Gtc=Gt
222 221 rexbidv v=ctw|uUw=uAZv=Gttw|uUw=uAZc=Gt
223 220 222 elab cv|tw|uUw=uAZv=Gttw|uUw=uAZc=Gt
224 223 biimpi cv|tw|uUw=uAZv=Gttw|uUw=uAZc=Gt
225 nfv tuUc=GuAZ
226 vex tV
227 eqeq1 w=tw=uAZt=uAZ
228 227 rexbidv w=tuUw=uAZuUt=uAZ
229 226 228 elab tw|uUw=uAZuUt=uAZ
230 229 biimpi tw|uUw=uAZuUt=uAZ
231 230 adantr tw|uUw=uAZc=GtuUt=uAZ
232 simpl c=Gtt=uAZc=Gt
233 oveq2 t=uAZGt=GuAZ
234 233 adantl c=Gtt=uAZGt=GuAZ
235 232 234 eqtrd c=Gtt=uAZc=GuAZ
236 235 ex c=Gtt=uAZc=GuAZ
237 236 reximdv c=GtuUt=uAZuUc=GuAZ
238 237 adantl tw|uUw=uAZc=GtuUt=uAZuUc=GuAZ
239 231 238 mpd tw|uUw=uAZc=GtuUc=GuAZ
240 239 ex tw|uUw=uAZc=GtuUc=GuAZ
241 225 240 rexlimi tw|uUw=uAZc=GtuUc=GuAZ
242 241 a1i cv|tw|uUw=uAZv=Gttw|uUw=uAZc=GtuUc=GuAZ
243 224 242 mpd cv|tw|uUw=uAZv=GtuUc=GuAZ
244 243 adantl φcv|tw|uUw=uAZv=GtuUc=GuAZ
245 simp3 φuUc=GuAZc=GuAZ
246 43 adantr φuUG
247 246 173 remulcld φuUGuAZ
248 49 adantr φuU1+E
249 56 a1i φuUV
250 64 adantlr φuUjWFin
251 67 adantlr φuUjCj:W
252 158 adantr φuUju
253 80 adantlr φuUjDj:W
254 76 252 250 253 hsphoif φuUjHuDj:W
255 1 250 251 254 hoidmvcl φuUjCjLWHuDj0+∞
256 58 255 sselid φuUjCjLWHuDj0+∞
257 256 fmpttd φuUjCjLWHuDj:0+∞
258 249 257 sge0cl φuUsum^jCjLWHuDj0+∞
259 249 257 sge0xrcl φuUsum^jCjLWHuDj*
260 87 a1i φuU+∞*
261 89 adantr φuUsum^jCjLWDj*
262 nfv jφuU
263 92 adantlr φuUjCjLWDj0+∞
264 95 adantlr φuUjZWY
265 1 250 264 5 252 76 251 253 hsphoidmvle φuUjCjLWHuDjCjLWDj
266 262 249 256 263 265 sge0lempt φuUsum^jCjLWHuDjsum^jCjLWDj
267 98 adantr φuUsum^jCjLWDj<+∞
268 259 261 260 266 267 xrlelttrd φuUsum^jCjLWHuDj<+∞
269 259 260 268 xrltned φuUsum^jCjLWHuDj+∞
270 ge0xrre sum^jCjLWHuDj0+∞sum^jCjLWHuDj+∞sum^jCjLWHuDj
271 258 269 270 syl2anc φuUsum^jCjLWHuDj
272 248 271 remulcld φuU1+Esum^jCjLWHuDj
273 126 123 sseldd φS
274 1 35 94 5 8 9 10 11 273 sge0hsphoire φsum^jCjLWHSDj
275 49 274 remulcld φ1+Esum^jCjLWHSDj
276 275 adantr φuU1+Esum^jCjLWHSDj
277 14 eleq2i uUuzAZBZ|GzAZ1+Esum^jCjLWHzDj
278 277 biimpi uUuzAZBZ|GzAZ1+Esum^jCjLWHzDj
279 oveq1 z=uzAZ=uAZ
280 279 oveq2d z=uGzAZ=GuAZ
281 fveq2 z=uHz=Hu
282 281 fveq1d z=uHzDj=HuDj
