| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoidmvlelem2.l |  |-  L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) | 
						
							| 2 |  | hoidmvlelem2.x |  |-  ( ph -> X e. Fin ) | 
						
							| 3 |  | hoidmvlelem2.y |  |-  ( ph -> Y C_ X ) | 
						
							| 4 |  | hoidmvlelem2.z |  |-  ( ph -> Z e. ( X \ Y ) ) | 
						
							| 5 |  | hoidmvlelem2.w |  |-  W = ( Y u. { Z } ) | 
						
							| 6 |  | hoidmvlelem2.a |  |-  ( ph -> A : W --> RR ) | 
						
							| 7 |  | hoidmvlelem2.b |  |-  ( ph -> B : W --> RR ) | 
						
							| 8 |  | hoidmvlelem2.c |  |-  ( ph -> C : NN --> ( RR ^m W ) ) | 
						
							| 9 |  | hoidmvlelem2.f |  |-  F = ( y e. Y |-> 0 ) | 
						
							| 10 |  | hoidmvlelem2.j |  |-  J = ( j e. NN |-> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) ) | 
						
							| 11 |  | hoidmvlelem2.d |  |-  ( ph -> D : NN --> ( RR ^m W ) ) | 
						
							| 12 |  | hoidmvlelem2.k |  |-  K = ( j e. NN |-> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) ) | 
						
							| 13 |  | hoidmvlelem2.r |  |-  ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( D ` j ) ) ) ) e. RR ) | 
						
							| 14 |  | hoidmvlelem2.h |  |-  H = ( x e. RR |-> ( c e. ( RR ^m W ) |-> ( j e. W |-> if ( j e. Y , ( c ` j ) , if ( ( c ` j ) <_ x , ( c ` j ) , x ) ) ) ) ) | 
						
							| 15 |  | hoidmvlelem2.g |  |-  G = ( ( A |` Y ) ( L ` Y ) ( B |` Y ) ) | 
						
							| 16 |  | hoidmvlelem2.e |  |-  ( ph -> E e. RR+ ) | 
						
							| 17 |  | hoidmvlelem2.u |  |-  U = { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } | 
						
							| 18 |  | hoidmvlelem2.su |  |-  ( ph -> S e. U ) | 
						
							| 19 |  | hoidmvlelem2.sb |  |-  ( ph -> S < ( B ` Z ) ) | 
						
							| 20 |  | hoidmvlelem2.p |  |-  P = ( j e. NN |-> ( ( J ` j ) ( L ` Y ) ( K ` j ) ) ) | 
						
							| 21 |  | hoidmvlelem2.m |  |-  ( ph -> M e. NN ) | 
						
							| 22 |  | hoidmvlelem2.le |  |-  ( ph -> G <_ ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( P ` j ) ) ) | 
						
							| 23 |  | hoidmvlelem2.O |  |-  O = ran ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } |-> ( ( D ` i ) ` Z ) ) | 
						
							| 24 |  | hoidmvlelem2.v |  |-  V = ( { ( B ` Z ) } u. O ) | 
						
							| 25 |  | hoidmvlelem2.q |  |-  Q = inf ( V , RR , < ) | 
						
							| 26 |  | snidg |  |-  ( Z e. ( X \ Y ) -> Z e. { Z } ) | 
						
							| 27 | 4 26 | syl |  |-  ( ph -> Z e. { Z } ) | 
						
							| 28 |  | elun2 |  |-  ( Z e. { Z } -> Z e. ( Y u. { Z } ) ) | 
						
							| 29 | 27 28 | syl |  |-  ( ph -> Z e. ( Y u. { Z } ) ) | 
						
							| 30 | 29 5 | eleqtrrdi |  |-  ( ph -> Z e. W ) | 
						
							| 31 | 6 30 | ffvelcdmd |  |-  ( ph -> ( A ` Z ) e. RR ) | 
						
							| 32 | 7 30 | ffvelcdmd |  |-  ( ph -> ( B ` Z ) e. RR ) | 
						
							| 33 | 32 | snssd |  |-  ( ph -> { ( B ` Z ) } C_ RR ) | 
						
							| 34 |  | nfv |  |-  F/ i ph | 
						
							| 35 |  | eqid |  |-  ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } |-> ( ( D ` i ) ` Z ) ) = ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } |-> ( ( D ` i ) ` Z ) ) | 
						
							| 36 |  | simpl |  |-  ( ( ph /\ i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } ) -> ph ) | 
						
							| 37 |  | fz1ssnn |  |-  ( 1 ... M ) C_ NN | 
						
							| 38 |  | elrabi |  |-  ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } -> i e. ( 1 ... M ) ) | 
						
							| 39 | 37 38 | sselid |  |-  ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } -> i e. NN ) | 
						
							| 40 | 39 | adantl |  |-  ( ( ph /\ i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } ) -> i e. NN ) | 
						
							| 41 |  | eleq1w |  |-  ( j = i -> ( j e. NN <-> i e. NN ) ) | 
						
							| 42 | 41 | anbi2d |  |-  ( j = i -> ( ( ph /\ j e. NN ) <-> ( ph /\ i e. NN ) ) ) | 
						
							| 43 |  | fveq2 |  |-  ( j = i -> ( D ` j ) = ( D ` i ) ) | 
						
							| 44 | 43 | fveq1d |  |-  ( j = i -> ( ( D ` j ) ` Z ) = ( ( D ` i ) ` Z ) ) | 
						
							| 45 | 44 | eleq1d |  |-  ( j = i -> ( ( ( D ` j ) ` Z ) e. RR <-> ( ( D ` i ) ` Z ) e. RR ) ) | 
						
