Metamath Proof Explorer


Theorem hoidmvlelem1

Description: The supremum of U belongs to U . Step (c) in the proof of Lemma 115B of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoidmvlelem1.l L = x Fin a x , b x if x = 0 k x vol a k b k
hoidmvlelem1.x φ X Fin
hoidmvlelem1.y φ Y X
hoidmvlelem1.z φ Z X Y
hoidmvlelem1.w W = Y Z
hoidmvlelem1.a φ A : W
hoidmvlelem1.b φ B : W
hoidmvlelem1.c φ C : W
hoidmvlelem1.d φ D : W
hoidmvlelem1.r φ sum^ j C j L W D j
hoidmvlelem1.h H = x c W j W if j Y c j if c j x c j x
hoidmvlelem1.g G = A Y L Y B Y
hoidmvlelem1.e φ E +
hoidmvlelem1.u U = z A Z B Z | G z A Z 1 + E sum^ j C j L W H z D j
hoidmvlelem1.s S = sup U <
hoidmvlelem1.ab φ A Z < B Z
Assertion hoidmvlelem1 φ S U

Proof

Step Hyp Ref Expression
1 hoidmvlelem1.l L = x Fin a x , b x if x = 0 k x vol a k b k
2 hoidmvlelem1.x φ X Fin
3 hoidmvlelem1.y φ Y X
4 hoidmvlelem1.z φ Z X Y
5 hoidmvlelem1.w W = Y Z
6 hoidmvlelem1.a φ A : W
7 hoidmvlelem1.b φ B : W
8 hoidmvlelem1.c φ C : W
9 hoidmvlelem1.d φ D : W
10 hoidmvlelem1.r φ sum^ j C j L W D j
11 hoidmvlelem1.h H = x c W j W if j Y c j if c j x c j x
12 hoidmvlelem1.g G = A Y L Y B Y
13 hoidmvlelem1.e φ E +
14 hoidmvlelem1.u U = z A Z B Z | G z A Z 1 + E sum^ j C j L W H z D j
15 hoidmvlelem1.s S = sup U <
16 hoidmvlelem1.ab φ A Z < B Z
17 15 a1i φ S = sup U <
18 snidg Z X Y Z Z
19 4 18 syl φ Z Z
20 elun2 Z Z Z Y Z
21 19 20 syl φ Z Y Z
22 21 5 eleqtrrdi φ Z W
23 6 22 ffvelcdmd φ A Z
24 7 22 ffvelcdmd φ B Z
25 ssrab2 z A Z B Z | G z A Z 1 + E sum^ j C j L W H z D j A Z B Z
26 14 25 eqsstri U A Z B Z
27 26 a1i φ U A Z B Z
28 23 leidd φ A Z A Z
29 23 24 16 ltled φ A Z B Z
30 23 24 23 28 29 eliccd φ A Z A Z B Z
31 23 recnd φ A Z
32 31 subidd φ A Z A Z = 0
33 32 oveq2d φ G A Z A Z = G 0
34 rge0ssre 0 +∞
35 2 3 ssfid φ Y Fin
36 ssun1 Y Y Z
37 36 5 sseqtrri Y W
38 37 a1i φ Y W
39 6 38 fssresd φ A Y : Y
40 7 38 fssresd φ B Y : Y
41 1 35 39 40 hoidmvcl φ A Y L Y B Y 0 +∞
42 12 41 eqeltrid φ G 0 +∞
43 34 42 sselid φ G
44 43 recnd φ G
45 44 mul01d φ G 0 = 0
46 33 45 eqtrd φ G A Z A Z = 0
47 1red φ 1
48 13 rpred φ E
49 47 48 readdcld φ 1 + E
50 0red φ 0
51 0lt1 0 < 1
52 51 a1i φ 0 < 1
53 47 13 ltaddrpd φ 1 < 1 + E
54 50 47 49 52 53 lttrd φ 0 < 1 + E
55 50 49 54 ltled φ 0 1 + E
56 nnex V
57 56 a1i φ V
58 icossicc 0 +∞ 0 +∞
59 snfi Z Fin
60 59 a1i φ Z Fin
61 unfi Y Fin Z Fin Y Z Fin
62 35 60 61 syl2anc φ Y Z Fin
63 5 62 eqeltrid φ W Fin
64 63 adantr φ j W Fin
65 8 ffvelcdmda φ j C j W
66 elmapi C j W C j : W
67 65 66 syl φ j C j : W
68 eleq1w j = h j Y h Y
69 fveq2 j = h c j = c h
70 69 breq1d j = h c j x c h x
71 70 69 ifbieq1d j = h if c j x c j x = if c h x c h x