283 282 oveq2d z=uCjLWHzDj=CjLWHuDj
284 283 mpteq2dv z=ujCjLWHzDj=jCjLWHuDj
285 284 fveq2d z=usum^jCjLWHzDj=sum^jCjLWHuDj
286 285 oveq2d z=u1+Esum^jCjLWHzDj=1+Esum^jCjLWHuDj
287 280 286 breq12d z=uGzAZ1+Esum^jCjLWHzDjGuAZ1+Esum^jCjLWHuDj
288 287 elrab uzAZBZ|GzAZ1+Esum^jCjLWHzDjuAZBZGuAZ1+Esum^jCjLWHuDj
289 278 288 sylib uUuAZBZGuAZ1+Esum^jCjLWHuDj
290 289 simprd uUGuAZ1+Esum^jCjLWHuDj
291 290 adantl φuUGuAZ1+Esum^jCjLWHuDj
292 274 adantr φuUsum^jCjLWHSDj
293 55 adantr φuU01+E
294 273 adantr φjS
295 76 294 64 80 hsphoif φjHSDj:W
296 1 64 67 295 hoidmvcl φjCjLWHSDj0+∞
297 58 296 sselid φjCjLWHSDj0+∞
298 297 adantlr φuUjCjLWHSDj0+∞
299 294 adantlr φuUjS
300 127 adantr φuUU
301 121 adantr φuUU
302 131 adantr φuUyzUzy
303 simpr φuUuU
304 suprub UUyzUzyuUusupU<
305 300 301 302 303 304 syl31anc φuUusupU<
306 305 15 breqtrrdi φuUuS
307 306 adantr φuUjuS
308 1 250 264 5 252 299 307 76 251 253 hsphoidmvle2 φuUjCjLWHuDjCjLWHSDj
309 262 249 256 298 308 sge0lempt φuUsum^jCjLWHuDjsum^jCjLWHSDj
310 271 292 248 293 309 lemul2ad φuU1+Esum^jCjLWHuDj1+Esum^jCjLWHSDj
311 247 272 276 291 310 letrd φuUGuAZ1+Esum^jCjLWHSDj
312 311 3adant3 φuUc=GuAZGuAZ1+Esum^jCjLWHSDj
313 245 312 eqbrtrd φuUc=GuAZc1+Esum^jCjLWHSDj
314 313 3exp φuUc=GuAZc1+Esum^jCjLWHSDj
315 314 rexlimdv φuUc=GuAZc1+Esum^jCjLWHSDj
316 315 adantr φcv|tw|uUw=uAZv=GtuUc=GuAZc1+Esum^jCjLWHSDj
317 244 316 mpd φcv|tw|uUw=uAZv=Gtc1+Esum^jCjLWHSDj
318 317 ralrimiva φcv|tw|uUw=uAZv=Gtc1+Esum^jCjLWHSDj
319 224 adantl φcv|tw|uUw=uAZv=Gttw|uUw=uAZc=Gt
320 nfv tφ
321 nfcv _tc
322 nfre1 ttw|uUw=uAZv=Gt
323 322 nfab _tv|tw|uUw=uAZv=Gt
324 321 323 nfel tcv|tw|uUw=uAZv=Gt
325 320 324 nfan tφcv|tw|uUw=uAZv=Gt
326 nfv tc
327 230 adantl φtw|uUw=uAZuUt=uAZ
328 simpr φuUt=uAZc=Gtc=Gt
329 246 3adant3 φuUt=uAZG
330 simp3 φuUt=uAZt=uAZ
331 173 3adant3 φuUt=uAZuAZ
332 330 331 eqeltrd φuUt=uAZt
333 329 332 remulcld φuUt=uAZGt
334 333 adantr φuUt=uAZc=GtGt
335 328 334 eqeltrd φuUt=uAZc=Gtc
336 335 ex φuUt=uAZc=Gtc
337 336 3exp φuUt=uAZc=Gtc
338 337 rexlimdv φuUt=uAZc=Gtc
339 338 adantr φtw|uUw=uAZuUt=uAZc=Gtc
340 327 339 mpd φtw|uUw=uAZc=Gtc