							| 46 | 42 45 | imbi12d |  |-  ( j = i -> ( ( ( ph /\ j e. NN ) -> ( ( D ` j ) ` Z ) e. RR ) <-> ( ( ph /\ i e. NN ) -> ( ( D ` i ) ` Z ) e. RR ) ) ) | 
						
							| 47 | 11 | ffvelcdmda |  |-  ( ( ph /\ j e. NN ) -> ( D ` j ) e. ( RR ^m W ) ) | 
						
							| 48 |  | elmapi |  |-  ( ( D ` j ) e. ( RR ^m W ) -> ( D ` j ) : W --> RR ) | 
						
							| 49 | 47 48 | syl |  |-  ( ( ph /\ j e. NN ) -> ( D ` j ) : W --> RR ) | 
						
							| 50 | 30 | adantr |  |-  ( ( ph /\ j e. NN ) -> Z e. W ) | 
						
							| 51 | 49 50 | ffvelcdmd |  |-  ( ( ph /\ j e. NN ) -> ( ( D ` j ) ` Z ) e. RR ) | 
						
							| 52 | 46 51 | chvarvv |  |-  ( ( ph /\ i e. NN ) -> ( ( D ` i ) ` Z ) e. RR ) | 
						
							| 53 | 36 40 52 | syl2anc |  |-  ( ( ph /\ i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } ) -> ( ( D ` i ) ` Z ) e. RR ) | 
						
							| 54 | 34 35 53 | rnmptssd |  |-  ( ph -> ran ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } |-> ( ( D ` i ) ` Z ) ) C_ RR ) | 
						
							| 55 | 23 54 | eqsstrid |  |-  ( ph -> O C_ RR ) | 
						
							| 56 | 33 55 | unssd |  |-  ( ph -> ( { ( B ` Z ) } u. O ) C_ RR ) | 
						
							| 57 | 24 56 | eqsstrid |  |-  ( ph -> V C_ RR ) | 
						
							| 58 |  | ltso |  |-  < Or RR | 
						
							| 59 | 58 | a1i |  |-  ( ph -> < Or RR ) | 
						
							| 60 |  | snfi |  |-  { ( B ` Z ) } e. Fin | 
						
							| 61 | 60 | a1i |  |-  ( ph -> { ( B ` Z ) } e. Fin ) | 
						
							| 62 |  | fzfi |  |-  ( 1 ... M ) e. Fin | 
						
							| 63 |  | rabfi |  |-  ( ( 1 ... M ) e. Fin -> { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } e. Fin ) | 
						
							| 64 | 62 63 | ax-mp |  |-  { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } e. Fin | 
						
							| 65 | 64 | a1i |  |-  ( ph -> { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } e. Fin ) | 
						
							| 66 | 35 | rnmptfi |  |-  ( { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } e. Fin -> ran ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } |-> ( ( D ` i ) ` Z ) ) e. Fin ) | 
						
							| 67 | 65 66 | syl |  |-  ( ph -> ran ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } |-> ( ( D ` i ) ` Z ) ) e. Fin ) | 
						
							| 68 | 23 67 | eqeltrid |  |-  ( ph -> O e. Fin ) | 
						
							| 69 |  | unfi |  |-  ( ( { ( B ` Z ) } e. Fin /\ O e. Fin ) -> ( { ( B ` Z ) } u. O ) e. Fin ) | 
						
							| 70 | 61 68 69 | syl2anc |  |-  ( ph -> ( { ( B ` Z ) } u. O ) e. Fin ) | 
						
							| 71 | 24 70 | eqeltrid |  |-  ( ph -> V e. Fin ) | 
						
							| 72 |  | fvex |  |-  ( B ` Z ) e. _V | 
						
							| 73 | 72 | snid |  |-  ( B ` Z ) e. { ( B ` Z ) } | 
						
							| 74 |  | elun1 |  |-  ( ( B ` Z ) e. { ( B ` Z ) } -> ( B ` Z ) e. ( { ( B ` Z ) } u. O ) ) | 
						
							| 75 | 73 74 | ax-mp |  |-  ( B ` Z ) e. ( { ( B ` Z ) } u. O ) | 
						
							| 76 | 24 | eqcomi |  |-  ( { ( B ` Z ) } u. O ) = V | 
						
							| 77 | 75 76 | eleqtri |  |-  ( B ` Z ) e. V | 
						
							| 78 | 77 | a1i |  |-  ( ph -> ( B ` Z ) e. V ) | 
						
							| 79 |  | ne0i |  |-  ( ( B ` Z ) e. V -> V =/= (/) ) | 
						
							| 80 | 78 79 | syl |  |-  ( ph -> V =/= (/) ) | 
						
							| 81 |  | fiinfcl |  |-  ( ( < Or RR /\ ( V e. Fin /\ V =/= (/) /\ V C_ RR ) ) -> inf ( V , RR , < ) e. V ) | 
						
							| 82 | 59 71 80 57 81 | syl13anc |  |-  ( ph -> inf ( V , RR , < ) e. V ) | 
						
							| 83 | 25 82 | eqeltrid |  |-  ( ph -> Q e. V ) | 
						
							| 84 | 57 83 | sseldd |  |-  ( ph -> Q e. RR ) | 
						
							| 85 |  | ssrab2 |  |-  { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } C_ ( ( A ` Z ) [,] ( B ` Z ) ) | 
						
