| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoidmvlelem2.l |
|- L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) |
| 2 |
|
hoidmvlelem2.x |
|- ( ph -> X e. Fin ) |
| 3 |
|
hoidmvlelem2.y |
|- ( ph -> Y C_ X ) |
| 4 |
|
hoidmvlelem2.z |
|- ( ph -> Z e. ( X \ Y ) ) |
| 5 |
|
hoidmvlelem2.w |
|- W = ( Y u. { Z } ) |
| 6 |
|
hoidmvlelem2.a |
|- ( ph -> A : W --> RR ) |
| 7 |
|
hoidmvlelem2.b |
|- ( ph -> B : W --> RR ) |
| 8 |
|
hoidmvlelem2.c |
|- ( ph -> C : NN --> ( RR ^m W ) ) |
| 9 |
|
hoidmvlelem2.f |
|- F = ( y e. Y |-> 0 ) |
| 10 |
|
hoidmvlelem2.j |
|- J = ( j e. NN |-> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) ) |
| 11 |
|
hoidmvlelem2.d |
|- ( ph -> D : NN --> ( RR ^m W ) ) |
| 12 |
|
hoidmvlelem2.k |
|- K = ( j e. NN |-> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) ) |
| 13 |
|
hoidmvlelem2.r |
|- ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( D ` j ) ) ) ) e. RR ) |
| 14 |
|
hoidmvlelem2.h |
|- H = ( x e. RR |-> ( c e. ( RR ^m W ) |-> ( j e. W |-> if ( j e. Y , ( c ` j ) , if ( ( c ` j ) <_ x , ( c ` j ) , x ) ) ) ) ) |
| 15 |
|
hoidmvlelem2.g |
|- G = ( ( A |` Y ) ( L ` Y ) ( B |` Y ) ) |
| 16 |
|
hoidmvlelem2.e |
|- ( ph -> E e. RR+ ) |
| 17 |
|
hoidmvlelem2.u |
|- U = { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } |
| 18 |
|
hoidmvlelem2.su |
|- ( ph -> S e. U ) |
| 19 |
|
hoidmvlelem2.sb |
|- ( ph -> S < ( B ` Z ) ) |
| 20 |
|
hoidmvlelem2.p |
|- P = ( j e. NN |-> ( ( J ` j ) ( L ` Y ) ( K ` j ) ) ) |
| 21 |
|
hoidmvlelem2.m |
|- ( ph -> M e. NN ) |
| 22 |
|
hoidmvlelem2.le |
|- ( ph -> G <_ ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( P ` j ) ) ) |
| 23 |
|
hoidmvlelem2.O |
|- O = ran ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } |-> ( ( D ` i ) ` Z ) ) |
| 24 |
|
hoidmvlelem2.v |
|- V = ( { ( B ` Z ) } u. O ) |
| 25 |
|
hoidmvlelem2.q |
|- Q = inf ( V , RR , < ) |
| 26 |
|
snidg |
|- ( Z e. ( X \ Y ) -> Z e. { Z } ) |
| 27 |
4 26
|
syl |
|- ( ph -> Z e. { Z } ) |
| 28 |
|
elun2 |
|- ( Z e. { Z } -> Z e. ( Y u. { Z } ) ) |
| 29 |
27 28
|
syl |
|- ( ph -> Z e. ( Y u. { Z } ) ) |
| 30 |
29 5
|
eleqtrrdi |
|- ( ph -> Z e. W ) |
| 31 |
6 30
|
ffvelcdmd |
|- ( ph -> ( A ` Z ) e. RR ) |
| 32 |
7 30
|
ffvelcdmd |
|- ( ph -> ( B ` Z ) e. RR ) |
| 33 |
32
|
snssd |
|- ( ph -> { ( B ` Z ) } C_ RR ) |
| 34 |
|
nfv |
|- F/ i ph |
| 35 |
|
eqid |
|- ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } |-> ( ( D ` i ) ` Z ) ) = ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } |-> ( ( D ` i ) ` Z ) ) |
| 36 |
|
simpl |
|- ( ( ph /\ i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } ) -> ph ) |
| 37 |
|
fz1ssnn |
|- ( 1 ... M ) C_ NN |
| 38 |
|
elrabi |
|- ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } -> i e. ( 1 ... M ) ) |
| 39 |
37 38
|
sselid |
|- ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } -> i e. NN ) |
| 40 |
39
|
adantl |
|- ( ( ph /\ i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } ) -> i e. NN ) |
| 41 |
|
eleq1w |
|- ( j = i -> ( j e. NN <-> i e. NN ) ) |
| 42 |
41
|
anbi2d |
|- ( j = i -> ( ( ph /\ j e. NN ) <-> ( ph /\ i e. NN ) ) ) |
| 43 |
|
fveq2 |
|- ( j = i -> ( D ` j ) = ( D ` i ) ) |
| 44 |
43
|
fveq1d |
|- ( j = i -> ( ( D ` j ) ` Z ) = ( ( D ` i ) ` Z ) ) |
| 45 |
44
|
eleq1d |
|- ( j = i -> ( ( ( D ` j ) ` Z ) e. RR <-> ( ( D ` i ) ` Z ) e. RR ) ) |
| 46 |
42 45
|
imbi12d |
|- ( j = i -> ( ( ( ph /\ j e. NN ) -> ( ( D ` j ) ` Z ) e. RR ) <-> ( ( ph /\ i e. NN ) -> ( ( D ` i ) ` Z ) e. RR ) ) ) |
| 47 |
11
|
ffvelcdmda |
|- ( ( ph /\ j e. NN ) -> ( D ` j ) e. ( RR ^m W ) ) |
| 48 |
|
elmapi |
|- ( ( D ` j ) e. ( RR ^m W ) -> ( D ` j ) : W --> RR ) |
| 49 |
47 48
|
syl |
|- ( ( ph /\ j e. NN ) -> ( D ` j ) : W --> RR ) |
| 50 |
30
|
adantr |
|- ( ( ph /\ j e. NN ) -> Z e. W ) |
| 51 |
49 50
|
ffvelcdmd |
|- ( ( ph /\ j e. NN ) -> ( ( D ` j ) ` Z ) e. RR ) |
| 52 |
46 51
|
chvarvv |
|- ( ( ph /\ i e. NN ) -> ( ( D ` i ) ` Z ) e. RR ) |
| 53 |
36 40 52
|
syl2anc |
|- ( ( ph /\ i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } ) -> ( ( D ` i ) ` Z ) e. RR ) |
| 54 |
34 35 53
|
rnmptssd |
|- ( ph -> ran ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } |-> ( ( D ` i ) ` Z ) ) C_ RR ) |
| 55 |
23 54
|
eqsstrid |
|- ( ph -> O C_ RR ) |
| 56 |
33 55
|
unssd |
|- ( ph -> ( { ( B ` Z ) } u. O ) C_ RR ) |
| 57 |
24 56
|
eqsstrid |
|- ( ph -> V C_ RR ) |
| 58 |
|
ltso |
|- < Or RR |
| 59 |
58
|
a1i |
|- ( ph -> < Or RR ) |
| 60 |
|
snfi |
|- { ( B ` Z ) } e. Fin |
| 61 |
60
|
a1i |
|- ( ph -> { ( B ` Z ) } e. Fin ) |
| 62 |
|
fzfi |
|- ( 1 ... M ) e. Fin |
| 63 |
|
rabfi |
|- ( ( 1 ... M ) e. Fin -> { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } e. Fin ) |
| 64 |
62 63
|
ax-mp |
|- { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } e. Fin |
| 65 |
64
|
a1i |
|- ( ph -> { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } e. Fin ) |
| 66 |
35
|
rnmptfi |
|- ( { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } e. Fin -> ran ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } |-> ( ( D ` i ) ` Z ) ) e. Fin ) |
| 67 |
65 66
|
syl |
|- ( ph -> ran ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } |-> ( ( D ` i ) ` Z ) ) e. Fin ) |
| 68 |
23 67
|
eqeltrid |
|- ( ph -> O e. Fin ) |
| 69 |
|
unfi |
|- ( ( { ( B ` Z ) } e. Fin /\ O e. Fin ) -> ( { ( B ` Z ) } u. O ) e. Fin ) |
| 70 |
61 68 69
|
syl2anc |
|- ( ph -> ( { ( B ` Z ) } u. O ) e. Fin ) |
| 71 |
24 70
|
eqeltrid |
|- ( ph -> V e. Fin ) |
| 72 |
|
fvex |
|- ( B ` Z ) e. _V |
| 73 |
72
|
snid |
|- ( B ` Z ) e. { ( B ` Z ) } |
| 74 |
|
elun1 |
|- ( ( B ` Z ) e. { ( B ` Z ) } -> ( B ` Z ) e. ( { ( B ` Z ) } u. O ) ) |
| 75 |
73 74
|
ax-mp |
|- ( B ` Z ) e. ( { ( B ` Z ) } u. O ) |
| 76 |
24
|
eqcomi |
|- ( { ( B ` Z ) } u. O ) = V |
| 77 |
75 76
|
eleqtri |
|- ( B ` Z ) e. V |
| 78 |
77
|
a1i |
|- ( ph -> ( B ` Z ) e. V ) |
| 79 |
|
ne0i |
|- ( ( B ` Z ) e. V -> V =/= (/) ) |
| 80 |
78 79
|
syl |
|- ( ph -> V =/= (/) ) |
| 81 |
|
fiinfcl |
|- ( ( < Or RR /\ ( V e. Fin /\ V =/= (/) /\ V C_ RR ) ) -> inf ( V , RR , < ) e. V ) |
| 82 |
59 71 80 57 81
|
syl13anc |
|- ( ph -> inf ( V , RR , < ) e. V ) |
| 83 |
25 82
|
eqeltrid |
|- ( ph -> Q e. V ) |
| 84 |
57 83
|
sseldd |
|- ( ph -> Q e. RR ) |
| 85 |
|
ssrab2 |
|- { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } C_ ( ( A ` Z ) [,] ( B ` Z ) ) |
| 86 |
17 85
|
eqsstri |
|- U C_ ( ( A ` Z ) [,] ( B ` Z ) ) |
| 87 |
86
|
a1i |
|- ( ph -> U C_ ( ( A ` Z ) [,] ( B ` Z ) ) ) |
| 88 |
31 32
|
iccssred |
|- ( ph -> ( ( A ` Z ) [,] ( B ` Z ) ) C_ RR ) |
| 89 |
87 88
|
sstrd |
|- ( ph -> U C_ RR ) |
| 90 |
89 18
|
sseldd |
|- ( ph -> S e. RR ) |
| 91 |
31
|
rexrd |
|- ( ph -> ( A ` Z ) e. RR* ) |
| 92 |
32
|
rexrd |
|- ( ph -> ( B ` Z ) e. RR* ) |
| 93 |
86 18
|
sselid |
|- ( ph -> S e. ( ( A ` Z ) [,] ( B ` Z ) ) ) |
| 94 |
|
iccgelb |
|- ( ( ( A ` Z ) e. RR* /\ ( B ` Z ) e. RR* /\ S e. ( ( A ` Z ) [,] ( B ` Z ) ) ) -> ( A ` Z ) <_ S ) |
| 95 |
91 92 93 94
|
syl3anc |
|- ( ph -> ( A ` Z ) <_ S ) |
| 96 |
19
|
adantr |
|- ( ( ph /\ x = ( B ` Z ) ) -> S < ( B ` Z ) ) |
| 97 |
|
id |
|- ( x = ( B ` Z ) -> x = ( B ` Z ) ) |
| 98 |
97
|
eqcomd |
|- ( x = ( B ` Z ) -> ( B ` Z ) = x ) |
| 99 |
98
|
adantl |
|- ( ( ph /\ x = ( B ` Z ) ) -> ( B ` Z ) = x ) |
| 100 |
96 99
|
breqtrd |
|- ( ( ph /\ x = ( B ` Z ) ) -> S < x ) |
| 101 |
100
|
adantlr |
|- ( ( ( ph /\ x e. V ) /\ x = ( B ` Z ) ) -> S < x ) |
| 102 |
|
simpll |
|- ( ( ( ph /\ x e. V ) /\ -. x = ( B ` Z ) ) -> ph ) |
| 103 |
|
id |
|- ( x e. V -> x e. V ) |
| 104 |
103 24
|
eleqtrdi |
|- ( x e. V -> x e. ( { ( B ` Z ) } u. O ) ) |
| 105 |
104
|
adantr |
|- ( ( x e. V /\ -. x = ( B ` Z ) ) -> x e. ( { ( B ` Z ) } u. O ) ) |
| 106 |
|
elsni |
|- ( x e. { ( B ` Z ) } -> x = ( B ` Z ) ) |
| 107 |
106
|
con3i |
|- ( -. x = ( B ` Z ) -> -. x e. { ( B ` Z ) } ) |
| 108 |
107
|
adantl |
|- ( ( x e. V /\ -. x = ( B ` Z ) ) -> -. x e. { ( B ` Z ) } ) |
| 109 |
|
elunnel1 |
|- ( ( x e. ( { ( B ` Z ) } u. O ) /\ -. x e. { ( B ` Z ) } ) -> x e. O ) |
| 110 |
105 108 109
|
syl2anc |
|- ( ( x e. V /\ -. x = ( B ` Z ) ) -> x e. O ) |
| 111 |
110
|
adantll |
|- ( ( ( ph /\ x e. V ) /\ -. x = ( B ` Z ) ) -> x e. O ) |
| 112 |
|
id |
|- ( x e. O -> x e. O ) |
| 113 |
112 23
|
eleqtrdi |
|- ( x e. O -> x e. ran ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } |-> ( ( D ` i ) ` Z ) ) ) |
| 114 |
|
vex |
|- x e. _V |
| 115 |
35
|
elrnmpt |
|- ( x e. _V -> ( x e. ran ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } |-> ( ( D ` i ) ` Z ) ) <-> E. i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } x = ( ( D ` i ) ` Z ) ) ) |
| 116 |
114 115
|
ax-mp |
|- ( x e. ran ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } |-> ( ( D ` i ) ` Z ) ) <-> E. i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } x = ( ( D ` i ) ` Z ) ) |
| 117 |
113 116
|
sylib |
|- ( x e. O -> E. i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } x = ( ( D ` i ) ` Z ) ) |
| 118 |
117
|
adantl |
|- ( ( ph /\ x e. O ) -> E. i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } x = ( ( D ` i ) ` Z ) ) |
| 119 |
|
fveq2 |
|- ( j = i -> ( C ` j ) = ( C ` i ) ) |
| 120 |
119
|
fveq1d |
|- ( j = i -> ( ( C ` j ) ` Z ) = ( ( C ` i ) ` Z ) ) |
| 121 |
120
|
eleq1d |
|- ( j = i -> ( ( ( C ` j ) ` Z ) e. RR <-> ( ( C ` i ) ` Z ) e. RR ) ) |
| 122 |
42 121
|
imbi12d |
|- ( j = i -> ( ( ( ph /\ j e. NN ) -> ( ( C ` j ) ` Z ) e. RR ) <-> ( ( ph /\ i e. NN ) -> ( ( C ` i ) ` Z ) e. RR ) ) ) |
| 123 |
8
|
ffvelcdmda |
|- ( ( ph /\ j e. NN ) -> ( C ` j ) e. ( RR ^m W ) ) |
| 124 |
|
elmapi |
|- ( ( C ` j ) e. ( RR ^m W ) -> ( C ` j ) : W --> RR ) |
| 125 |
123 124
|
syl |
|- ( ( ph /\ j e. NN ) -> ( C ` j ) : W --> RR ) |
| 126 |
125 50
|
ffvelcdmd |
|- ( ( ph /\ j e. NN ) -> ( ( C ` j ) ` Z ) e. RR ) |
| 127 |
122 126
|
chvarvv |
|- ( ( ph /\ i e. NN ) -> ( ( C ` i ) ` Z ) e. RR ) |
| 128 |
127
|
rexrd |
|- ( ( ph /\ i e. NN ) -> ( ( C ` i ) ` Z ) e. RR* ) |