72 68 69 71 ifbieq12d j = h if j Y c j if c j x c j x = if h Y c h if c h x c h x
73 72 cbvmptv j W if j Y c j if c j x c j x = h W if h Y c h if c h x c h x
74 73 mpteq2i c W j W if j Y c j if c j x c j x = c W h W if h Y c h if c h x c h x
75 74 mpteq2i x c W j W if j Y c j if c j x c j x = x c W h W if h Y c h if c h x c h x
76 11 75 eqtri H = x c W h W if h Y c h if c h x c h x
77 23 adantr φ j A Z
78 9 ffvelcdmda φ j D j W
79 elmapi D j W D j : W
80 78 79 syl φ j D j : W
81 76 77 64 80 hsphoif φ j H A Z D j : W
82 1 64 67 81 hoidmvcl φ j C j L W H A Z D j 0 +∞
83 58 82 sselid φ j C j L W H A Z D j 0 +∞
84 83 fmpttd φ j C j L W H A Z D j : 0 +∞
85 57 84 sge0cl φ sum^ j C j L W H A Z D j 0 +∞
86 57 84 sge0xrcl φ sum^ j C j L W H A Z D j *
87 pnfxr +∞ *
88 87 a1i φ +∞ *
89 10 rexrd φ sum^ j C j L W D j *
90 nfv j φ
91 1 64 67 80 hoidmvcl φ j C j L W D j 0 +∞
92 58 91 sselid φ j C j L W D j 0 +∞
93 4 eldifbd φ ¬ Z Y
94 22 93 eldifd φ Z W Y
95 94 adantr φ j Z W Y
96 1 64 95 5 77 76 67 80 hsphoidmvle φ j C j L W H A Z D j C j L W D j
97 90 57 83 92 96 sge0lempt φ sum^ j C j L W H A Z D j sum^ j C j L W D j
98 10 ltpnfd φ sum^ j C j L W D j < +∞
99 86 89 88 97 98 xrlelttrd φ sum^ j C j L W H A Z D j < +∞
100 86 88 99 xrltned φ sum^ j C j L W H A Z D j +∞
101 ge0xrre sum^ j C j L W H A Z D j 0 +∞ sum^ j C j L W H A Z D j +∞ sum^ j C j L W H A Z D j
102 85 100 101 syl2anc φ sum^ j C j L W H A Z D j
103 57 84 sge0ge0 φ 0 sum^ j C j L W H A Z D j
104 mulge0 1 + E 0 1 + E sum^ j C j L W H A Z D j 0 sum^ j C j L W H A Z D j 0 1 + E sum^ j C j L W H A Z D j
105 49 55 102 103 104 syl22anc φ 0 1 + E sum^ j C j L W H A Z D j
106 46 105 eqbrtrd φ G A Z A Z 1 + E sum^ j C j L W H A Z D j
107 30 106 jca φ A Z A Z B Z G A Z A Z 1 + E sum^ j C j L W H A Z D j
108 oveq1 z = A Z z A Z = A Z A Z
109 108 oveq2d z = A Z G z A Z = G A Z A Z
110 fveq2 z = A Z H z = H A Z
111 110 fveq1d z = A Z H z D j = H A Z D j
112 111 oveq2d z = A Z C j L W H z D j = C j L W H A Z D j
113 112 mpteq2dv z = A Z j C j L W H z D j = j C j L W H A Z D j
114 113 fveq2d z = A Z sum^ j C j L W H z D j = sum^ j C j L W H A Z D j
115 114 oveq2d z = A Z 1 + E sum^ j C j L W H z D j = 1 + E sum^ j C j L W H A Z D j
116 109 115 breq12d z = A Z G z A Z 1 + E sum^ j C j L W H z D j G A Z A Z 1 + E sum^ j C j L W H A Z D j
117 116 elrab A Z z A Z B Z | G z A Z 1 + E sum^ j C j L W H z D j A Z A Z B Z G A Z A Z 1 + E sum^ j C j L W H A Z D j
118 107 117 sylibr φ A Z z A Z B Z | G z A Z 1 + E sum^ j C j L W H z D j
119 118 14 eleqtrrdi φ A Z U
120 ne0i A Z U U
121 119 120 syl φ U
122 23 24 27 121 supicc φ sup U < A Z B Z