							| 86 | 17 85 | eqsstri |  |-  U C_ ( ( A ` Z ) [,] ( B ` Z ) ) | 
						
							| 87 | 86 | a1i |  |-  ( ph -> U C_ ( ( A ` Z ) [,] ( B ` Z ) ) ) | 
						
							| 88 | 31 32 | iccssred |  |-  ( ph -> ( ( A ` Z ) [,] ( B ` Z ) ) C_ RR ) | 
						
							| 89 | 87 88 | sstrd |  |-  ( ph -> U C_ RR ) | 
						
							| 90 | 89 18 | sseldd |  |-  ( ph -> S e. RR ) | 
						
							| 91 | 31 | rexrd |  |-  ( ph -> ( A ` Z ) e. RR* ) | 
						
							| 92 | 32 | rexrd |  |-  ( ph -> ( B ` Z ) e. RR* ) | 
						
							| 93 | 86 18 | sselid |  |-  ( ph -> S e. ( ( A ` Z ) [,] ( B ` Z ) ) ) | 
						
							| 94 |  | iccgelb |  |-  ( ( ( A ` Z ) e. RR* /\ ( B ` Z ) e. RR* /\ S e. ( ( A ` Z ) [,] ( B ` Z ) ) ) -> ( A ` Z ) <_ S ) | 
						
							| 95 | 91 92 93 94 | syl3anc |  |-  ( ph -> ( A ` Z ) <_ S ) | 
						
							| 96 | 19 | adantr |  |-  ( ( ph /\ x = ( B ` Z ) ) -> S < ( B ` Z ) ) | 
						
							| 97 |  | id |  |-  ( x = ( B ` Z ) -> x = ( B ` Z ) ) | 
						
							| 98 | 97 | eqcomd |  |-  ( x = ( B ` Z ) -> ( B ` Z ) = x ) | 
						
							| 99 | 98 | adantl |  |-  ( ( ph /\ x = ( B ` Z ) ) -> ( B ` Z ) = x ) | 
						
							| 100 | 96 99 | breqtrd |  |-  ( ( ph /\ x = ( B ` Z ) ) -> S < x ) | 
						
							| 101 | 100 | adantlr |  |-  ( ( ( ph /\ x e. V ) /\ x = ( B ` Z ) ) -> S < x ) | 
						
							| 102 |  | simpll |  |-  ( ( ( ph /\ x e. V ) /\ -. x = ( B ` Z ) ) -> ph ) | 
						
							| 103 |  | id |  |-  ( x e. V -> x e. V ) | 
						
							| 104 | 103 24 | eleqtrdi |  |-  ( x e. V -> x e. ( { ( B ` Z ) } u. O ) ) | 
						
							| 105 | 104 | adantr |  |-  ( ( x e. V /\ -. x = ( B ` Z ) ) -> x e. ( { ( B ` Z ) } u. O ) ) | 
						
							| 106 |  | elsni |  |-  ( x e. { ( B ` Z ) } -> x = ( B ` Z ) ) | 
						
							| 107 | 106 | con3i |  |-  ( -. x = ( B ` Z ) -> -. x e. { ( B ` Z ) } ) | 
						
							| 108 | 107 | adantl |  |-  ( ( x e. V /\ -. x = ( B ` Z ) ) -> -. x e. { ( B ` Z ) } ) | 
						
							| 109 |  | elunnel1 |  |-  ( ( x e. ( { ( B ` Z ) } u. O ) /\ -. x e. { ( B ` Z ) } ) -> x e. O ) | 
						
							| 110 | 105 108 109 | syl2anc |  |-  ( ( x e. V /\ -. x = ( B ` Z ) ) -> x e. O ) | 
						
							| 111 | 110 | adantll |  |-  ( ( ( ph /\ x e. V ) /\ -. x = ( B ` Z ) ) -> x e. O ) | 
						
							| 112 |  | id |  |-  ( x e. O -> x e. O ) | 
						
							| 113 | 112 23 | eleqtrdi |  |-  ( x e. O -> x e. ran ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } |-> ( ( D ` i ) ` Z ) ) ) | 
						
							| 114 |  | vex |  |-  x e. _V | 
						
							| 115 | 35 | elrnmpt |  |-  ( x e. _V -> ( x e. ran ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } |-> ( ( D ` i ) ` Z ) ) <-> E. i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } x = ( ( D ` i ) ` Z ) ) ) | 
						
							| 116 | 114 115 | ax-mp |  |-  ( x e. ran ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } |-> ( ( D ` i ) ` Z ) ) <-> E. i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } x = ( ( D ` i ) ` Z ) ) | 
						
							| 117 | 113 116 | sylib |  |-  ( x e. O -> E. i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } x = ( ( D ` i ) ` Z ) ) | 
						
							| 118 | 117 | adantl |  |-  ( ( ph /\ x e. O ) -> E. i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } x = ( ( D ` i ) ` Z ) ) | 
						
							| 119 |  | fveq2 |  |-  ( j = i -> ( C ` j ) = ( C ` i ) ) | 
						
							| 120 | 119 | fveq1d |  |-  ( j = i -> ( ( C ` j ) ` Z ) = ( ( C ` i ) ` Z ) ) | 
						
							| 121 | 120 | eleq1d |  |-  ( j = i -> ( ( ( C ` j ) ` Z ) e. RR <-> ( ( C ` i ) ` Z ) e. RR ) ) | 
						