| 129 |
36 40 128
|
syl2anc |
|- ( ( ph /\ i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } ) -> ( ( C ` i ) ` Z ) e. RR* ) |
| 130 |
52
|
rexrd |
|- ( ( ph /\ i e. NN ) -> ( ( D ` i ) ` Z ) e. RR* ) |
| 131 |
36 40 130
|
syl2anc |
|- ( ( ph /\ i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } ) -> ( ( D ` i ) ` Z ) e. RR* ) |
| 132 |
120 44
|
oveq12d |
|- ( j = i -> ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) = ( ( ( C ` i ) ` Z ) [,) ( ( D ` i ) ` Z ) ) ) |
| 133 |
132
|
eleq2d |
|- ( j = i -> ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) <-> S e. ( ( ( C ` i ) ` Z ) [,) ( ( D ` i ) ` Z ) ) ) ) |
| 134 |
133
|
elrab |
|- ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } <-> ( i e. ( 1 ... M ) /\ S e. ( ( ( C ` i ) ` Z ) [,) ( ( D ` i ) ` Z ) ) ) ) |
| 135 |
134
|
biimpi |
|- ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } -> ( i e. ( 1 ... M ) /\ S e. ( ( ( C ` i ) ` Z ) [,) ( ( D ` i ) ` Z ) ) ) ) |
| 136 |
135
|
simprd |
|- ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } -> S e. ( ( ( C ` i ) ` Z ) [,) ( ( D ` i ) ` Z ) ) ) |
| 137 |
136
|
adantl |
|- ( ( ph /\ i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } ) -> S e. ( ( ( C ` i ) ` Z ) [,) ( ( D ` i ) ` Z ) ) ) |
| 138 |
|
icoltub |
|- ( ( ( ( C ` i ) ` Z ) e. RR* /\ ( ( D ` i ) ` Z ) e. RR* /\ S e. ( ( ( C ` i ) ` Z ) [,) ( ( D ` i ) ` Z ) ) ) -> S < ( ( D ` i ) ` Z ) ) |
| 139 |
129 131 137 138
|
syl3anc |
|- ( ( ph /\ i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } ) -> S < ( ( D ` i ) ` Z ) ) |
| 140 |
139
|
3adant3 |
|- ( ( ph /\ i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } /\ x = ( ( D ` i ) ` Z ) ) -> S < ( ( D ` i ) ` Z ) ) |
| 141 |
|
id |
|- ( x = ( ( D ` i ) ` Z ) -> x = ( ( D ` i ) ` Z ) ) |
| 142 |
141
|
eqcomd |
|- ( x = ( ( D ` i ) ` Z ) -> ( ( D ` i ) ` Z ) = x ) |
| 143 |
142
|
3ad2ant3 |
|- ( ( ph /\ i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } /\ x = ( ( D ` i ) ` Z ) ) -> ( ( D ` i ) ` Z ) = x ) |
| 144 |
140 143
|
breqtrd |
|- ( ( ph /\ i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } /\ x = ( ( D ` i ) ` Z ) ) -> S < x ) |
| 145 |
144
|
3exp |
|- ( ph -> ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } -> ( x = ( ( D ` i ) ` Z ) -> S < x ) ) ) |
| 146 |
145
|
adantr |
|- ( ( ph /\ x e. O ) -> ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } -> ( x = ( ( D ` i ) ` Z ) -> S < x ) ) ) |
| 147 |
146
|
rexlimdv |
|- ( ( ph /\ x e. O ) -> ( E. i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } x = ( ( D ` i ) ` Z ) -> S < x ) ) |
| 148 |
118 147
|
mpd |
|- ( ( ph /\ x e. O ) -> S < x ) |
| 149 |
102 111 148
|
syl2anc |
|- ( ( ( ph /\ x e. V ) /\ -. x = ( B ` Z ) ) -> S < x ) |
| 150 |
101 149
|
pm2.61dan |
|- ( ( ph /\ x e. V ) -> S < x ) |
| 151 |
150
|
ralrimiva |
|- ( ph -> A. x e. V S < x ) |
| 152 |
|
breq2 |
|- ( x = inf ( V , RR , < ) -> ( S < x <-> S < inf ( V , RR , < ) ) ) |
| 153 |
152
|
rspcva |
|- ( ( inf ( V , RR , < ) e. V /\ A. x e. V S < x ) -> S < inf ( V , RR , < ) ) |
| 154 |
82 151 153
|
syl2anc |
|- ( ph -> S < inf ( V , RR , < ) ) |
| 155 |
25
|
eqcomi |
|- inf ( V , RR , < ) = Q |
| 156 |
155
|
a1i |
|- ( ph -> inf ( V , RR , < ) = Q ) |
| 157 |
154 156
|
breqtrd |
|- ( ph -> S < Q ) |
| 158 |
31 90 84 95 157
|
lelttrd |
|- ( ph -> ( A ` Z ) < Q ) |
| 159 |
31 84 158
|
ltled |
|- ( ph -> ( A ` Z ) <_ Q ) |
| 160 |
|
fiminre |
|- ( ( V C_ RR /\ V e. Fin /\ V =/= (/) ) -> E. x e. V A. y e. V x <_ y ) |
| 161 |
57 71 80 160
|
syl3anc |
|- ( ph -> E. x e. V A. y e. V x <_ y ) |
| 162 |
|
lbinfle |
|- ( ( V C_ RR /\ E. x e. V A. y e. V x <_ y /\ ( B ` Z ) e. V ) -> inf ( V , RR , < ) <_ ( B ` Z ) ) |
| 163 |
57 161 78 162
|
syl3anc |
|- ( ph -> inf ( V , RR , < ) <_ ( B ` Z ) ) |
| 164 |
25 163
|
eqbrtrid |
|- ( ph -> Q <_ ( B ` Z ) ) |
| 165 |
31 32 84 159 164
|
eliccd |
|- ( ph -> Q e. ( ( A ` Z ) [,] ( B ` Z ) ) ) |
| 166 |
84
|
recnd |
|- ( ph -> Q e. CC ) |
| 167 |
90
|
recnd |
|- ( ph -> S e. CC ) |
| 168 |
31
|
recnd |
|- ( ph -> ( A ` Z ) e. CC ) |
| 169 |
166 167 168
|
npncand |
|- ( ph -> ( ( Q - S ) + ( S - ( A ` Z ) ) ) = ( Q - ( A ` Z ) ) ) |
| 170 |
169
|
eqcomd |
|- ( ph -> ( Q - ( A ` Z ) ) = ( ( Q - S ) + ( S - ( A ` Z ) ) ) ) |
| 171 |
170
|
oveq2d |
|- ( ph -> ( G x. ( Q - ( A ` Z ) ) ) = ( G x. ( ( Q - S ) + ( S - ( A ` Z ) ) ) ) ) |
| 172 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 173 |
2 3
|
ssfid |
|- ( ph -> Y e. Fin ) |
| 174 |
|
ssun1 |
|- Y C_ ( Y u. { Z } ) |
| 175 |
174 5
|
sseqtrri |
|- Y C_ W |
| 176 |
175
|
a1i |
|- ( ph -> Y C_ W ) |
| 177 |
6 176
|
fssresd |
|- ( ph -> ( A |` Y ) : Y --> RR ) |
| 178 |
7 176
|
fssresd |
|- ( ph -> ( B |` Y ) : Y --> RR ) |
| 179 |
1 173 177 178
|
hoidmvcl |
|- ( ph -> ( ( A |` Y ) ( L ` Y ) ( B |` Y ) ) e. ( 0 [,) +oo ) ) |
| 180 |
15 179
|
eqeltrid |
|- ( ph -> G e. ( 0 [,) +oo ) ) |
| 181 |
172 180
|
sselid |
|- ( ph -> G e. RR ) |
| 182 |
181
|
recnd |
|- ( ph -> G e. CC ) |
| 183 |
166 167
|
subcld |
|- ( ph -> ( Q - S ) e. CC ) |
| 184 |
167 168
|
subcld |
|- ( ph -> ( S - ( A ` Z ) ) e. CC ) |
| 185 |
182 183 184
|
adddid |
|- ( ph -> ( G x. ( ( Q - S ) + ( S - ( A ` Z ) ) ) ) = ( ( G x. ( Q - S ) ) + ( G x. ( S - ( A ` Z ) ) ) ) ) |
| 186 |
182 183
|
mulcld |
|- ( ph -> ( G x. ( Q - S ) ) e. CC ) |
| 187 |
182 184
|
mulcld |
|- ( ph -> ( G x. ( S - ( A ` Z ) ) ) e. CC ) |
| 188 |
186 187
|
addcomd |
|- ( ph -> ( ( G x. ( Q - S ) ) + ( G x. ( S - ( A ` Z ) ) ) ) = ( ( G x. ( S - ( A ` Z ) ) ) + ( G x. ( Q - S ) ) ) ) |
| 189 |
171 185 188
|
3eqtrd |
|- ( ph -> ( G x. ( Q - ( A ` Z ) ) ) = ( ( G x. ( S - ( A ` Z ) ) ) + ( G x. ( Q - S ) ) ) ) |
| 190 |
84 90
|
jca |
|- ( ph -> ( Q e. RR /\ S e. RR ) ) |
| 191 |
|
resubcl |
|- ( ( Q e. RR /\ S e. RR ) -> ( Q - S ) e. RR ) |
| 192 |
190 191
|
syl |
|- ( ph -> ( Q - S ) e. RR ) |
| 193 |
181 192
|
jca |
|- ( ph -> ( G e. RR /\ ( Q - S ) e. RR ) ) |
| 194 |
|
remulcl |
|- ( ( G e. RR /\ ( Q - S ) e. RR ) -> ( G x. ( Q - S ) ) e. RR ) |
| 195 |
193 194
|
syl |
|- ( ph -> ( G x. ( Q - S ) ) e. RR ) |
| 196 |
90 31
|
jca |
|- ( ph -> ( S e. RR /\ ( A ` Z ) e. RR ) ) |
| 197 |
|
resubcl |
|- ( ( S e. RR /\ ( A ` Z ) e. RR ) -> ( S - ( A ` Z ) ) e. RR ) |
| 198 |
196 197
|
syl |
|- ( ph -> ( S - ( A ` Z ) ) e. RR ) |
| 199 |
181 198
|
jca |
|- ( ph -> ( G e. RR /\ ( S - ( A ` Z ) ) e. RR ) ) |
| 200 |
|
remulcl |
|- ( ( G e. RR /\ ( S - ( A ` Z ) ) e. RR ) -> ( G x. ( S - ( A ` Z ) ) ) e. RR ) |
| 201 |
199 200
|
syl |
|- ( ph -> ( G x. ( S - ( A ` Z ) ) ) e. RR ) |
| 202 |
195 201
|
jca |
|- ( ph -> ( ( G x. ( Q - S ) ) e. RR /\ ( G x. ( S - ( A ` Z ) ) ) e. RR ) ) |
| 203 |
|
readdcl |
|- ( ( ( G x. ( Q - S ) ) e. RR /\ ( G x. ( S - ( A ` Z ) ) ) e. RR ) -> ( ( G x. ( Q - S ) ) + ( G x. ( S - ( A ` Z ) ) ) ) e. RR ) |
| 204 |
202 203
|
syl |
|- ( ph -> ( ( G x. ( Q - S ) ) + ( G x. ( S - ( A ` Z ) ) ) ) e. RR ) |
| 205 |
188 204
|
eqeltrrd |
|- ( ph -> ( ( G x. ( S - ( A ` Z ) ) ) + ( G x. ( Q - S ) ) ) e. RR ) |
| 206 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 207 |
16
|
rpred |
|- ( ph -> E e. RR ) |
| 208 |
206 207
|
readdcld |
|- ( ph -> ( 1 + E ) e. RR ) |
| 209 |
4
|
eldifbd |
|- ( ph -> -. Z e. Y ) |
| 210 |
30 209
|
eldifd |
|- ( ph -> Z e. ( W \ Y ) ) |
| 211 |
1 173 210 5 8 11 13 14 90
|
sge0hsphoire |
|- ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) e. RR ) |
| 212 |
208 211
|
remulcld |
|- ( ph -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) e. RR ) |
| 213 |
|
fzfid |
|- ( ph -> ( 1 ... M ) e. Fin ) |
| 214 |
192
|
adantr |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( Q - S ) e. RR ) |
| 215 |
|
simpl |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ph ) |
| 216 |
|
elfznn |
|- ( j e. ( 1 ... M ) -> j e. NN ) |
| 217 |
216
|
adantl |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> j e. NN ) |
| 218 |
|
id |
|- ( j e. NN -> j e. NN ) |
| 219 |
|
ovexd |
|- ( j e. NN -> ( ( J ` j ) ( L ` Y ) ( K ` j ) ) e. _V ) |
| 220 |
20
|
fvmpt2 |
|- ( ( j e. NN /\ ( ( J ` j ) ( L ` Y ) ( K ` j ) ) e. _V ) -> ( P ` j ) = ( ( J ` j ) ( L ` Y ) ( K ` j ) ) ) |
| 221 |
218 219 220
|
syl2anc |
|- ( j e. NN -> ( P ` j ) = ( ( J ` j ) ( L ` Y ) ( K ` j ) ) ) |
| 222 |
221
|
adantl |
|- ( ( ph /\ j e. NN ) -> ( P ` j ) = ( ( J ` j ) ( L ` Y ) ( K ` j ) ) ) |
| 223 |
173
|
adantr |
|- ( ( ph /\ j e. NN ) -> Y e. Fin ) |
| 224 |
175
|
a1i |
|- ( ( ph /\ j e. NN ) -> Y C_ W ) |
| 225 |
125 224
|
fssresd |
|- ( ( ph /\ j e. NN ) -> ( ( C ` j ) |` Y ) : Y --> RR ) |
| 226 |
225
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( ( C ` j ) |` Y ) : Y --> RR ) |
| 227 |
|
iftrue |
|- ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) = ( ( C ` j ) |` Y ) ) |
| 228 |
227
|
adantl |
|- ( ( ( ph /\ j e. NN ) /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) = ( ( C ` j ) |` Y ) ) |
| 229 |
228
|
feq1d |
|- ( ( ( ph /\ j e. NN ) /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) : Y --> RR <-> ( ( C ` j ) |` Y ) : Y --> RR ) ) |
| 230 |
226 229
|
mpbird |
|- ( ( ( ph /\ j e. NN ) /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) : Y --> RR ) |
| 231 |
|
0red |
|- ( ( ph /\ y e. Y ) -> 0 e. RR ) |
| 232 |
231 9
|
fmptd |
|- ( ph -> F : Y --> RR ) |
| 233 |
232
|
ad2antrr |
|- ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> F : Y --> RR ) |
| 234 |
|
iffalse |
|- ( -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) = F ) |
| 235 |
234
|
adantl |
|- ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) = F ) |
| 236 |
235
|
feq1d |
|- ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) : Y --> RR <-> F : Y --> RR ) ) |
| 237 |
233 236
|
mpbird |
|- ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) : Y --> RR ) |
| 238 |
230 237
|
pm2.61dan |
|- ( ( ph /\ j e. NN ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) : Y --> RR ) |
| 239 |
|
simpr |
|- ( ( ph /\ j e. NN ) -> j e. NN ) |
| 240 |
|
fvex |