123 17 122 eqeltrd φ S A Z B Z
124 17 oveq1d φ S A Z = sup U < A Z
125 124 oveq2d φ G S A Z = G sup U < A Z
126 23 24 iccssred φ A Z B Z
127 27 126 sstrd φ U
128 23 24 jca φ A Z B Z
129 iccsupr A Z B Z U A Z B Z A Z U U U y z U z y
130 128 27 119 129 syl3anc φ U U y z U z y
131 130 simp3d φ y z U z y
132 eqid w | u U w = u A Z = w | u U w = u A Z
133 127 121 131 23 132 supsubc φ sup U < A Z = sup w | u U w = u A Z <
134 133 oveq2d φ G sup U < A Z = G sup w | u U w = u A Z <
135 50 rexrd φ 0 *
136 icogelb 0 * +∞ * G 0 +∞ 0 G
137 135 88 42 136 syl3anc φ 0 G
138 vex r V
139 eqeq1 w = r w = u A Z r = u A Z
140 139 rexbidv w = r u U w = u A Z u U r = u A Z
141 138 140 elab r w | u U w = u A Z u U r = u A Z
142 141 biimpi r w | u U w = u A Z u U r = u A Z
143 142 adantl φ r w | u U w = u A Z u U r = u A Z
144 nfv u φ
145 nfcv _ u r
146 nfre1 u u U w = u A Z
147 146 nfab _ u w | u U w = u A Z
148 145 147 nfel u r w | u U w = u A Z
149 144 148 nfan u φ r w | u U w = u A Z
150 nfv u 0 r
151 23 rexrd φ A Z *
152 151 adantr φ u U A Z *
153 24 rexrd φ B Z *
154 153 adantr φ u U B Z *
155 27 sselda φ u U u A Z B Z
156 iccgelb A Z * B Z * u A Z B Z A Z u
157 152 154 155 156 syl3anc φ u U A Z u
158 127 sselda φ u U u
159 23 adantr φ u U A Z
160 158 159 subge0d φ u U 0 u A Z A Z u
161 157 160 mpbird φ u U 0 u A Z
162 161 3adant3 φ u U r = u A Z 0 u A Z
163 id r = u A Z r = u A Z
164 163 eqcomd r = u A Z u A Z = r
165 164 3ad2ant3 φ u U r = u A Z u A Z = r
166 162 165 breqtrd φ u U r = u A Z 0 r
167 166 3exp φ u U r = u A Z 0 r
168 167 adantr φ r w | u U w = u A Z u U r = u A Z 0 r
169 149 150 168 rexlimd φ r w | u U w = u A Z u U r = u A Z 0 r
170 143 169 mpd φ r w | u U w = u A Z 0 r
171 170 ralrimiva φ r w | u U w = u A Z 0 r
172 simp3 φ u U w = u A Z w = u A Z
173 158 159 resubcld φ u U u A Z
174 173 3adant3 φ u U w = u A Z u A Z
175 172 174 eqeltrd φ u U w = u A Z w
176 175 3exp φ u U w = u A Z w
177 176 rexlimdv φ u U w = u A Z w
178 177 abssdv φ w | u U w = u A Z
179 32 eqcomd φ 0 = A Z A Z
180 oveq1 u = A Z u A Z = A Z A Z
181 180 rspceeqv A Z U 0 = A Z A Z u U 0 = u A Z
182 119 179 181 syl2anc φ u U 0 = u A Z
183 eqeq1 w = 0 w = u A Z 0 = u A Z
184 183 rexbidv w = 0 u U w = u A Z u U 0 = u A Z
185 50 182 184 elabd φ 0 w | u U w = u A Z
186 ne0i 0 w | u U w = u A Z w | u U w = u A Z
187 185 186 syl φ w | u U w = u A Z
188 24 23 resubcld φ B Z A Z
189 vex s V
190 eqeq1 w = s w = u A Z s = u A Z
191 190 rexbidv w = s u U w = u A Z u U s = u A Z
192 189 191 elab s w | u U w = u A Z u U s = u A Z
193 192 biimpi s w | u U w = u A Z u U s = u A Z
194 193 adantl φ s w | u U w = u A Z u U s = u A Z