							| 122 | 42 121 | imbi12d |  |-  ( j = i -> ( ( ( ph /\ j e. NN ) -> ( ( C ` j ) ` Z ) e. RR ) <-> ( ( ph /\ i e. NN ) -> ( ( C ` i ) ` Z ) e. RR ) ) ) | 
						
							| 123 | 8 | ffvelcdmda |  |-  ( ( ph /\ j e. NN ) -> ( C ` j ) e. ( RR ^m W ) ) | 
						
							| 124 |  | elmapi |  |-  ( ( C ` j ) e. ( RR ^m W ) -> ( C ` j ) : W --> RR ) | 
						
							| 125 | 123 124 | syl |  |-  ( ( ph /\ j e. NN ) -> ( C ` j ) : W --> RR ) | 
						
							| 126 | 125 50 | ffvelcdmd |  |-  ( ( ph /\ j e. NN ) -> ( ( C ` j ) ` Z ) e. RR ) | 
						
							| 127 | 122 126 | chvarvv |  |-  ( ( ph /\ i e. NN ) -> ( ( C ` i ) ` Z ) e. RR ) | 
						
							| 128 | 127 | rexrd |  |-  ( ( ph /\ i e. NN ) -> ( ( C ` i ) ` Z ) e. RR* ) | 
						
							| 129 | 36 40 128 | syl2anc |  |-  ( ( ph /\ i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } ) -> ( ( C ` i ) ` Z ) e. RR* ) | 
						
							| 130 | 52 | rexrd |  |-  ( ( ph /\ i e. NN ) -> ( ( D ` i ) ` Z ) e. RR* ) | 
						
							| 131 | 36 40 130 | syl2anc |  |-  ( ( ph /\ i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } ) -> ( ( D ` i ) ` Z ) e. RR* ) | 
						
							| 132 | 120 44 | oveq12d |  |-  ( j = i -> ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) = ( ( ( C ` i ) ` Z ) [,) ( ( D ` i ) ` Z ) ) ) | 
						
							| 133 | 132 | eleq2d |  |-  ( j = i -> ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) <-> S e. ( ( ( C ` i ) ` Z ) [,) ( ( D ` i ) ` Z ) ) ) ) | 
						
							| 134 | 133 | elrab |  |-  ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } <-> ( i e. ( 1 ... M ) /\ S e. ( ( ( C ` i ) ` Z ) [,) ( ( D ` i ) ` Z ) ) ) ) | 
						
							| 135 | 134 | biimpi |  |-  ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } -> ( i e. ( 1 ... M ) /\ S e. ( ( ( C ` i ) ` Z ) [,) ( ( D ` i ) ` Z ) ) ) ) | 
						
							| 136 | 135 | simprd |  |-  ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } -> S e. ( ( ( C ` i ) ` Z ) [,) ( ( D ` i ) ` Z ) ) ) | 
						
							| 137 | 136 | adantl |  |-  ( ( ph /\ i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } ) -> S e. ( ( ( C ` i ) ` Z ) [,) ( ( D ` i ) ` Z ) ) ) | 
						
							| 138 |  | icoltub |  |-  ( ( ( ( C ` i ) ` Z ) e. RR* /\ ( ( D ` i ) ` Z ) e. RR* /\ S e. ( ( ( C ` i ) ` Z ) [,) ( ( D ` i ) ` Z ) ) ) -> S < ( ( D ` i ) ` Z ) ) | 
						
							| 139 | 129 131 137 138 | syl3anc |  |-  ( ( ph /\ i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } ) -> S < ( ( D ` i ) ` Z ) ) | 
						
							| 140 | 139 | 3adant3 |  |-  ( ( ph /\ i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } /\ x = ( ( D ` i ) ` Z ) ) -> S < ( ( D ` i ) ` Z ) ) | 
						
							| 141 |  | id |  |-  ( x = ( ( D ` i ) ` Z ) -> x = ( ( D ` i ) ` Z ) ) | 
						
							| 142 | 141 | eqcomd |  |-  ( x = ( ( D ` i ) ` Z ) -> ( ( D ` i ) ` Z ) = x ) | 
						
							| 143 | 142 | 3ad2ant3 |  |-  ( ( ph /\ i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } /\ x = ( ( D ` i ) ` Z ) ) -> ( ( D ` i ) ` Z ) = x ) | 
						
							| 144 | 140 143 | breqtrd |  |-  ( ( ph /\ i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } /\ x = ( ( D ` i ) ` Z ) ) -> S < x ) | 
						
							| 145 | 144 | 3exp |  |-  ( ph -> ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } -> ( x = ( ( D ` i ) ` Z ) -> S < x ) ) ) | 
						
							| 146 | 145 | adantr |  |-  ( ( ph /\ x e. O ) -> ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } -> ( x = ( ( D ` i ) ` Z ) -> S < x ) ) ) | 
						
							| 147 | 146 | rexlimdv |  |-  ( ( ph /\ x e. O ) -> ( E. i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } x = ( ( D ` i ) ` Z ) -> S < x ) ) | 
						