|- ( C ` j ) e. _V |
| 241 |
240
|
resex |
|- ( ( C ` j ) |` Y ) e. _V |
| 242 |
241
|
a1i |
|- ( ph -> ( ( C ` j ) |` Y ) e. _V ) |
| 243 |
2 3
|
ssexd |
|- ( ph -> Y e. _V ) |
| 244 |
|
mptexg |
|- ( Y e. _V -> ( y e. Y |-> 0 ) e. _V ) |
| 245 |
243 244
|
syl |
|- ( ph -> ( y e. Y |-> 0 ) e. _V ) |
| 246 |
9 245
|
eqeltrid |
|- ( ph -> F e. _V ) |
| 247 |
242 246
|
ifcld |
|- ( ph -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) e. _V ) |
| 248 |
247
|
adantr |
|- ( ( ph /\ j e. NN ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) e. _V ) |
| 249 |
10
|
fvmpt2 |
|- ( ( j e. NN /\ if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) e. _V ) -> ( J ` j ) = if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) ) |
| 250 |
239 248 249
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> ( J ` j ) = if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) ) |
| 251 |
250
|
feq1d |
|- ( ( ph /\ j e. NN ) -> ( ( J ` j ) : Y --> RR <-> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) : Y --> RR ) ) |
| 252 |
238 251
|
mpbird |
|- ( ( ph /\ j e. NN ) -> ( J ` j ) : Y --> RR ) |
| 253 |
49 224
|
fssresd |
|- ( ( ph /\ j e. NN ) -> ( ( D ` j ) |` Y ) : Y --> RR ) |
| 254 |
253
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( ( D ` j ) |` Y ) : Y --> RR ) |
| 255 |
|
iftrue |
|- ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) = ( ( D ` j ) |` Y ) ) |
| 256 |
255
|
adantl |
|- ( ( ( ph /\ j e. NN ) /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) = ( ( D ` j ) |` Y ) ) |
| 257 |
256
|
feq1d |
|- ( ( ( ph /\ j e. NN ) /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) : Y --> RR <-> ( ( D ` j ) |` Y ) : Y --> RR ) ) |
| 258 |
254 257
|
mpbird |
|- ( ( ( ph /\ j e. NN ) /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) : Y --> RR ) |
| 259 |
|
iffalse |
|- ( -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) = F ) |
| 260 |
259
|
adantl |
|- ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) = F ) |
| 261 |
260
|
feq1d |
|- ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) : Y --> RR <-> F : Y --> RR ) ) |
| 262 |
233 261
|
mpbird |
|- ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) : Y --> RR ) |
| 263 |
258 262
|
pm2.61dan |
|- ( ( ph /\ j e. NN ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) : Y --> RR ) |
| 264 |
|
fvex |
|- ( D ` j ) e. _V |
| 265 |
264
|
resex |
|- ( ( D ` j ) |` Y ) e. _V |
| 266 |
265
|
a1i |
|- ( ph -> ( ( D ` j ) |` Y ) e. _V ) |
| 267 |
266 246
|
ifcld |
|- ( ph -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) e. _V ) |
| 268 |
267
|
adantr |
|- ( ( ph /\ j e. NN ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) e. _V ) |
| 269 |
12
|
fvmpt2 |
|- ( ( j e. NN /\ if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) e. _V ) -> ( K ` j ) = if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) ) |
| 270 |
239 268 269
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> ( K ` j ) = if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) ) |
| 271 |
270
|
feq1d |
|- ( ( ph /\ j e. NN ) -> ( ( K ` j ) : Y --> RR <-> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) : Y --> RR ) ) |
| 272 |
263 271
|
mpbird |
|- ( ( ph /\ j e. NN ) -> ( K ` j ) : Y --> RR ) |
| 273 |
1 223 252 272
|
hoidmvcl |
|- ( ( ph /\ j e. NN ) -> ( ( J ` j ) ( L ` Y ) ( K ` j ) ) e. ( 0 [,) +oo ) ) |
| 274 |
222 273
|
eqeltrd |
|- ( ( ph /\ j e. NN ) -> ( P ` j ) e. ( 0 [,) +oo ) ) |
| 275 |
172 274
|
sselid |
|- ( ( ph /\ j e. NN ) -> ( P ` j ) e. RR ) |
| 276 |
215 217 275
|
syl2anc |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( P ` j ) e. RR ) |
| 277 |
214 276
|
remulcld |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( Q - S ) x. ( P ` j ) ) e. RR ) |
| 278 |
213 277
|
fsumrecl |
|- ( ph -> sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) e. RR ) |
| 279 |
208 278
|
remulcld |
|- ( ph -> ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) e. RR ) |
| 280 |
212 279
|
readdcld |
|- ( ph -> ( ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) + ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) e. RR ) |
| 281 |
1 173 210 5 8 11 13 14 84
|
sge0hsphoire |
|- ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) e. RR ) |
| 282 |
208 281
|
remulcld |
|- ( ph -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) e. RR ) |
| 283 |
18 17
|
eleqtrdi |
|- ( ph -> S e. { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } ) |
| 284 |
|
oveq1 |
|- ( z = S -> ( z - ( A ` Z ) ) = ( S - ( A ` Z ) ) ) |
| 285 |
284
|
oveq2d |
|- ( z = S -> ( G x. ( z - ( A ` Z ) ) ) = ( G x. ( S - ( A ` Z ) ) ) ) |
| 286 |
|
fveq2 |
|- ( z = S -> ( H ` z ) = ( H ` S ) ) |
| 287 |
286
|
fveq1d |
|- ( z = S -> ( ( H ` z ) ` ( D ` j ) ) = ( ( H ` S ) ` ( D ` j ) ) ) |
| 288 |
287
|
oveq2d |
|- ( z = S -> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) = ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) |
| 289 |
288
|
mpteq2dv |
|- ( z = S -> ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) = ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) |
| 290 |
289
|
fveq2d |
|- ( z = S -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) |
| 291 |
290
|
oveq2d |
|- ( z = S -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) = ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) |
| 292 |
285 291
|
breq12d |
|- ( z = S -> ( ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) <-> ( G x. ( S - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) |
| 293 |
292
|
elrab |
|- ( S e. { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } <-> ( S e. ( ( A ` Z ) [,] ( B ` Z ) ) /\ ( G x. ( S - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) |
| 294 |
283 293
|
sylib |
|- ( ph -> ( S e. ( ( A ` Z ) [,] ( B ` Z ) ) /\ ( G x. ( S - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) |
| 295 |
294
|
simprd |
|- ( ph -> ( G x. ( S - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) |
| 296 |
213 276
|
fsumrecl |
|- ( ph -> sum_ j e. ( 1 ... M ) ( P ` j ) e. RR ) |
| 297 |
208 296
|
remulcld |
|- ( ph -> ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( P ` j ) ) e. RR ) |
| 298 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 299 |
90 84
|
posdifd |
|- ( ph -> ( S < Q <-> 0 < ( Q - S ) ) ) |
| 300 |
157 299
|
mpbid |
|- ( ph -> 0 < ( Q - S ) ) |
| 301 |
298 192 300
|
ltled |
|- ( ph -> 0 <_ ( Q - S ) ) |
| 302 |
181 297 192 301 22
|
lemul1ad |
|- ( ph -> ( G x. ( Q - S ) ) <_ ( ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( P ` j ) ) x. ( Q - S ) ) ) |
| 303 |
208
|
recnd |
|- ( ph -> ( 1 + E ) e. CC ) |
| 304 |
296
|
recnd |
|- ( ph -> sum_ j e. ( 1 ... M ) ( P ` j ) e. CC ) |
| 305 |
303 304 183
|
mulassd |
|- ( ph -> ( ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( P ` j ) ) x. ( Q - S ) ) = ( ( 1 + E ) x. ( sum_ j e. ( 1 ... M ) ( P ` j ) x. ( Q - S ) ) ) ) |
| 306 |
276
|
recnd |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( P ` j ) e. CC ) |
| 307 |
213 183 306
|
fsummulc1 |
|- ( ph -> ( sum_ j e. ( 1 ... M ) ( P ` j ) x. ( Q - S ) ) = sum_ j e. ( 1 ... M ) ( ( P ` j ) x. ( Q - S ) ) ) |
| 308 |
183
|
adantr |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( Q - S ) e. CC ) |
| 309 |
306 308
|
mulcomd |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( P ` j ) x. ( Q - S ) ) = ( ( Q - S ) x. ( P ` j ) ) ) |
| 310 |
309
|
sumeq2dv |
|- ( ph -> sum_ j e. ( 1 ... M ) ( ( P ` j ) x. ( Q - S ) ) = sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) |
| 311 |
307 310
|
eqtrd |
|- ( ph -> ( sum_ j e. ( 1 ... M ) ( P ` j ) x. ( Q - S ) ) = sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) |
| 312 |
311
|
oveq2d |
|- ( ph -> ( ( 1 + E ) x. ( sum_ j e. ( 1 ... M ) ( P ` j ) x. ( Q - S ) ) ) = ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) |
| 313 |
305 312
|
eqtrd |
|- ( ph -> ( ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( P ` j ) ) x. ( Q - S ) ) = ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) |
| 314 |
302 313
|
breqtrd |
|- ( ph -> ( G x. ( Q - S ) ) <_ ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) |
| 315 |
201 195 212 279 295 314
|
le2addd |
|- ( ph -> ( ( G x. ( S - ( A ` Z ) ) ) + ( G x. ( Q - S ) ) ) <_ ( ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) + ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) ) |
| 316 |
|
nnsplit |
|- ( M e. NN -> NN = ( ( 1 ... M ) u. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 317 |
21 316
|
syl |
|- ( ph -> NN = ( ( 1 ... M ) u. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 318 |
|
uncom |
|- ( ( 1 ... M ) u. ( ZZ>= ` ( M + 1 ) ) ) = ( ( ZZ>= ` ( M + 1 ) ) u. ( 1 ... M ) ) |
| 319 |
318
|
a1i |
|- ( ph -> ( ( 1 ... M ) u. ( ZZ>= ` ( M + 1 ) ) ) = ( ( ZZ>= ` ( M + 1 ) ) u. ( 1 ... M ) ) ) |
| 320 |
317 319
|
eqtr2d |
|- ( ph -> ( ( ZZ>= ` ( M + 1 ) ) u. ( 1 ... M ) ) = NN ) |
| 321 |
320
|
eqcomd |
|- ( ph -> NN = ( ( ZZ>= ` ( M + 1 ) ) u. ( 1 ... M ) ) ) |
| 322 |
321
|
mpteq1d |
|- ( ph -> ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) = ( j e. ( ( ZZ>= ` ( M + 1 ) ) u. ( 1 ... M ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) |
| 323 |
322
|
fveq2d |
|- ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) = ( sum^ ` ( j e. ( ( ZZ>= ` ( M + 1 ) ) u. ( 1 ... M ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) |
| 324 |
|
nfv |
|- F/ j ph |
| 325 |
|
fvexd |
|- ( ph -> ( ZZ>= ` ( M + 1 ) ) e. _V ) |
| 326 |
|
ovexd |
|- ( ph -> ( 1 ... M ) e. _V ) |
| 327 |
|
incom |
|- ( ( ZZ>= ` ( M + 1 ) ) i^i ( 1 ... M ) ) = ( ( 1 ... M ) i^i ( ZZ>= ` ( M + 1 ) ) ) |
| 328 |
|
nnuzdisj |
|- ( ( 1 ... M ) i^i ( ZZ>= ` ( M + 1 ) ) ) = (/) |
| 329 |
327 328
|
eqtri |
|- ( ( ZZ>= ` ( M + 1 ) ) i^i ( 1 ... M ) ) = (/) |
| 330 |
329
|
a1i |
|- ( ph -> ( ( ZZ>= ` ( M + 1 ) ) i^i ( 1 ... M ) ) = (/) ) |
| 331 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
| 332 |
|
ssid |
|- ( 0 [,) +oo ) C_ ( 0 [,) +oo ) |
| 333 |
|
simpl |