341 340 ex φtw|uUw=uAZc=Gtc
342 341 adantr φcv|tw|uUw=uAZv=Gttw|uUw=uAZc=Gtc
343 325 326 342 rexlimd φcv|tw|uUw=uAZv=Gttw|uUw=uAZc=Gtc
344 319 343 mpd φcv|tw|uUw=uAZv=Gtc
345 344 ralrimiva φcv|tw|uUw=uAZv=Gtc
346 dfss3 v|tw|uUw=uAZv=Gtcv|tw|uUw=uAZv=Gtc
347 345 346 sylibr φv|tw|uUw=uAZv=Gt
348 45 eqcomd φ0=G0
349 oveq2 t=0Gt=G0
350 349 rspceeqv 0w|uUw=uAZ0=G0tw|uUw=uAZ0=Gt
351 187 348 350 syl2anc φtw|uUw=uAZ0=Gt
352 eqeq1 v=0v=Gt0=Gt
353 352 rexbidv v=0tw|uUw=uAZv=Gttw|uUw=uAZ0=Gt
354 50 351 353 elabd φ0v|tw|uUw=uAZv=Gt
355 ne0i 0v|tw|uUw=uAZv=Gtv|tw|uUw=uAZv=Gt
356 354 355 syl φv|tw|uUw=uAZv=Gt
357 43 190 remulcld φGBZAZ
358 190 adantr φuUBZAZ
359 137 adantr φuU0G
360 24 adantr φuUBZ
361 iccleub AZ*BZ*uAZBZuBZ
362 152 154 155 361 syl3anc φuUuBZ
363 158 360 159 362 lesub1dd φuUuAZBZAZ
364 173 358 246 359 363 lemul2ad φuUGuAZGBZAZ
365 364 3adant3 φuUc=GuAZGuAZGBZAZ
366 245 365 eqbrtrd φuUc=GuAZcGBZAZ
367 366 3exp φuUc=GuAZcGBZAZ
368 367 rexlimdv φuUc=GuAZcGBZAZ
369 368 adantr φcv|tw|uUw=uAZv=GtuUc=GuAZcGBZAZ
370 244 369 mpd φcv|tw|uUw=uAZv=GtcGBZAZ
371 370 ralrimiva φcv|tw|uUw=uAZv=GtcGBZAZ
372 brralrspcev GBZAZcv|tw|uUw=uAZv=GtcGBZAZycv|tw|uUw=uAZv=Gtcy
373 357 371 372 syl2anc φycv|tw|uUw=uAZv=Gtcy
374 suprleub v|tw|uUw=uAZv=Gtv|tw|uUw=uAZv=Gtycv|tw|uUw=uAZv=Gtcy1+Esum^jCjLWHSDjsupv|tw|uUw=uAZv=Gt<1+Esum^jCjLWHSDjcv|tw|uUw=uAZv=Gtc1+Esum^jCjLWHSDj
375 347 356 373 275 374 syl31anc φsupv|tw|uUw=uAZv=Gt<1+Esum^jCjLWHSDjcv|tw|uUw=uAZv=Gtc1+Esum^jCjLWHSDj
376 318 375 mpbird φsupv|tw|uUw=uAZv=Gt<1+Esum^jCjLWHSDj
377 219 376 eqbrtrd φGSAZ1+Esum^jCjLWHSDj
378 123 377 jca φSAZBZGSAZ1+Esum^jCjLWHSDj
379 oveq1 z=SzAZ=SAZ
380 379 oveq2d z=SGzAZ=GSAZ
381 fveq2 z=SHz=HS
382 381 fveq1d z=SHzDj=HSDj
383 382 oveq2d z=SCjLWHzDj=CjLWHSDj
384 383 mpteq2dv z=SjCjLWHzDj=jCjLWHSDj
385 384 fveq2d z=Ssum^jCjLWHzDj=sum^jCjLWHSDj
386 385 oveq2d z=S1+Esum^jCjLWHzDj=1+Esum^jCjLWHSDj
387 380 386 breq12d z=SGzAZ1+Esum^jCjLWHzDjGSAZ1+Esum^jCjLWHSDj
388 387 elrab SzAZBZ|GzAZ1+Esum^jCjLWHzDjSAZBZGSAZ1+Esum^jCjLWHSDj
389 378 388 sylibr φSzAZBZ|GzAZ1+Esum^jCjLWHzDj
390 389 14 eleqtrrdi φSU