							| 148 | 118 147 | mpd |  |-  ( ( ph /\ x e. O ) -> S < x ) | 
						
							| 149 | 102 111 148 | syl2anc |  |-  ( ( ( ph /\ x e. V ) /\ -. x = ( B ` Z ) ) -> S < x ) | 
						
							| 150 | 101 149 | pm2.61dan |  |-  ( ( ph /\ x e. V ) -> S < x ) | 
						
							| 151 | 150 | ralrimiva |  |-  ( ph -> A. x e. V S < x ) | 
						
							| 152 |  | breq2 |  |-  ( x = inf ( V , RR , < ) -> ( S < x <-> S < inf ( V , RR , < ) ) ) | 
						
							| 153 | 152 | rspcva |  |-  ( ( inf ( V , RR , < ) e. V /\ A. x e. V S < x ) -> S < inf ( V , RR , < ) ) | 
						
							| 154 | 82 151 153 | syl2anc |  |-  ( ph -> S < inf ( V , RR , < ) ) | 
						
							| 155 | 25 | eqcomi |  |-  inf ( V , RR , < ) = Q | 
						
							| 156 | 155 | a1i |  |-  ( ph -> inf ( V , RR , < ) = Q ) | 
						
							| 157 | 154 156 | breqtrd |  |-  ( ph -> S < Q ) | 
						
							| 158 | 31 90 84 95 157 | lelttrd |  |-  ( ph -> ( A ` Z ) < Q ) | 
						
							| 159 | 31 84 158 | ltled |  |-  ( ph -> ( A ` Z ) <_ Q ) | 
						
							| 160 |  | fiminre |  |-  ( ( V C_ RR /\ V e. Fin /\ V =/= (/) ) -> E. x e. V A. y e. V x <_ y ) | 
						
							| 161 | 57 71 80 160 | syl3anc |  |-  ( ph -> E. x e. V A. y e. V x <_ y ) | 
						
							| 162 |  | lbinfle |  |-  ( ( V C_ RR /\ E. x e. V A. y e. V x <_ y /\ ( B ` Z ) e. V ) -> inf ( V , RR , < ) <_ ( B ` Z ) ) | 
						
							| 163 | 57 161 78 162 | syl3anc |  |-  ( ph -> inf ( V , RR , < ) <_ ( B ` Z ) ) | 
						
							| 164 | 25 163 | eqbrtrid |  |-  ( ph -> Q <_ ( B ` Z ) ) | 
						
							| 165 | 31 32 84 159 164 | eliccd |  |-  ( ph -> Q e. ( ( A ` Z ) [,] ( B ` Z ) ) ) | 
						
							| 166 | 84 | recnd |  |-  ( ph -> Q e. CC ) | 
						
							| 167 | 90 | recnd |  |-  ( ph -> S e. CC ) | 
						
							| 168 | 31 | recnd |  |-  ( ph -> ( A ` Z ) e. CC ) | 
						
							| 169 | 166 167 168 | npncand |  |-  ( ph -> ( ( Q - S ) + ( S - ( A ` Z ) ) ) = ( Q - ( A ` Z ) ) ) | 
						
							| 170 | 169 | eqcomd |  |-  ( ph -> ( Q - ( A ` Z ) ) = ( ( Q - S ) + ( S - ( A ` Z ) ) ) ) | 
						
							| 171 | 170 | oveq2d |  |-  ( ph -> ( G x. ( Q - ( A ` Z ) ) ) = ( G x. ( ( Q - S ) + ( S - ( A ` Z ) ) ) ) ) | 
						
							| 172 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 173 | 2 3 | ssfid |  |-  ( ph -> Y e. Fin ) | 
						
							| 174 |  | ssun1 |  |-  Y C_ ( Y u. { Z } ) | 
						
							| 175 | 174 5 | sseqtrri |  |-  Y C_ W | 
						
							| 176 | 175 | a1i |  |-  ( ph -> Y C_ W ) | 
						
							| 177 | 6 176 | fssresd |  |-  ( ph -> ( A |` Y ) : Y --> RR ) | 
						
							| 178 | 7 176 | fssresd |  |-  ( ph -> ( B |` Y ) : Y --> RR ) | 
						
							| 179 | 1 173 177 178 | hoidmvcl |  |-  ( ph -> ( ( A |` Y ) ( L ` Y ) ( B |` Y ) ) e. ( 0 [,) +oo ) ) | 
						
							| 180 | 15 179 | eqeltrid |  |-  ( ph -> G e. ( 0 [,) +oo ) ) | 
						
							| 181 | 172 180 | sselid |  |-  ( ph -> G e. RR ) | 
						
							| 182 | 181 | recnd |  |-  ( ph -> G e. CC ) | 
						
							| 183 | 166 167 | subcld |  |-  ( ph -> ( Q - S ) e. CC ) | 
						
							| 184 | 167 168 | subcld |  |-  ( ph -> ( S - ( A ` Z ) ) e. CC ) | 
						
							| 185 | 182 183 184 | adddid |  |-  ( ph -> ( G x. ( ( Q - S ) + ( S - ( A ` Z ) ) ) ) = ( ( G x. ( Q - S ) ) + ( G x. ( S - ( A ` Z ) ) ) ) ) | 
						