195 nfcv _ u s
196 195 147 nfel u s w | u U w = u A Z
197 144 196 nfan u φ s w | u U w = u A Z
198 nfv u s B Z A Z
199 simp3 φ u U s = u A Z s = u A Z
200 159 3adant3 φ u U s = u A Z A Z
201 24 3ad2ant1 φ u U s = u A Z B Z
202 155 3adant3 φ u U s = u A Z u A Z B Z
203 30 3ad2ant1 φ u U s = u A Z A Z A Z B Z
204 200 201 202 203 iccsuble φ u U s = u A Z u A Z B Z A Z
205 199 204 eqbrtrd φ u U s = u A Z s B Z A Z
206 205 3exp φ u U s = u A Z s B Z A Z
207 206 adantr φ s w | u U w = u A Z u U s = u A Z s B Z A Z
208 197 198 207 rexlimd φ s w | u U w = u A Z u U s = u A Z s B Z A Z
209 194 208 mpd φ s w | u U w = u A Z s B Z A Z
210 209 ralrimiva φ s w | u U w = u A Z s B Z A Z
211 brralrspcev B Z A Z s w | u U w = u A Z s B Z A Z r s w | u U w = u A Z s r
212 188 210 211 syl2anc φ r s w | u U w = u A Z s r
213 eqid v | t w | u U w = u A Z v = G t = v | t w | u U w = u A Z v = G t
214 biid G 0 G r w | u U w = u A Z 0 r w | u U w = u A Z w | u U w = u A Z r s w | u U w = u A Z s r G 0 G r w | u U w = u A Z 0 r w | u U w = u A Z w | u U w = u A Z r s w | u U w = u A Z s r
215 213 214 supmul1 G 0 G r w | u U w = u A Z 0 r w | u U w = u A Z w | u U w = u A Z r s w | u U w = u A Z s r G sup w | u U w = u A Z < = sup v | t w | u U w = u A Z v = G t <
216 43 137 171 178 187 212 215 syl33anc φ G sup w | u U w = u A Z < = sup v | t w | u U w = u A Z v = G t <
217 125 134 216 3eqtrd φ G S A Z = sup v | t w | u U w = u A Z v = G t <
218 vex c V
219 eqeq1 v = c v = G t c = G t
220 219 rexbidv v = c t w | u U w = u A Z v = G t t w | u U w = u A Z c = G t
221 218 220 elab c v | t w | u U w = u A Z v = G t t w | u U w = u A Z c = G t
222 221 biimpi c v | t w | u U w = u A Z v = G t t w | u U w = u A Z c = G t
223 nfv t u U c = G u A Z
224 vex t V
225 eqeq1 w = t w = u A Z t = u A Z
226 225 rexbidv w = t u U w = u A Z u U t = u A Z
227 224 226 elab t w | u U w = u A Z u U t = u A Z
228 227 biimpi t w | u U w = u A Z u U t = u A Z
229 228 adantr t w | u U w = u A Z c = G t u U t = u A Z
230 simpl c = G t t = u A Z c = G t
231 oveq2 t = u A Z G t = G u A Z
232 231 adantl c = G t t = u A Z G t = G u A Z
233 230 232 eqtrd c = G t t = u A Z c = G u A Z
234 233 ex c = G t t = u A Z c = G u A Z
235 234 reximdv c = G t u U t = u A Z u U c = G u A Z
236 235 adantl t w | u U w = u A Z c = G t u U t = u A Z u U c = G u A Z
237 229 236 mpd t w | u U w = u A Z c = G t u U c = G u A Z
238 237 ex t w | u U w = u A Z c = G t u U c = G u A Z
239 223 238 rexlimi t w | u U w = u A Z c = G t u U c = G u A Z
240 222 239 syl c v | t w | u U w = u A Z v = G t u U c = G u A Z
241 240 adantl φ c v | t w | u U w = u A Z v = G t u U c = G u A Z