|- ( ( ph /\ j e. ( ZZ>= ` ( M + 1 ) ) ) -> ph ) |
| 334 |
21
|
peano2nnd |
|- ( ph -> ( M + 1 ) e. NN ) |
| 335 |
|
uznnssnn |
|- ( ( M + 1 ) e. NN -> ( ZZ>= ` ( M + 1 ) ) C_ NN ) |
| 336 |
334 335
|
syl |
|- ( ph -> ( ZZ>= ` ( M + 1 ) ) C_ NN ) |
| 337 |
336
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ZZ>= ` ( M + 1 ) ) C_ NN ) |
| 338 |
|
simpr |
|- ( ( ph /\ j e. ( ZZ>= ` ( M + 1 ) ) ) -> j e. ( ZZ>= ` ( M + 1 ) ) ) |
| 339 |
337 338
|
sseldd |
|- ( ( ph /\ j e. ( ZZ>= ` ( M + 1 ) ) ) -> j e. NN ) |
| 340 |
|
snfi |
|- { Z } e. Fin |
| 341 |
340
|
a1i |
|- ( ph -> { Z } e. Fin ) |
| 342 |
|
unfi |
|- ( ( Y e. Fin /\ { Z } e. Fin ) -> ( Y u. { Z } ) e. Fin ) |
| 343 |
173 341 342
|
syl2anc |
|- ( ph -> ( Y u. { Z } ) e. Fin ) |
| 344 |
5 343
|
eqeltrid |
|- ( ph -> W e. Fin ) |
| 345 |
344
|
adantr |
|- ( ( ph /\ j e. NN ) -> W e. Fin ) |
| 346 |
|
eleq1w |
|- ( j = l -> ( j e. Y <-> l e. Y ) ) |
| 347 |
|
fveq2 |
|- ( j = l -> ( c ` j ) = ( c ` l ) ) |
| 348 |
347
|
breq1d |
|- ( j = l -> ( ( c ` j ) <_ x <-> ( c ` l ) <_ x ) ) |
| 349 |
348 347
|
ifbieq1d |
|- ( j = l -> if ( ( c ` j ) <_ x , ( c ` j ) , x ) = if ( ( c ` l ) <_ x , ( c ` l ) , x ) ) |
| 350 |
346 347 349
|
ifbieq12d |
|- ( j = l -> if ( j e. Y , ( c ` j ) , if ( ( c ` j ) <_ x , ( c ` j ) , x ) ) = if ( l e. Y , ( c ` l ) , if ( ( c ` l ) <_ x , ( c ` l ) , x ) ) ) |
| 351 |
350
|
cbvmptv |
|- ( j e. W |-> if ( j e. Y , ( c ` j ) , if ( ( c ` j ) <_ x , ( c ` j ) , x ) ) ) = ( l e. W |-> if ( l e. Y , ( c ` l ) , if ( ( c ` l ) <_ x , ( c ` l ) , x ) ) ) |
| 352 |
351
|
mpteq2i |
|- ( c e. ( RR ^m W ) |-> ( j e. W |-> if ( j e. Y , ( c ` j ) , if ( ( c ` j ) <_ x , ( c ` j ) , x ) ) ) ) = ( c e. ( RR ^m W ) |-> ( l e. W |-> if ( l e. Y , ( c ` l ) , if ( ( c ` l ) <_ x , ( c ` l ) , x ) ) ) ) |
| 353 |
352
|
mpteq2i |
|- ( x e. RR |-> ( c e. ( RR ^m W ) |-> ( j e. W |-> if ( j e. Y , ( c ` j ) , if ( ( c ` j ) <_ x , ( c ` j ) , x ) ) ) ) ) = ( x e. RR |-> ( c e. ( RR ^m W ) |-> ( l e. W |-> if ( l e. Y , ( c ` l ) , if ( ( c ` l ) <_ x , ( c ` l ) , x ) ) ) ) ) |
| 354 |
14 353
|
eqtri |
|- H = ( x e. RR |-> ( c e. ( RR ^m W ) |-> ( l e. W |-> if ( l e. Y , ( c ` l ) , if ( ( c ` l ) <_ x , ( c ` l ) , x ) ) ) ) ) |
| 355 |
90
|
adantr |
|- ( ( ph /\ j e. NN ) -> S e. RR ) |
| 356 |
354 355 345 49
|
hsphoif |
|- ( ( ph /\ j e. NN ) -> ( ( H ` S ) ` ( D ` j ) ) : W --> RR ) |
| 357 |
1 345 125 356
|
hoidmvcl |
|- ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. ( 0 [,) +oo ) ) |
| 358 |
333 339 357
|
syl2anc |
|- ( ( ph /\ j e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. ( 0 [,) +oo ) ) |
| 359 |
332 358
|
sselid |
|- ( ( ph /\ j e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. ( 0 [,) +oo ) ) |
| 360 |
331 359
|
sselid |
|- ( ( ph /\ j e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. ( 0 [,] +oo ) ) |
| 361 |
215 217 357
|
syl2anc |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. ( 0 [,) +oo ) ) |
| 362 |
331 361
|
sselid |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. ( 0 [,] +oo ) ) |
| 363 |
324 325 326 330 360 362
|
sge0splitmpt |
|- ( ph -> ( sum^ ` ( j e. ( ( ZZ>= ` ( M + 1 ) ) u. ( 1 ... M ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) +e ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) |
| 364 |
|
nnex |
|- NN e. _V |
| 365 |
364
|
a1i |
|- ( ph -> NN e. _V ) |
| 366 |
331 357
|
sselid |
|- ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. ( 0 [,] +oo ) ) |
| 367 |
324 365 366 211 336
|
sge0ssrempt |
|- ( ph -> ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) e. RR ) |
| 368 |
37
|
a1i |
|- ( ph -> ( 1 ... M ) C_ NN ) |
| 369 |
324 365 366 211 368
|
sge0ssrempt |
|- ( ph -> ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) e. RR ) |
| 370 |
|
rexadd |
|- ( ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) e. RR /\ ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) e. RR ) -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) +e ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) |
| 371 |
367 369 370
|
syl2anc |
|- ( ph -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) +e ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) |
| 372 |
323 363 371
|
3eqtrd |
|- ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) |
| 373 |
372
|
oveq2d |
|- ( ph -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) = ( ( 1 + E ) x. ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) |
| 374 |
373
|
oveq1d |
|- ( ph -> ( ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) + ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) = ( ( ( 1 + E ) x. ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) + ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) ) |
| 375 |
372 211
|
eqeltrrd |
|- ( ph -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) e. RR ) |
| 376 |
375
|
recnd |
|- ( ph -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) e. CC ) |
| 377 |
278
|
recnd |
|- ( ph -> sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) e. CC ) |
| 378 |
303 376 377
|
adddid |
|- ( ph -> ( ( 1 + E ) x. ( ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) = ( ( ( 1 + E ) x. ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) + ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) ) |
| 379 |
378
|
eqcomd |
|- ( ph -> ( ( ( 1 + E ) x. ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) + ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) = ( ( 1 + E ) x. ( ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) ) |
| 380 |
367
|
recnd |
|- ( ph -> ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) e. CC ) |
| 381 |
369
|
recnd |
|- ( ph -> ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) e. CC ) |
| 382 |
380 381 377
|
addassd |
|- ( ph -> ( ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) ) |
| 383 |
213 361
|
sge0fsummpt |
|- ( ph -> ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) = sum_ j e. ( 1 ... M ) ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) |
| 384 |
383
|
oveq1d |
|- ( ph -> ( ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) = ( sum_ j e. ( 1 ... M ) ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) |
| 385 |
|
ax-resscn |
|- RR C_ CC |
| 386 |
172 385
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
| 387 |
386 357
|
sselid |
|- ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. CC ) |
| 388 |
215 217 387
|
syl2anc |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. CC ) |
| 389 |
192
|
adantr |
|- ( ( ph /\ j e. NN ) -> ( Q - S ) e. RR ) |
| 390 |
389 275
|
remulcld |
|- ( ( ph /\ j e. NN ) -> ( ( Q - S ) x. ( P ` j ) ) e. RR ) |
| 391 |
390
|
recnd |
|- ( ( ph /\ j e. NN ) -> ( ( Q - S ) x. ( P ` j ) ) e. CC ) |
| 392 |
217 391
|
syldan |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( Q - S ) x. ( P ` j ) ) e. CC ) |
| 393 |
213 388 392
|
fsumadd |
|- ( ph -> sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) = ( sum_ j e. ( 1 ... M ) ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) |
| 394 |
393
|
eqcomd |
|- ( ph -> ( sum_ j e. ( 1 ... M ) ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) = sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) |
| 395 |
384 394
|
eqtrd |
|- ( ph -> ( ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) = sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) |
| 396 |
395
|
oveq2d |
|- ( ph -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) ) |
| 397 |
382 396
|
eqtrd |
|- ( ph -> ( ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) ) |
| 398 |
397
|
oveq2d |
|- ( ph -> ( ( 1 + E ) x. ( ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) = ( ( 1 + E ) x. ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) ) ) |
| 399 |
374 379 398
|
3eqtrd |
|- ( ph -> ( ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) + ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) = ( ( 1 + E ) x. ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) ) ) |
| 400 |
172 357
|
sselid |
|- ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. RR ) |
| 401 |
400 390
|
readdcld |
|- ( ( ph /\ j e. NN ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) e. RR ) |
| 402 |
215 217 401
|
syl2anc |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) e. RR ) |
| 403 |
213 402
|
fsumrecl |
|- ( ph -> sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) e. RR ) |
| 404 |
367 403
|
readdcld |
|- ( ph -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) e. RR ) |
| 405 |
|
0le1 |
|- 0 <_ 1 |
| 406 |
405
|
a1i |
|- ( ph -> 0 <_ 1 ) |
| 407 |
16
|
rpge0d |
|- ( ph -> 0 <_ E ) |
| 408 |
206 207 406 407
|
addge0d |
|- ( ph -> 0 <_ ( 1 + E ) ) |
| 409 |
84
|
adantr |
|- ( ( ph /\ j e. NN ) -> Q e. RR ) |
| 410 |
354 409 345 49
|
hsphoif |
|- ( ( ph /\ j e. NN ) -> ( ( H ` Q ) ` ( D ` j ) ) : W --> RR ) |
| 411 |
1 345 125 410
|
hoidmvcl |
|- ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) e. ( 0 [,) +oo ) ) |
| 412 |
331 411
|
sselid |
|- ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) e. ( 0 [,] +oo ) ) |
| 413 |
324 365 412 281 336
|
sge0ssrempt |
|- ( ph -> ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) e. RR ) |
| 414 |
172 411
|
sselid |
|- ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) e. RR ) |
| 415 |
215 217 414
|
syl2anc |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) e. RR ) |
| 416 |
213 415
|
fsumrecl |
|- ( ph -> sum_ j e. ( 1 ... M ) ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) e. RR ) |
| 417 |
333 339 412
|
syl2anc |
|- ( ( ph /\ j e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) e. ( 0 [,] +oo ) ) |
| 418 |
210
|
adantr |
|- ( ( ph /\ j e. NN ) -> Z e. ( W \ Y ) ) |
| 419 |
90 84 157
|
ltled |
|- ( ph -> S <_ Q ) |
| 420 |
419
|
adantr |
|- ( ( ph /\ j e. NN ) -> S <_ Q ) |
| 421 |
1 345 418 5 355 409 420 354 125 49
|
hsphoidmvle2 |
|- ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) <_ ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) |