							| 186 | 182 183 | mulcld |  |-  ( ph -> ( G x. ( Q - S ) ) e. CC ) | 
						
							| 187 | 182 184 | mulcld |  |-  ( ph -> ( G x. ( S - ( A ` Z ) ) ) e. CC ) | 
						
							| 188 | 186 187 | addcomd |  |-  ( ph -> ( ( G x. ( Q - S ) ) + ( G x. ( S - ( A ` Z ) ) ) ) = ( ( G x. ( S - ( A ` Z ) ) ) + ( G x. ( Q - S ) ) ) ) | 
						
							| 189 | 171 185 188 | 3eqtrd |  |-  ( ph -> ( G x. ( Q - ( A ` Z ) ) ) = ( ( G x. ( S - ( A ` Z ) ) ) + ( G x. ( Q - S ) ) ) ) | 
						
							| 190 | 84 90 | jca |  |-  ( ph -> ( Q e. RR /\ S e. RR ) ) | 
						
							| 191 |  | resubcl |  |-  ( ( Q e. RR /\ S e. RR ) -> ( Q - S ) e. RR ) | 
						
							| 192 | 190 191 | syl |  |-  ( ph -> ( Q - S ) e. RR ) | 
						
							| 193 | 181 192 | jca |  |-  ( ph -> ( G e. RR /\ ( Q - S ) e. RR ) ) | 
						
							| 194 |  | remulcl |  |-  ( ( G e. RR /\ ( Q - S ) e. RR ) -> ( G x. ( Q - S ) ) e. RR ) | 
						
							| 195 | 193 194 | syl |  |-  ( ph -> ( G x. ( Q - S ) ) e. RR ) | 
						
							| 196 | 90 31 | jca |  |-  ( ph -> ( S e. RR /\ ( A ` Z ) e. RR ) ) | 
						
							| 197 |  | resubcl |  |-  ( ( S e. RR /\ ( A ` Z ) e. RR ) -> ( S - ( A ` Z ) ) e. RR ) | 
						
							| 198 | 196 197 | syl |  |-  ( ph -> ( S - ( A ` Z ) ) e. RR ) | 
						
							| 199 | 181 198 | jca |  |-  ( ph -> ( G e. RR /\ ( S - ( A ` Z ) ) e. RR ) ) | 
						
							| 200 |  | remulcl |  |-  ( ( G e. RR /\ ( S - ( A ` Z ) ) e. RR ) -> ( G x. ( S - ( A ` Z ) ) ) e. RR ) | 
						
							| 201 | 199 200 | syl |  |-  ( ph -> ( G x. ( S - ( A ` Z ) ) ) e. RR ) | 
						
							| 202 | 195 201 | jca |  |-  ( ph -> ( ( G x. ( Q - S ) ) e. RR /\ ( G x. ( S - ( A ` Z ) ) ) e. RR ) ) | 
						
							| 203 |  | readdcl |  |-  ( ( ( G x. ( Q - S ) ) e. RR /\ ( G x. ( S - ( A ` Z ) ) ) e. RR ) -> ( ( G x. ( Q - S ) ) + ( G x. ( S - ( A ` Z ) ) ) ) e. RR ) | 
						
							| 204 | 202 203 | syl |  |-  ( ph -> ( ( G x. ( Q - S ) ) + ( G x. ( S - ( A ` Z ) ) ) ) e. RR ) | 
						
							| 205 | 188 204 | eqeltrrd |  |-  ( ph -> ( ( G x. ( S - ( A ` Z ) ) ) + ( G x. ( Q - S ) ) ) e. RR ) | 
						
							| 206 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 207 | 16 | rpred |  |-  ( ph -> E e. RR ) | 
						
							| 208 | 206 207 | readdcld |  |-  ( ph -> ( 1 + E ) e. RR ) | 
						
							| 209 | 4 | eldifbd |  |-  ( ph -> -. Z e. Y ) | 
						
							| 210 | 30 209 | eldifd |  |-  ( ph -> Z e. ( W \ Y ) ) | 
						
							| 211 | 1 173 210 5 8 11 13 14 90 | sge0hsphoire |  |-  ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) e. RR ) | 
						
							| 212 | 208 211 | remulcld |  |-  ( ph -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) e. RR ) | 
						
							| 213 |  | fzfid |  |-  ( ph -> ( 1 ... M ) e. Fin ) | 
						
							| 214 | 192 | adantr |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ( Q - S ) e. RR ) | 
						
							| 215 |  | simpl |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ph ) | 
						
							| 216 |  | elfznn |  |-  ( j e. ( 1 ... M ) -> j e. NN ) | 
						
							| 217 | 216 | adantl |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> j e. NN ) | 
						
							| 218 |  | id |  |-  ( j e. NN -> j e. NN ) | 
						
							| 219 |  | ovexd |  |-  ( j e. NN -> ( ( J ` j ) ( L ` Y ) ( K ` j ) ) e. _V ) | 
						
							| 220 | 20 | fvmpt2 |  |-  ( ( j e. NN /\ ( ( J ` j ) ( L ` Y ) ( K ` j ) ) e. _V ) -> ( P ` j ) = ( ( J ` j ) ( L ` Y ) ( K ` j ) ) ) | 
						
							| 221 | 218 219 220 | syl2anc |  |-  ( j e. NN -> ( P ` j ) = ( ( J ` j ) ( L ` Y ) ( K ` j ) ) ) | 
						
							| 222 | 221 | adantl |  |-  ( ( ph /\ j e. NN ) -> ( P ` j ) = ( ( J ` j ) ( L ` Y ) ( K ` j ) ) ) | 
						