242 simp3 φ u U c = G u A Z c = G u A Z
243 43 adantr φ u U G
244 243 173 remulcld φ u U G u A Z
245 49 adantr φ u U 1 + E
246 56 a1i φ u U V
247 64 adantlr φ u U j W Fin
248 67 adantlr φ u U j C j : W
249 158 adantr φ u U j u
250 80 adantlr φ u U j D j : W
251 76 249 247 250 hsphoif φ u U j H u D j : W
252 1 247 248 251 hoidmvcl φ u U j C j L W H u D j 0 +∞
253 58 252 sselid φ u U j C j L W H u D j 0 +∞
254 253 fmpttd φ u U j C j L W H u D j : 0 +∞
255 246 254 sge0cl φ u U sum^ j C j L W H u D j 0 +∞
256 246 254 sge0xrcl φ u U sum^ j C j L W H u D j *
257 87 a1i φ u U +∞ *
258 89 adantr φ u U sum^ j C j L W D j *
259 nfv j φ u U
260 92 adantlr φ u U j C j L W D j 0 +∞
261 95 adantlr φ u U j Z W Y
262 1 247 261 5 249 76 248 250 hsphoidmvle φ u U j C j L W H u D j C j L W D j
263 259 246 253 260 262 sge0lempt φ u U sum^ j C j L W H u D j sum^ j C j L W D j
264 98 adantr φ u U sum^ j C j L W D j < +∞
265 256 258 257 263 264 xrlelttrd φ u U sum^ j C j L W H u D j < +∞
266 256 257 265 xrltned φ u U sum^ j C j L W H u D j +∞
267 ge0xrre sum^ j C j L W H u D j 0 +∞ sum^ j C j L W H u D j +∞ sum^ j C j L W H u D j
268 255 266 267 syl2anc φ u U sum^ j C j L W H u D j
269 245 268 remulcld φ u U 1 + E sum^ j C j L W H u D j
270 126 123 sseldd φ S
271 1 35 94 5 8 9 10 11 270 sge0hsphoire φ sum^ j C j L W H S D j
272 49 271 remulcld φ 1 + E sum^ j C j L W H S D j
273 272 adantr φ u U 1 + E sum^ j C j L W H S D j
274 14 eleq2i u U u z A Z B Z | G z A Z 1 + E sum^ j C j L W H z D j
275 274 biimpi u U u z A Z B Z | G z A Z 1 + E sum^ j C j L W H z D j
276 oveq1 z = u z A Z = u A Z
277 276 oveq2d z = u G z A Z = G u A Z
278 fveq2 z = u H z = H u
279 278 fveq1d z = u H z D j = H u D j
280 279 oveq2d z = u C j L W H z D j = C j L W H u D j
281 280 mpteq2dv z = u j C j L W H z D j = j C j L W H u D j
282 281 fveq2d z = u sum^ j C j L W H z D j = sum^ j C j L W H u D j
283 282 oveq2d z = u 1 + E sum^ j C j L W H z D j = 1 + E sum^ j C j L W H u D j
284 277 283 breq12d z = u G z A Z 1 + E sum^ j C j L W H z D j G u A Z 1 + E sum^ j C j L W H u D j
285 284 elrab u z A Z B Z | G z A Z 1 + E sum^ j C j L W H z D j u A Z B Z G u A Z 1 + E sum^ j C j L W H u D j
286 275 285 sylib u U u A Z B Z G u A Z 1 + E sum^ j C j L W H u D j
287 286 simprd u U G u A Z 1 + E sum^ j C j L W H u D j
288 287 adantl φ u U G u A Z 1 + E sum^ j C j L W H u D j
289 271 adantr φ u U sum^ j C j L W H S D j
290 55 adantr φ u U 0 1 + E
291 270 adantr φ j S
292 76 291 64 80 hsphoif φ j H S D j : W
293 1 64 67 292 hoidmvcl φ j C j L W H S D j 0 +∞
294 58 293 sselid φ j C j L W H S D j 0 +∞