| 422 |
333 339 421
|
syl2anc |
|- ( ( ph /\ j e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) <_ ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) |
| 423 |
324 325 360 417 422
|
sge0lempt |
|- ( ph -> ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) <_ ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) |
| 424 |
215
|
adantr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) = 0 ) -> ph ) |
| 425 |
217
|
adantr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) = 0 ) -> j e. NN ) |
| 426 |
|
simpr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) = 0 ) -> ( P ` j ) = 0 ) |
| 427 |
|
oveq2 |
|- ( ( P ` j ) = 0 -> ( ( Q - S ) x. ( P ` j ) ) = ( ( Q - S ) x. 0 ) ) |
| 428 |
427
|
adantl |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) = 0 ) -> ( ( Q - S ) x. ( P ` j ) ) = ( ( Q - S ) x. 0 ) ) |
| 429 |
183
|
mul01d |
|- ( ph -> ( ( Q - S ) x. 0 ) = 0 ) |
| 430 |
429
|
ad2antrr |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) = 0 ) -> ( ( Q - S ) x. 0 ) = 0 ) |
| 431 |
428 430
|
eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) = 0 ) -> ( ( Q - S ) x. ( P ` j ) ) = 0 ) |
| 432 |
431
|
oveq2d |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) = 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) = ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + 0 ) ) |
| 433 |
387
|
addridd |
|- ( ( ph /\ j e. NN ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + 0 ) = ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) |
| 434 |
433
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) = 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + 0 ) = ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) |
| 435 |
432 434
|
eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) = 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) = ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) |
| 436 |
421
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) = 0 ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) <_ ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) |
| 437 |
435 436
|
eqbrtrd |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) = 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) <_ ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) |
| 438 |
424 425 426 437
|
syl21anc |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) = 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) <_ ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) |
| 439 |
|
simpl |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ -. ( P ` j ) = 0 ) -> ( ph /\ j e. ( 1 ... M ) ) ) |
| 440 |
|
neqne |
|- ( -. ( P ` j ) = 0 -> ( P ` j ) =/= 0 ) |
| 441 |
440
|
adantl |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ -. ( P ` j ) = 0 ) -> ( P ` j ) =/= 0 ) |
| 442 |
402
|
adantr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) e. RR ) |
| 443 |
215
|
adantr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ph ) |
| 444 |
217
|
adantr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> j e. NN ) |
| 445 |
|
simpr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( P ` j ) =/= 0 ) |
| 446 |
4
|
adantr |
|- ( ( ph /\ j e. NN ) -> Z e. ( X \ Y ) ) |
| 447 |
209
|
adantr |
|- ( ( ph /\ j e. NN ) -> -. Z e. Y ) |
| 448 |
|
eqid |
|- prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` k ) ) ) = prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` k ) ) ) |
| 449 |
1 223 446 447 5 125 356 448
|
hoiprodp1 |
|- ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) = ( prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` k ) ) ) x. ( vol ` ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` Z ) ) ) ) ) |
| 450 |
449
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) = ( prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` k ) ) ) x. ( vol ` ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` Z ) ) ) ) ) |
| 451 |
222
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( P ` j ) = ( ( J ` j ) ( L ` Y ) ( K ` j ) ) ) |
| 452 |
223
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> Y e. Fin ) |
| 453 |
222
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ Y = (/) ) -> ( P ` j ) = ( ( J ` j ) ( L ` Y ) ( K ` j ) ) ) |
| 454 |
|
fveq2 |
|- ( Y = (/) -> ( L ` Y ) = ( L ` (/) ) ) |
| 455 |
454
|
oveqd |
|- ( Y = (/) -> ( ( J ` j ) ( L ` Y ) ( K ` j ) ) = ( ( J ` j ) ( L ` (/) ) ( K ` j ) ) ) |
| 456 |
455
|
adantl |
|- ( ( ( ph /\ j e. NN ) /\ Y = (/) ) -> ( ( J ` j ) ( L ` Y ) ( K ` j ) ) = ( ( J ` j ) ( L ` (/) ) ( K ` j ) ) ) |
| 457 |
252
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ Y = (/) ) -> ( J ` j ) : Y --> RR ) |
| 458 |
|
id |
|- ( Y = (/) -> Y = (/) ) |
| 459 |
458
|
eqcomd |
|- ( Y = (/) -> (/) = Y ) |
| 460 |
459
|
adantl |
|- ( ( ( ph /\ j e. NN ) /\ Y = (/) ) -> (/) = Y ) |
| 461 |
460
|
feq2d |
|- ( ( ( ph /\ j e. NN ) /\ Y = (/) ) -> ( ( J ` j ) : (/) --> RR <-> ( J ` j ) : Y --> RR ) ) |
| 462 |
457 461
|
mpbird |
|- ( ( ( ph /\ j e. NN ) /\ Y = (/) ) -> ( J ` j ) : (/) --> RR ) |
| 463 |
272
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ Y = (/) ) -> ( K ` j ) : Y --> RR ) |
| 464 |
460
|
feq2d |
|- ( ( ( ph /\ j e. NN ) /\ Y = (/) ) -> ( ( K ` j ) : (/) --> RR <-> ( K ` j ) : Y --> RR ) ) |
| 465 |
463 464
|
mpbird |
|- ( ( ( ph /\ j e. NN ) /\ Y = (/) ) -> ( K ` j ) : (/) --> RR ) |
| 466 |
1 462 465
|
hoidmv0val |
|- ( ( ( ph /\ j e. NN ) /\ Y = (/) ) -> ( ( J ` j ) ( L ` (/) ) ( K ` j ) ) = 0 ) |
| 467 |
453 456 466
|
3eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ Y = (/) ) -> ( P ` j ) = 0 ) |
| 468 |
467
|
adantlr |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ Y = (/) ) -> ( P ` j ) = 0 ) |
| 469 |
|
neneq |
|- ( ( P ` j ) =/= 0 -> -. ( P ` j ) = 0 ) |
| 470 |
469
|
ad2antlr |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ Y = (/) ) -> -. ( P ` j ) = 0 ) |
| 471 |
468 470
|
pm2.65da |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> -. Y = (/) ) |
| 472 |
471
|
neqned |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> Y =/= (/) ) |
| 473 |
252
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( J ` j ) : Y --> RR ) |
| 474 |
272
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( K ` j ) : Y --> RR ) |
| 475 |
1 452 472 473 474
|
hoidmvn0val |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( J ` j ) ( L ` Y ) ( K ` j ) ) = prod_ k e. Y ( vol ` ( ( ( J ` j ) ` k ) [,) ( ( K ` j ) ` k ) ) ) ) |
| 476 |
250
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( J ` j ) = if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) ) |
| 477 |
222
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( P ` j ) = ( ( J ` j ) ( L ` Y ) ( K ` j ) ) ) |
| 478 |
250
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( J ` j ) = if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) ) |
| 479 |
478 235
|
eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( J ` j ) = F ) |
| 480 |
270
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( K ` j ) = if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) ) |
| 481 |
480 260
|
eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( K ` j ) = F ) |
| 482 |
479 481
|
oveq12d |
|- ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( ( J ` j ) ( L ` Y ) ( K ` j ) ) = ( F ( L ` Y ) F ) ) |
| 483 |
1 173 232
|
hoidmvval0b |
|- ( ph -> ( F ( L ` Y ) F ) = 0 ) |
| 484 |
483
|
ad2antrr |
|- ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( F ( L ` Y ) F ) = 0 ) |
| 485 |
477 482 484
|
3eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( P ` j ) = 0 ) |
| 486 |
485
|
adantlr |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( P ` j ) = 0 ) |
| 487 |
469
|
ad2antlr |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> -. ( P ` j ) = 0 ) |
| 488 |
486 487
|
condan |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) |
| 489 |
488
|
iftrued |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) = ( ( C ` j ) |` Y ) ) |
| 490 |
476 489
|
eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( J ` j ) = ( ( C ` j ) |` Y ) ) |
| 491 |
490
|
fveq1d |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( J ` j ) ` k ) = ( ( ( C ` j ) |` Y ) ` k ) ) |
| 492 |
491
|
adantr |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ k e. Y ) -> ( ( J ` j ) ` k ) = ( ( ( C ` j ) |` Y ) ` k ) ) |
| 493 |
|
fvres |
|- ( k e. Y -> ( ( ( C ` j ) |` Y ) ` k ) = ( ( C ` j ) ` k ) ) |
| 494 |
493
|
adantl |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ k e. Y ) -> ( ( ( C ` j ) |` Y ) ` k ) = ( ( C ` j ) ` k ) ) |
| 495 |
492 494
|
eqtrd |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ k e. Y ) -> ( ( J ` j ) ` k ) = ( ( C ` j ) ` k ) ) |
| 496 |
270
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( K ` j ) = if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) ) |
| 497 |
488 255
|
syl |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) = ( ( D ` j ) |` Y ) ) |
| 498 |
496 497
|
eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( K ` j ) = ( ( D ` j ) |` Y ) ) |
| 499 |
498
|
fveq1d |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( K ` j ) ` k ) = ( ( ( D ` j ) |` Y ) ` k ) ) |
| 500 |
499
|
adantr |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ k e. Y ) -> ( ( K ` j ) ` k ) = ( ( ( D ` j ) |` Y ) ` k ) ) |
| 501 |
|
fvres |
|- ( k e. Y -> ( ( ( D ` j ) |` Y ) ` k ) = ( ( D ` j ) ` k ) ) |
| 502 |
501
|
adantl |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ k e. Y ) -> ( ( ( D ` j ) |` Y ) ` k ) = ( ( D ` j ) ` k ) ) |
| 503 |
500 502
|
eqtrd |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ k e. Y ) -> ( ( K ` j ) ` k ) = ( ( D ` j ) ` k ) ) |
| 504 |
495 503
|
oveq12d |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ k e. Y ) -> ( ( ( J ` j ) ` k ) [,) ( ( K ` j ) ` k ) ) = ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) |
| 505 |
504
|