							| 223 | 173 | adantr |  |-  ( ( ph /\ j e. NN ) -> Y e. Fin ) | 
						
							| 224 | 175 | a1i |  |-  ( ( ph /\ j e. NN ) -> Y C_ W ) | 
						
							| 225 | 125 224 | fssresd |  |-  ( ( ph /\ j e. NN ) -> ( ( C ` j ) |` Y ) : Y --> RR ) | 
						
							| 226 | 225 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( ( C ` j ) |` Y ) : Y --> RR ) | 
						
							| 227 |  | iftrue |  |-  ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) = ( ( C ` j ) |` Y ) ) | 
						
							| 228 | 227 | adantl |  |-  ( ( ( ph /\ j e. NN ) /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) = ( ( C ` j ) |` Y ) ) | 
						
							| 229 | 228 | feq1d |  |-  ( ( ( ph /\ j e. NN ) /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) : Y --> RR <-> ( ( C ` j ) |` Y ) : Y --> RR ) ) | 
						
							| 230 | 226 229 | mpbird |  |-  ( ( ( ph /\ j e. NN ) /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) : Y --> RR ) | 
						
							| 231 |  | 0red |  |-  ( ( ph /\ y e. Y ) -> 0 e. RR ) | 
						
							| 232 | 231 9 | fmptd |  |-  ( ph -> F : Y --> RR ) | 
						
							| 233 | 232 | ad2antrr |  |-  ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> F : Y --> RR ) | 
						
							| 234 |  | iffalse |  |-  ( -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) = F ) | 
						
							| 235 | 234 | adantl |  |-  ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) = F ) | 
						
							| 236 | 235 | feq1d |  |-  ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) : Y --> RR <-> F : Y --> RR ) ) | 
						
							| 237 | 233 236 | mpbird |  |-  ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) : Y --> RR ) | 
						
							| 238 | 230 237 | pm2.61dan |  |-  ( ( ph /\ j e. NN ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) : Y --> RR ) | 
						
							| 239 |  | simpr |  |-  ( ( ph /\ j e. NN ) -> j e. NN ) | 
						
							| 240 |  | fvex |  |-  ( C ` j ) e. _V | 
						
							| 241 | 240 | resex |  |-  ( ( C ` j ) |` Y ) e. _V | 
						
							| 242 | 241 | a1i |  |-  ( ph -> ( ( C ` j ) |` Y ) e. _V ) | 
						
							| 243 | 2 3 | ssexd |  |-  ( ph -> Y e. _V ) | 
						
							| 244 |  | mptexg |  |-  ( Y e. _V -> ( y e. Y |-> 0 ) e. _V ) | 
						
							| 245 | 243 244 | syl |  |-  ( ph -> ( y e. Y |-> 0 ) e. _V ) | 
						
							| 246 | 9 245 | eqeltrid |  |-  ( ph -> F e. _V ) | 
						
							| 247 | 242 246 | ifcld |  |-  ( ph -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) e. _V ) | 
						
							| 248 | 247 | adantr |  |-  ( ( ph /\ j e. NN ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) e. _V ) | 
						
							| 249 | 10 | fvmpt2 |  |-  ( ( j e. NN /\ if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) e. _V ) -> ( J ` j ) = if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) ) | 
						
							| 250 | 239 248 249 | syl2anc |  |-  ( ( ph /\ j e. NN ) -> ( J ` j ) = if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) ) | 
						
							| 251 | 250 | feq1d |  |-  ( ( ph /\ j e. NN ) -> ( ( J ` j ) : Y --> RR <-> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) : Y --> RR ) ) | 
						
							| 252 | 238 251 | mpbird |  |-  ( ( ph /\ j e. NN ) -> ( J ` j ) : Y --> RR ) | 
						
							| 253 | 49 224 | fssresd |  |-  ( ( ph /\ j e. NN ) -> ( ( D ` j ) |` Y ) : Y --> RR ) | 
						
							| 254 | 253 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( ( D ` j ) |` Y ) : Y --> RR ) | 
						
							| 255 |  | iftrue |  |-  ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) = ( ( D ` j ) |` Y ) ) | 
						
							| 256 | 255 | adantl |  |-  ( ( ( ph /\ j e. NN ) /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) = ( ( D ` j ) |` Y ) ) | 
						
							| 257 | 256 | feq1d |  |-  ( ( ( ph /\ j e. NN ) /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) : Y --> RR <-> ( ( D ` j ) |` Y ) : Y --> RR ) ) | 
						
							| 258 | 254 257 | mpbird |  |-  ( ( ( ph /\ j e. NN ) /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) : Y --> RR ) | 
						
							| 259 |  | iffalse |  |-  ( -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) = F ) | 
						
							| 260 | 259 | adantl |  |-  ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) = F ) | 
						
							| 261 | 260 | feq1d |  |-  ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) : Y --> RR <-> F : Y --> RR ) ) | 
						
							| 262 | 233 261 | mpbird |  |-  ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) : Y --> RR ) | 
						
							| 263 | 258 262 | pm2.61dan |  |-  ( ( ph /\ j e. NN ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) : Y --> RR ) | 
						
							| 264 |  | fvex |  |-  ( D ` j ) e. _V | 
						
							| 265 | 264 | resex |  |-  ( ( D ` j ) |` Y ) e. _V | 
						
							| 266 | 265 | a1i |  |-  ( ph -> ( ( D ` j ) |` Y ) e. _V ) | 
						
							| 267 | 266 246 | ifcld |  |-  ( ph -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) e. _V ) | 
						