295 294 adantlr φ u U j C j L W H S D j 0 +∞
296 291 adantlr φ u U j S
297 127 adantr φ u U U
298 121 adantr φ u U U
299 131 adantr φ u U y z U z y
300 simpr φ u U u U
301 suprub U U y z U z y u U u sup U <
302 297 298 299 300 301 syl31anc φ u U u sup U <
303 302 15 breqtrrdi φ u U u S
304 303 adantr φ u U j u S
305 1 247 261 5 249 296 304 76 248 250 hsphoidmvle2 φ u U j C j L W H u D j C j L W H S D j
306 259 246 253 295 305 sge0lempt φ u U sum^ j C j L W H u D j sum^ j C j L W H S D j
307 268 289 245 290 306 lemul2ad φ u U 1 + E sum^ j C j L W H u D j 1 + E sum^ j C j L W H S D j
308 244 269 273 288 307 letrd φ u U G u A Z 1 + E sum^ j C j L W H S D j
309 308 3adant3 φ u U c = G u A Z G u A Z 1 + E sum^ j C j L W H S D j
310 242 309 eqbrtrd φ u U c = G u A Z c 1 + E sum^ j C j L W H S D j
311 310 3exp φ u U c = G u A Z c 1 + E sum^ j C j L W H S D j
312 311 rexlimdv φ u U c = G u A Z c 1 + E sum^ j C j L W H S D j
313 312 adantr φ c v | t w | u U w = u A Z v = G t u U c = G u A Z c 1 + E sum^ j C j L W H S D j
314 241 313 mpd φ c v | t w | u U w = u A Z v = G t c 1 + E sum^ j C j L W H S D j
315 314 ralrimiva φ c v | t w | u U w = u A Z v = G t c 1 + E sum^ j C j L W H S D j
316 222 adantl φ c v | t w | u U w = u A Z v = G t t w | u U w = u A Z c = G t
317 nfv t φ
318 nfcv _ t c
319 nfre1 t t w | u U w = u A Z v = G t
320 319 nfab _ t v | t w | u U w = u A Z v = G t
321 318 320 nfel t c v | t w | u U w = u A Z v = G t
322 317 321 nfan t φ c v | t w | u U w = u A Z v = G t
323 nfv t c
324 228 adantl φ t w | u U w = u A Z u U t = u A Z
325 simpr φ u U t = u A Z c = G t c = G t
326 243 3adant3 φ u U t = u A Z G
327 simp3 φ u U t = u A Z t = u A Z
328 173 3adant3 φ u U t = u A Z u A Z
329 327 328 eqeltrd φ u U t = u A Z t
330 326 329 remulcld φ u U t = u A Z G t
331 330 adantr φ u U t = u A Z c = G t G t
332 325 331 eqeltrd φ u U t = u A Z c = G t c
333 332 ex φ u U t = u A Z c = G t c
334 333 3exp φ u U t = u A Z c = G t c
335 334 rexlimdv φ u U t = u A Z c = G t c
336 335 adantr φ t w | u U w = u A Z u U t = u A Z c = G t c
337 324 336 mpd φ t w | u U w = u A Z c = G t c
338 337 ex φ t w | u U w = u A Z c = G t c
339 338 adantr φ c v | t w | u U w = u A Z v = G t t w | u U w = u A Z c = G t c
340 322 323 339 rexlimd φ c v | t w | u U w = u A Z v = G t t w | u U w = u A Z c = G t c
341 316 340 mpd φ c v | t w | u U w = u A Z v = G t c
342 341 ralrimiva φ c v | t w | u U w = u A Z v = G t c
343 dfss3 v | t w | u U w = u A Z v = G t c v | t w | u U w = u A Z v = G t c
344 342 343 sylibr φ v | t w | u U w = u A Z v = G t
345 45 eqcomd φ 0 = G 0
346 oveq2 t = 0 G t = G 0