fveq2d |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ k e. Y ) -> ( vol ` ( ( ( J ` j ) ` k ) [,) ( ( K ` j ) ` k ) ) ) = ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) ) |
| 506 |
505
|
prodeq2dv |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> prod_ k e. Y ( vol ` ( ( ( J ` j ) ` k ) [,) ( ( K ` j ) ` k ) ) ) = prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) ) |
| 507 |
475 506
|
eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( J ` j ) ( L ` Y ) ( K ` j ) ) = prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) ) |
| 508 |
355
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> S e. RR ) |
| 509 |
345
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> W e. Fin ) |
| 510 |
49
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> ( D ` j ) : W --> RR ) |
| 511 |
|
elun1 |
|- ( k e. Y -> k e. ( Y u. { Z } ) ) |
| 512 |
511 5
|
eleqtrrdi |
|- ( k e. Y -> k e. W ) |
| 513 |
512
|
adantl |
|- ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> k e. W ) |
| 514 |
354 508 509 510 513
|
hsphoival |
|- ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> ( ( ( H ` S ) ` ( D ` j ) ) ` k ) = if ( k e. Y , ( ( D ` j ) ` k ) , if ( ( ( D ` j ) ` k ) <_ S , ( ( D ` j ) ` k ) , S ) ) ) |
| 515 |
|
iftrue |
|- ( k e. Y -> if ( k e. Y , ( ( D ` j ) ` k ) , if ( ( ( D ` j ) ` k ) <_ S , ( ( D ` j ) ` k ) , S ) ) = ( ( D ` j ) ` k ) ) |
| 516 |
515
|
adantl |
|- ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> if ( k e. Y , ( ( D ` j ) ` k ) , if ( ( ( D ` j ) ` k ) <_ S , ( ( D ` j ) ` k ) , S ) ) = ( ( D ` j ) ` k ) ) |
| 517 |
514 516
|
eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> ( ( ( H ` S ) ` ( D ` j ) ) ` k ) = ( ( D ` j ) ` k ) ) |
| 518 |
517
|
oveq2d |
|- ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> ( ( ( C ` j ) ` k ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` k ) ) = ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) |
| 519 |
518
|
fveq2d |
|- ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` k ) ) ) = ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) ) |
| 520 |
519
|
prodeq2dv |
|- ( ( ph /\ j e. NN ) -> prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` k ) ) ) = prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) ) |
| 521 |
520
|
eqcomd |
|- ( ( ph /\ j e. NN ) -> prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) = prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` k ) ) ) ) |
| 522 |
521
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) = prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` k ) ) ) ) |
| 523 |
451 507 522
|
3eqtrrd |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` k ) ) ) = ( P ` j ) ) |
| 524 |
354 355 345 49 50
|
hsphoival |
|- ( ( ph /\ j e. NN ) -> ( ( ( H ` S ) ` ( D ` j ) ) ` Z ) = if ( Z e. Y , ( ( D ` j ) ` Z ) , if ( ( ( D ` j ) ` Z ) <_ S , ( ( D ` j ) ` Z ) , S ) ) ) |
| 525 |
209
|
iffalsed |
|- ( ph -> if ( Z e. Y , ( ( D ` j ) ` Z ) , if ( ( ( D ` j ) ` Z ) <_ S , ( ( D ` j ) ` Z ) , S ) ) = if ( ( ( D ` j ) ` Z ) <_ S , ( ( D ` j ) ` Z ) , S ) ) |
| 526 |
525
|
adantr |
|- ( ( ph /\ j e. NN ) -> if ( Z e. Y , ( ( D ` j ) ` Z ) , if ( ( ( D ` j ) ` Z ) <_ S , ( ( D ` j ) ` Z ) , S ) ) = if ( ( ( D ` j ) ` Z ) <_ S , ( ( D ` j ) ` Z ) , S ) ) |
| 527 |
524 526
|
eqtrd |
|- ( ( ph /\ j e. NN ) -> ( ( ( H ` S ) ` ( D ` j ) ) ` Z ) = if ( ( ( D ` j ) ` Z ) <_ S , ( ( D ` j ) ` Z ) , S ) ) |
| 528 |
527
|
oveq2d |
|- ( ( ph /\ j e. NN ) -> ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` Z ) ) = ( ( ( C ` j ) ` Z ) [,) if ( ( ( D ` j ) ` Z ) <_ S , ( ( D ` j ) ` Z ) , S ) ) ) |
| 529 |
528
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` Z ) ) = ( ( ( C ` j ) ` Z ) [,) if ( ( ( D ` j ) ` Z ) <_ S , ( ( D ` j ) ` Z ) , S ) ) ) |
| 530 |
126
|
rexrd |
|- ( ( ph /\ j e. NN ) -> ( ( C ` j ) ` Z ) e. RR* ) |
| 531 |
530
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( C ` j ) ` Z ) e. RR* ) |
| 532 |
51
|
rexrd |
|- ( ( ph /\ j e. NN ) -> ( ( D ` j ) ` Z ) e. RR* ) |
| 533 |
532
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( D ` j ) ` Z ) e. RR* ) |
| 534 |
|
icoltub |
|- ( ( ( ( C ` j ) ` Z ) e. RR* /\ ( ( D ` j ) ` Z ) e. RR* /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> S < ( ( D ` j ) ` Z ) ) |
| 535 |
531 533 488 534
|
syl3anc |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> S < ( ( D ` j ) ` Z ) ) |
| 536 |
355
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> S e. RR ) |
| 537 |
51
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( D ` j ) ` Z ) e. RR ) |
| 538 |
536 537
|
ltnled |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( S < ( ( D ` j ) ` Z ) <-> -. ( ( D ` j ) ` Z ) <_ S ) ) |
| 539 |
535 538
|
mpbid |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> -. ( ( D ` j ) ` Z ) <_ S ) |
| 540 |
539
|
iffalsed |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> if ( ( ( D ` j ) ` Z ) <_ S , ( ( D ` j ) ` Z ) , S ) = S ) |
| 541 |
540
|
oveq2d |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( ( C ` j ) ` Z ) [,) if ( ( ( D ` j ) ` Z ) <_ S , ( ( D ` j ) ` Z ) , S ) ) = ( ( ( C ` j ) ` Z ) [,) S ) ) |
| 542 |
529 541
|
eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` Z ) ) = ( ( ( C ` j ) ` Z ) [,) S ) ) |
| 543 |
542
|
fveq2d |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( vol ` ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` Z ) ) ) = ( vol ` ( ( ( C ` j ) ` Z ) [,) S ) ) ) |
| 544 |
|
volico |
|- ( ( ( ( C ` j ) ` Z ) e. RR /\ S e. RR ) -> ( vol ` ( ( ( C ` j ) ` Z ) [,) S ) ) = if ( ( ( C ` j ) ` Z ) < S , ( S - ( ( C ` j ) ` Z ) ) , 0 ) ) |
| 545 |
126 536 544
|
syl2an |
|- ( ( ( ph /\ j e. NN ) /\ ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) ) -> ( vol ` ( ( ( C ` j ) ` Z ) [,) S ) ) = if ( ( ( C ` j ) ` Z ) < S , ( S - ( ( C ` j ) ` Z ) ) , 0 ) ) |
| 546 |
545
|
anabss5 |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( vol ` ( ( ( C ` j ) ` Z ) [,) S ) ) = if ( ( ( C ` j ) ` Z ) < S , ( S - ( ( C ` j ) ` Z ) ) , 0 ) ) |
| 547 |
|
iftrue |
|- ( ( ( C ` j ) ` Z ) < S -> if ( ( ( C ` j ) ` Z ) < S , ( S - ( ( C ` j ) ` Z ) ) , 0 ) = ( S - ( ( C ` j ) ` Z ) ) ) |
| 548 |
547
|
adantl |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ ( ( C ` j ) ` Z ) < S ) -> if ( ( ( C ` j ) ` Z ) < S , ( S - ( ( C ` j ) ` Z ) ) , 0 ) = ( S - ( ( C ` j ) ` Z ) ) ) |
| 549 |
|
iffalse |
|- ( -. ( ( C ` j ) ` Z ) < S -> if ( ( ( C ` j ) ` Z ) < S , ( S - ( ( C ` j ) ` Z ) ) , 0 ) = 0 ) |
| 550 |
549
|
adantl |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( C ` j ) ` Z ) < S ) -> if ( ( ( C ` j ) ` Z ) < S , ( S - ( ( C ` j ) ` Z ) ) , 0 ) = 0 ) |
| 551 |
|
simpll |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( C ` j ) ` Z ) < S ) -> ( ph /\ j e. NN ) ) |
| 552 |
|
icogelb |
|- ( ( ( ( C ` j ) ` Z ) e. RR* /\ ( ( D ` j ) ` Z ) e. RR* /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( ( C ` j ) ` Z ) <_ S ) |
| 553 |
531 533 488 552
|
syl3anc |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( C ` j ) ` Z ) <_ S ) |
| 554 |
553
|
adantr |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( C ` j ) ` Z ) < S ) -> ( ( C ` j ) ` Z ) <_ S ) |
| 555 |
|
simpr |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( C ` j ) ` Z ) < S ) -> -. ( ( C ` j ) ` Z ) < S ) |
| 556 |
554 555
|
jca |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( C ` j ) ` Z ) < S ) -> ( ( ( C ` j ) ` Z ) <_ S /\ -. ( ( C ` j ) ` Z ) < S ) ) |
| 557 |
551 126
|
syl |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( C ` j ) ` Z ) < S ) -> ( ( C ` j ) ` Z ) e. RR ) |
| 558 |
551 355
|
syl |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( C ` j ) ` Z ) < S ) -> S e. RR ) |
| 559 |
557 558
|
eqleltd |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( C ` j ) ` Z ) < S ) -> ( ( ( C ` j ) ` Z ) = S <-> ( ( ( C ` j ) ` Z ) <_ S /\ -. ( ( C ` j ) ` Z ) < S ) ) ) |
| 560 |
556 559
|
mpbird |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( C ` j ) ` Z ) < S ) -> ( ( C ` j ) ` Z ) = S ) |
| 561 |
|
id |
|- ( ( ( C ` j ) ` Z ) = S -> ( ( C ` j ) ` Z ) = S ) |
| 562 |
561
|
eqcomd |
|- ( ( ( C ` j ) ` Z ) = S -> S = ( ( C ` j ) ` Z ) ) |
| 563 |
562
|
oveq1d |
|- ( ( ( C ` j ) ` Z ) = S -> ( S - ( ( C ` j ) ` Z ) ) = ( ( ( C ` j ) ` Z ) - ( ( C ` j ) ` Z ) ) ) |
| 564 |
563
|
adantl |
|- ( ( ( ph /\ j e. NN ) /\ ( ( C ` j ) ` Z ) = S ) -> ( S - ( ( C ` j ) ` Z ) ) = ( ( ( C ` j ) ` Z ) - ( ( C ` j ) ` Z ) ) ) |
| 565 |
385 126
|
sselid |
|- ( ( ph /\ j e. NN ) -> ( ( C ` j ) ` Z ) e. CC ) |
| 566 |
565
|
subidd |
|- ( ( ph /\ j e. NN ) -> ( ( ( C ` j ) ` Z ) - ( ( C ` j ) ` Z ) ) = 0 ) |
| 567 |
566
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ ( ( C ` j ) ` Z ) = S ) -> ( ( ( C ` j ) ` Z ) - ( ( C ` j ) ` Z ) ) = 0 ) |
| 568 |
564 567
|
eqtr2d |
|- ( ( ( ph /\ j e. NN ) /\ ( ( C ` j ) ` Z ) = S ) -> 0 = ( S - ( ( C ` j ) ` Z ) ) ) |
| 569 |
551 560 568
|
syl2anc |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( C ` j ) ` Z ) < S ) -> 0 = ( S - ( ( C ` j ) ` Z ) ) ) |
| 570 |
550 569
|
eqtrd |
|- ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( C ` j ) ` Z ) < S ) -> if ( ( ( C ` j ) ` Z ) < S , ( S - ( ( C ` j ) ` Z ) ) , 0 ) = ( S - ( ( C ` j ) ` Z ) ) ) |
| 571 |
548 570
|
pm2.61dan |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> if ( ( ( C ` j ) ` Z ) < S , ( S - ( ( C ` j ) ` Z ) ) , 0 ) = ( S - ( ( C ` j ) ` Z ) ) ) |
| 572 |
543 546 571
|
3eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( vol ` ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` Z ) ) ) = ( S - ( ( C ` j ) ` Z ) ) ) |
| 573 |
523 572
|
oveq12d |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` k ) ) ) x. ( vol ` ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` Z ) ) ) ) = ( ( P ` j ) x. ( S - ( ( C ` j ) ` Z ) ) ) ) |
| 574 |
386 274
|
sselid |
|- ( ( ph /\ j e. NN ) -> ( P ` j ) e. CC ) |
| 575 |
355 126
|
resubcld |
|- ( ( ph /\ j e. NN ) -> ( S - ( ( C ` j ) ` Z ) ) e. RR ) |
| 576 |
575
|
recnd |
|- ( ( ph /\ j e. NN ) -> ( S - ( ( C ` j ) ` Z ) ) e. CC ) |
| 577 |
574 576
|
mulcomd |
|- ( ( ph /\ j e. NN ) -> ( ( P ` j ) x. ( S - ( ( C ` j ) ` Z ) ) ) = ( ( S - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) ) |
| 578 |
577
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( P ` j ) x. ( S - ( ( C ` j ) ` Z ) ) ) = ( ( S - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) ) |
| 579 |
450 573 578
|
3eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) = ( ( S - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) ) |
| 580 |
579
|
oveq1d |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) = ( ( ( S - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) |
| 581 |
183
|
adantr |
|- ( ( ph /\ j e. NN ) -> ( Q - S ) e. CC ) |
| 582 |
576 581 574
|
adddird |
|- ( ( ph /\ j e. NN ) -> ( ( ( S - ( ( C ` j ) ` Z ) ) + ( Q - S ) ) x. ( P ` j ) ) = ( ( ( S - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) |
| 583 |
582
|
eqcomd |
|- ( ( ph /\ j e. NN ) -> ( ( ( S - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) + ( ( Q - S ) x. ( P ` j ) ) ) = ( ( ( S - ( ( C ` j ) ` Z ) ) + ( Q - S ) ) x. ( P ` j ) ) ) |
| 584 |
583
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( ( S - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) + ( ( Q - S ) x. ( P ` j ) ) ) = ( ( ( S - ( ( C ` j ) ` Z ) ) + ( Q - S ) ) x. ( P ` j ) ) ) |
| 585 |
576 581
|
addcomd |
|- ( ( ph /\ j e. NN ) -> ( ( S - ( ( C ` j ) ` Z ) ) + ( Q - S ) ) = ( ( Q - S ) + ( S - ( ( C ` j ) ` Z ) ) ) ) |
| 586 |
166
|
adantr |
|- ( ( ph /\ j e. NN ) -> Q e. CC ) |
| 587 |
167
|
adantr |
|- ( ( ph /\ j e. NN ) -> S e. CC ) |
| 588 |
586 587 565
|
npncand |
|- ( ( ph /\ j e. NN ) -> ( ( Q - S ) + ( S - ( ( C ` j ) ` Z ) ) ) = ( Q - ( ( C ` j ) ` Z ) ) ) |
| 589 |
585 588
|
eqtrd |
|- ( ( ph /\ j e. NN ) -> ( ( S - ( ( C ` j ) ` Z ) ) + ( Q - S ) ) = ( Q - ( ( C ` j ) ` Z ) ) ) |
| 590 |
589
|
oveq1d |
|- ( ( ph /\ j e. NN ) -> ( ( ( S - ( ( C ` j ) ` Z ) ) + ( Q - S ) ) x. ( P ` j ) ) = ( ( Q - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) ) |
| 591 |
590
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( ( S - ( ( C ` j ) ` Z ) ) + ( Q - S ) ) x. ( P ` j ) ) = ( ( Q - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) ) |
| 592 |
580 584 591
|
3eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) = ( ( Q - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) ) |
| 593 |
443 444 445 592
|
syl21anc |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) = ( ( Q - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) ) |
| 594 |
|
eqid |
|- prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) ) = prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) ) |
| 595 |
1 223 50 447 5 125 410 594
|
hoiprodp1 |
|- ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) = ( prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) ) x. ( vol ` ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` Z ) ) ) ) ) |
| 596 |
215 217 595
|
syl2anc |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) = ( prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) ) x. ( vol ` ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` Z ) ) ) ) ) |
| 597 |
596
|
adantr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) = ( prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) ) x. ( vol ` ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` Z ) ) ) ) ) |
| 598 |
507
|
eqcomd |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) = ( ( J ` j ) ( L ` Y ) ( K ` j ) ) ) |
| 599 |
409
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> Q e. RR ) |
| 600 |
354 599 509 510 513
|
hsphoival |
|- ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) = if ( k e. Y , ( ( D ` j ) ` k ) , if ( ( ( D ` j ) ` k ) <_ Q , ( ( D ` j ) ` k ) , Q ) ) ) |
| 601 |
|
iftrue |
|- ( k e. Y -> if ( k e. Y , ( ( D ` j ) ` k ) , if ( ( ( D ` j ) ` k ) <_ Q , ( ( D ` j ) ` k ) , Q ) ) = ( ( D ` j ) ` k ) ) |
| 602 |
601
|
adantl |
|- ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> if ( k e. Y , ( ( D ` j ) ` k ) , if ( ( ( D ` j ) ` k ) <_ Q , ( ( D ` j ) ` k ) , Q ) ) = ( ( D ` j ) ` k ) ) |
| 603 |
600 602
|
eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) = ( ( D ` j ) ` k ) ) |
| 604 |
603
|
oveq2d |
|- ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) = ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) |
| 605 |
604
|
fveq2d |
|- ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) ) = ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) ) |
| 606 |
605
|
prodeq2dv |
|- ( ( ph /\ j e. NN ) -> prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) ) = prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) ) |
| 607 |
606
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) ) = prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) ) |
| 608 |
598 607 451
|
3eqtr4d |
|- ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) ) = ( P ` j ) ) |
| 609 |
443 444 445 608
|
syl21anc |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) ) = ( P ` j ) ) |
| 610 |
354 409 345 49 50
|
hsphoival |
|- ( ( ph /\ j e. NN ) -> ( ( ( H ` Q ) ` ( D ` j ) ) ` Z ) = if ( Z e. Y , ( ( D ` j ) ` Z ) , if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) ) ) |
| 611 |
217 610
|
syldan |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( ( H ` Q ) ` ( D ` j ) ) ` Z ) = if ( Z e. Y , ( ( D ` j ) ` Z ) , if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) ) ) |
| 612 |
611
|
adantr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( ( H ` Q ) ` ( D ` j ) ) ` Z ) = if ( Z e. Y , ( ( D ` j ) ` Z ) , if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) ) ) |
| 613 |
209
|
iffalsed |
|- ( ph -> if ( Z e. Y , ( ( D ` j ) ` Z ) , if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) ) = if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) ) |
| 614 |
613
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> if ( Z e. Y , ( ( D ` j ) ` Z ) , if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) ) = if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) ) |
| 615 |
217 51
|
syldan |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( D ` j ) ` Z ) e. RR ) |
| 616 |
615
|
adantr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( ( D ` j ) ` Z ) = Q ) -> ( ( D ` j ) ` Z ) e. RR ) |
| 617 |
|
simpr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( ( D ` j ) ` Z ) = Q ) -> ( ( D ` j ) ` Z ) = Q ) |
| 618 |
616 617
|
eqled |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( ( D ` j ) ` Z ) = Q ) -> ( ( D ` j ) ` Z ) <_ Q ) |
| 619 |
618
|
iftrued |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( ( D ` j ) ` Z ) = Q ) -> if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) = ( ( D ` j ) ` Z ) ) |
| 620 |
619 617
|
eqtrd |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( ( D ` j ) ` Z ) = Q ) -> if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) = Q ) |
| 621 |
620
|
adantlr |
|- ( ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) /\ ( ( D ` j ) ` Z ) = Q ) -> if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) = Q ) |
| 622 |
84
|
adantr |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> Q e. RR ) |
| 623 |
622
|
adantr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ -. ( ( D ` j ) ` Z ) = Q ) -> Q e. RR ) |
| 624 |
623
|
adantlr |
|- ( ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( D ` j ) ` Z ) = Q ) -> Q e. RR ) |
| 625 |
615
|
adantr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ -. ( ( D ` j ) ` Z ) = Q ) -> ( ( D ` j ) ` Z ) e. RR ) |
| 626 |
625
|
adantlr |
|- ( ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( D ` j ) ` Z ) = Q ) -> ( ( D ` j ) ` Z ) e. RR ) |
| 627 |
25
|
a1i |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> Q = inf ( V , RR , < ) ) |
| 628 |
443 57
|
syl |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> V C_ RR ) |
| 629 |
161
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> E. x e. V A. y e. V x <_ y ) |
| 630 |
|
simplr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> j e. ( 1 ... M ) ) |
| 631 |
216 488
|
sylanl2 |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) |
| 632 |
630 631
|
jca |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( j e. ( 1 ... M ) /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) ) |
| 633 |
|
rabid |
|- ( j e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } <-> ( j e. ( 1 ... M ) /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) ) |
| 634 |
632 633
|
sylibr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> j e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } ) |
| 635 |
|
eqidd |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( D ` j ) ` Z ) = ( ( D ` j ) ` Z ) ) |
| 636 |
|
fveq2 |
|- ( i = j -> ( D ` i ) = ( D ` j ) ) |
| 637 |
636
|
fveq1d |
|- ( i = j -> ( ( D ` i ) ` Z ) = ( ( D ` j ) ` Z ) ) |
| 638 |
637
|
eqeq2d |
|- ( i = j -> ( ( ( D ` j ) ` Z ) = ( ( D ` i ) ` Z ) <-> ( ( D ` j ) ` Z ) = ( ( D ` j ) ` Z ) ) ) |
| 639 |
638
|
rspcev |
|- ( ( j e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } /\ ( ( D ` j ) ` Z ) = ( ( D ` j ) ` Z ) ) -> E. i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } ( ( D ` j ) ` Z ) = ( ( D ` i ) ` Z ) ) |
| 640 |
634 635 639
|
syl2anc |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> E. i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } ( ( D ` j ) ` Z ) = ( ( D ` i ) ` Z ) ) |
| 641 |
|
fvexd |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( D ` j ) ` Z ) e. _V ) |
| 642 |
35 640 641
|
elrnmptd |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( D ` j ) ` Z ) e. ran ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } |-> ( ( D ` i ) ` Z ) ) ) |
| 643 |
642 23
|
eleqtrrdi |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( D ` j ) ` Z ) e. O ) |
| 644 |
|
elun2 |
|- ( ( ( D ` j ) ` Z ) e. O -> ( ( D ` j ) ` Z ) e. ( { ( B ` Z ) } u. O ) ) |