347 346 rspceeqv 0 w | u U w = u A Z 0 = G 0 t w | u U w = u A Z 0 = G t
348 185 345 347 syl2anc φ t w | u U w = u A Z 0 = G t
349 eqeq1 v = 0 v = G t 0 = G t
350 349 rexbidv v = 0 t w | u U w = u A Z v = G t t w | u U w = u A Z 0 = G t
351 50 348 350 elabd φ 0 v | t w | u U w = u A Z v = G t
352 ne0i 0 v | t w | u U w = u A Z v = G t v | t w | u U w = u A Z v = G t
353 351 352 syl φ v | t w | u U w = u A Z v = G t
354 43 188 remulcld φ G B Z A Z
355 188 adantr φ u U B Z A Z
356 137 adantr φ u U 0 G
357 24 adantr φ u U B Z
358 iccleub A Z * B Z * u A Z B Z u B Z
359 152 154 155 358 syl3anc φ u U u B Z
360 158 357 159 359 lesub1dd φ u U u A Z B Z A Z
361 173 355 243 356 360 lemul2ad φ u U G u A Z G B Z A Z
362 361 3adant3 φ u U c = G u A Z G u A Z G B Z A Z
363 242 362 eqbrtrd φ u U c = G u A Z c G B Z A Z
364 363 3exp φ u U c = G u A Z c G B Z A Z
365 364 rexlimdv φ u U c = G u A Z c G B Z A Z
366 365 adantr φ c v | t w | u U w = u A Z v = G t u U c = G u A Z c G B Z A Z
367 241 366 mpd φ c v | t w | u U w = u A Z v = G t c G B Z A Z
368 367 ralrimiva φ c v | t w | u U w = u A Z v = G t c G B Z A Z
369 brralrspcev G B Z A Z c v | t w | u U w = u A Z v = G t c G B Z A Z y c v | t w | u U w = u A Z v = G t c y
370 354 368 369 syl2anc φ y c v | t w | u U w = u A Z v = G t c y
371 suprleub v | t w | u U w = u A Z v = G t v | t w | u U w = u A Z v = G t y c v | t w | u U w = u A Z v = G t c y 1 + E sum^ j C j L W H S D j sup v | t w | u U w = u A Z v = G t < 1 + E sum^ j C j L W H S D j c v | t w | u U w = u A Z v = G t c 1 + E sum^ j C j L W H S D j
372 344 353 370 272 371 syl31anc φ sup v | t w | u U w = u A Z v = G t < 1 + E sum^ j C j L W H S D j c v | t w | u U w = u A Z v = G t c 1 + E sum^ j C j L W H S D j
373 315 372 mpbird φ sup v | t w | u U w = u A Z v = G t < 1 + E sum^ j C j L W H S D j
374 217 373 eqbrtrd φ G S A Z 1 + E sum^ j C j L W H S D j
375 123 374 jca φ S A Z B Z G S A Z 1 + E sum^ j C j L W H S D j
376 oveq1 z = S z A Z = S A Z
377 376 oveq2d z = S G z A Z = G S A Z
378 fveq2 z = S H z = H S
379 378 fveq1d z = S H z D j = H S D j
380 379 oveq2d z = S C j L W H z D j = C j L W H S D j
381 380 mpteq2dv z = S j C j L W H z D j = j C j L W H S D j
382 381 fveq2d z = S sum^ j C j L W H z D j = sum^ j C j L W H S D j
383 382 oveq2d z = S 1 + E sum^ j C j L W H z D j = 1 + E sum^ j C j L W H S D j
384 377 383 breq12d z = S G z A Z 1 + E sum^ j C j L W H z D j G S A Z 1 + E sum^ j C j L W H S D j
385 384 elrab S z A Z B Z | G z A Z 1 + E sum^ j C j L W H z D j S A Z B Z G S A Z 1 + E sum^ j C j L W H S D j
386 375 385 sylibr φ S z A Z B Z | G z A Z 1 + E sum^ j C j L W H z D j
387 386 14 eleqtrrdi φ S U