| 645 |
643 644
|
syl |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( D ` j ) ` Z ) e. ( { ( B ` Z ) } u. O ) ) |
| 646 |
76
|
a1i |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( { ( B ` Z ) } u. O ) = V ) |
| 647 |
645 646
|
eleqtrd |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( D ` j ) ` Z ) e. V ) |
| 648 |
|
lbinfle |
|- ( ( V C_ RR /\ E. x e. V A. y e. V x <_ y /\ ( ( D ` j ) ` Z ) e. V ) -> inf ( V , RR , < ) <_ ( ( D ` j ) ` Z ) ) |
| 649 |
628 629 647 648
|
syl3anc |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> inf ( V , RR , < ) <_ ( ( D ` j ) ` Z ) ) |
| 650 |
627 649
|
eqbrtrd |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> Q <_ ( ( D ` j ) ` Z ) ) |
| 651 |
650
|
adantr |
|- ( ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( D ` j ) ` Z ) = Q ) -> Q <_ ( ( D ` j ) ` Z ) ) |
| 652 |
|
neqne |
|- ( -. ( ( D ` j ) ` Z ) = Q -> ( ( D ` j ) ` Z ) =/= Q ) |
| 653 |
652
|
adantl |
|- ( ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( D ` j ) ` Z ) = Q ) -> ( ( D ` j ) ` Z ) =/= Q ) |
| 654 |
624 626 651 653
|
leneltd |
|- ( ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( D ` j ) ` Z ) = Q ) -> Q < ( ( D ` j ) ` Z ) ) |
| 655 |
624 626
|
ltnled |
|- ( ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( D ` j ) ` Z ) = Q ) -> ( Q < ( ( D ` j ) ` Z ) <-> -. ( ( D ` j ) ` Z ) <_ Q ) ) |
| 656 |
654 655
|
mpbid |
|- ( ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( D ` j ) ` Z ) = Q ) -> -. ( ( D ` j ) ` Z ) <_ Q ) |
| 657 |
656
|
iffalsed |
|- ( ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( D ` j ) ` Z ) = Q ) -> if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) = Q ) |
| 658 |
621 657
|
pm2.61dan |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) = Q ) |
| 659 |
612 614 658
|
3eqtrd |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( ( H ` Q ) ` ( D ` j ) ) ` Z ) = Q ) |
| 660 |
659
|
oveq2d |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` Z ) ) = ( ( ( C ` j ) ` Z ) [,) Q ) ) |
| 661 |
660
|
fveq2d |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( vol ` ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` Z ) ) ) = ( vol ` ( ( ( C ` j ) ` Z ) [,) Q ) ) ) |
| 662 |
215 217 126
|
syl2anc |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( C ` j ) ` Z ) e. RR ) |
| 663 |
662
|
adantr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( C ` j ) ` Z ) e. RR ) |
| 664 |
443 84
|
syl |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> Q e. RR ) |
| 665 |
|
volico |
|- ( ( ( ( C ` j ) ` Z ) e. RR /\ Q e. RR ) -> ( vol ` ( ( ( C ` j ) ` Z ) [,) Q ) ) = if ( ( ( C ` j ) ` Z ) < Q , ( Q - ( ( C ` j ) ` Z ) ) , 0 ) ) |
| 666 |
663 664 665
|
syl2anc |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( vol ` ( ( ( C ` j ) ` Z ) [,) Q ) ) = if ( ( ( C ` j ) ` Z ) < Q , ( Q - ( ( C ` j ) ` Z ) ) , 0 ) ) |
| 667 |
443 90
|
syl |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> S e. RR ) |
| 668 |
443 444 445 553
|
syl21anc |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( C ` j ) ` Z ) <_ S ) |
| 669 |
443 157
|
syl |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> S < Q ) |
| 670 |
663 667 664 668 669
|
lelttrd |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( C ` j ) ` Z ) < Q ) |
| 671 |
670
|
iftrued |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> if ( ( ( C ` j ) ` Z ) < Q , ( Q - ( ( C ` j ) ` Z ) ) , 0 ) = ( Q - ( ( C ` j ) ` Z ) ) ) |
| 672 |
661 666 671
|
3eqtrd |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( vol ` ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` Z ) ) ) = ( Q - ( ( C ` j ) ` Z ) ) ) |
| 673 |
609 672
|
oveq12d |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) ) x. ( vol ` ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` Z ) ) ) ) = ( ( P ` j ) x. ( Q - ( ( C ` j ) ` Z ) ) ) ) |
| 674 |
215 166
|
syl |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> Q e. CC ) |
| 675 |
385 662
|
sselid |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( C ` j ) ` Z ) e. CC ) |
| 676 |
674 675
|
subcld |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( Q - ( ( C ` j ) ` Z ) ) e. CC ) |
| 677 |
306 676
|
mulcomd |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( P ` j ) x. ( Q - ( ( C ` j ) ` Z ) ) ) = ( ( Q - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) ) |
| 678 |
677
|
adantr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( P ` j ) x. ( Q - ( ( C ` j ) ` Z ) ) ) = ( ( Q - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) ) |
| 679 |
597 673 678
|
3eqtrd |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) = ( ( Q - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) ) |
| 680 |
593 679
|
eqtr4d |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) = ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) |
| 681 |
442 680
|
eqled |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) <_ ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) |
| 682 |
439 441 681
|
syl2anc |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ -. ( P ` j ) = 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) <_ ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) |
| 683 |
438 682
|
pm2.61dan |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) <_ ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) |
| 684 |
213 402 415 683
|
fsumle |
|- ( ph -> sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) <_ sum_ j e. ( 1 ... M ) ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) |
| 685 |
367 403 413 416 423 684
|
le2addd |
|- ( ph -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) <_ ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) |
| 686 |
321
|
mpteq1d |
|- ( ph -> ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) = ( j e. ( ( ZZ>= ` ( M + 1 ) ) u. ( 1 ... M ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) |
| 687 |
686
|
fveq2d |
|- ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) = ( sum^ ` ( j e. ( ( ZZ>= ` ( M + 1 ) ) u. ( 1 ... M ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) |
| 688 |
217 412
|
syldan |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) e. ( 0 [,] +oo ) ) |
| 689 |
324 325 326 330 417 688
|
sge0splitmpt |
|- ( ph -> ( sum^ ` ( j e. ( ( ZZ>= ` ( M + 1 ) ) u. ( 1 ... M ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) +e ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) |
| 690 |
687 689
|
eqtrd |
|- ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) +e ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) |
| 691 |
215 217 411
|
syl2anc |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) e. ( 0 [,) +oo ) ) |
| 692 |
213 691
|
sge0fsummpt |
|- ( ph -> ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) = sum_ j e. ( 1 ... M ) ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) |
| 693 |
692 416
|
eqeltrd |
|- ( ph -> ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) e. RR ) |
| 694 |
|
rexadd |
|- ( ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) e. RR /\ ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) e. RR ) -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) +e ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) |
| 695 |
413 693 694
|
syl2anc |
|- ( ph -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) +e ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) |
| 696 |
692
|
oveq2d |
|- ( ph -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) |
| 697 |
690 695 696
|
3eqtrrd |
|- ( ph -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) |
| 698 |
685 697
|
breqtrd |
|- ( ph -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) |
| 699 |
404 281 208 408 698
|
lemul2ad |
|- ( ph -> ( ( 1 + E ) x. ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) |
| 700 |
399 699
|
eqbrtrd |
|- ( ph -> ( ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) + ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) |
| 701 |
205 280 282 315 700
|
letrd |
|- ( ph -> ( ( G x. ( S - ( A ` Z ) ) ) + ( G x. ( Q - S ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) |
| 702 |
189 701
|
eqbrtrd |
|- ( ph -> ( G x. ( Q - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) |
| 703 |
165 702
|
jca |
|- ( ph -> ( Q e. ( ( A ` Z ) [,] ( B ` Z ) ) /\ ( G x. ( Q - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) ) |
| 704 |
|
oveq1 |
|- ( z = Q -> ( z - ( A ` Z ) ) = ( Q - ( A ` Z ) ) ) |
| 705 |
704
|
oveq2d |
|- ( z = Q -> ( G x. ( z - ( A ` Z ) ) ) = ( G x. ( Q - ( A ` Z ) ) ) ) |
| 706 |
|
fveq2 |
|- ( z = Q -> ( H ` z ) = ( H ` Q ) ) |
| 707 |
706
|
fveq1d |
|- ( z = Q -> ( ( H ` z ) ` ( D ` j ) ) = ( ( H ` Q ) ` ( D ` j ) ) ) |
| 708 |
707
|
oveq2d |
|- ( z = Q -> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) = ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) |
| 709 |
708
|
mpteq2dv |
|- ( z = Q -> ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) = ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) |
| 710 |
709
|
fveq2d |
|- ( z = Q -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) |
| 711 |
710
|
oveq2d |
|- ( z = Q -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) = ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) |
| 712 |
705 711
|
breq12d |
|- ( z = Q -> ( ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) <-> ( G x. ( Q - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) ) |
| 713 |
712
|
elrab |
|- ( Q e. { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } <-> ( Q e. ( ( A ` Z ) [,] ( B ` Z ) ) /\ ( G x. ( Q - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) ) |
| 714 |
703 713
|
sylibr |
|- ( ph -> Q e. { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } ) |
| 715 |
714 17
|
eleqtrrdi |
|- ( ph -> Q e. U ) |
| 716 |
|
breq2 |
|- ( u = Q -> ( S < u <-> S < Q ) ) |
| 717 |
716
|
rspcev |
|- ( ( Q e. U /\ S < Q ) -> E. u e. U S < u ) |
| 718 |
715 157 717
|
syl2anc |
|- ( ph -> E. u e. U S < u ) |