							| 268 | 267 | adantr |  |-  ( ( ph /\ j e. NN ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) e. _V ) | 
						
							| 269 | 12 | fvmpt2 |  |-  ( ( j e. NN /\ if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) e. _V ) -> ( K ` j ) = if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) ) | 
						
							| 270 | 239 268 269 | syl2anc |  |-  ( ( ph /\ j e. NN ) -> ( K ` j ) = if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) ) | 
						
							| 271 | 270 | feq1d |  |-  ( ( ph /\ j e. NN ) -> ( ( K ` j ) : Y --> RR <-> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) : Y --> RR ) ) | 
						
							| 272 | 263 271 | mpbird |  |-  ( ( ph /\ j e. NN ) -> ( K ` j ) : Y --> RR ) | 
						
							| 273 | 1 223 252 272 | hoidmvcl |  |-  ( ( ph /\ j e. NN ) -> ( ( J ` j ) ( L ` Y ) ( K ` j ) ) e. ( 0 [,) +oo ) ) | 
						
							| 274 | 222 273 | eqeltrd |  |-  ( ( ph /\ j e. NN ) -> ( P ` j ) e. ( 0 [,) +oo ) ) | 
						
							| 275 | 172 274 | sselid |  |-  ( ( ph /\ j e. NN ) -> ( P ` j ) e. RR ) | 
						
							| 276 | 215 217 275 | syl2anc |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ( P ` j ) e. RR ) | 
						
							| 277 | 214 276 | remulcld |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( Q - S ) x. ( P ` j ) ) e. RR ) | 
						
							| 278 | 213 277 | fsumrecl |  |-  ( ph -> sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) e. RR ) | 
						
							| 279 | 208 278 | remulcld |  |-  ( ph -> ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) e. RR ) | 
						
							| 280 | 212 279 | readdcld |  |-  ( ph -> ( ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) + ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) e. RR ) | 
						
							| 281 | 1 173 210 5 8 11 13 14 84 | sge0hsphoire |  |-  ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) e. RR ) | 
						
							| 282 | 208 281 | remulcld |  |-  ( ph -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) e. RR ) | 
						
							| 283 | 18 17 | eleqtrdi |  |-  ( ph -> S e. { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } ) | 
						
							| 284 |  | oveq1 |  |-  ( z = S -> ( z - ( A ` Z ) ) = ( S - ( A ` Z ) ) ) | 
						
							| 285 | 284 | oveq2d |  |-  ( z = S -> ( G x. ( z - ( A ` Z ) ) ) = ( G x. ( S - ( A ` Z ) ) ) ) | 
						
							| 286 |  | fveq2 |  |-  ( z = S -> ( H ` z ) = ( H ` S ) ) | 
						
							| 287 | 286 | fveq1d |  |-  ( z = S -> ( ( H ` z ) ` ( D ` j ) ) = ( ( H ` S ) ` ( D ` j ) ) ) | 
						
							| 288 | 287 | oveq2d |  |-  ( z = S -> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) = ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) | 
						
							| 289 | 288 | mpteq2dv |  |-  ( z = S -> ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) = ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) | 
						
							| 290 | 289 | fveq2d |  |-  ( z = S -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) | 
						
							| 291 | 290 | oveq2d |  |-  ( z = S -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) = ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 292 | 285 291 | breq12d |  |-  ( z = S -> ( ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) <-> ( G x. ( S - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 293 | 292 | elrab |  |-  ( S e. { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } <-> ( S e. ( ( A ` Z ) [,] ( B ` Z ) ) /\ ( G x. ( S - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 294 | 283 293 | sylib |  |-  ( ph -> ( S e. ( ( A ` Z ) [,] ( B ` Z ) ) /\ ( G x. ( S - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 295 | 294 | simprd |  |-  ( ph -> ( G x. ( S - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 296 | 213 276 | fsumrecl |  |-  ( ph -> sum_ j e. ( 1 ... M ) ( P ` j ) e. RR ) | 
						
							| 297 | 208 296 | remulcld |  |-  ( ph -> ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( P ` j ) ) e. RR ) | 
						
							| 298 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 299 | 90 84 | posdifd |  |-  ( ph -> ( S < Q <-> 0 < ( Q - S ) ) ) | 
						
							| 300 | 157 299 | mpbid |  |-  ( ph -> 0 < ( Q - S ) ) | 
						
							| 301 | 298 192 300 | ltled |  |-  ( ph -> 0 <_ ( Q - S ) ) | 
						
							| 302 | 181 297 192 301 22 | lemul1ad |  |-  ( ph -> ( G x. ( Q - S ) ) <_ ( ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( P ` j ) ) x. ( Q - S ) ) ) | 
						
							| 303 | 208 | recnd |  |-  ( ph -> ( 1 + E ) e. CC ) | 
						
							| 304 | 296 | recnd |  |-  ( ph -> sum_ j e. ( 1 ... M ) ( P ` j ) e. CC ) | 
						
							| 305 | 303 304 183 | mulassd |  |-  ( ph -> ( ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( P ` j ) ) x. ( Q - S ) ) = ( ( 1 + E ) x. ( sum_ j e. ( 1 ... M ) ( P ` j ) x. ( Q - S ) ) ) ) | 
						
							| 306 | 276 | recnd |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ( P ` j ) e. CC ) | 
						
							| 307 | 213 183 306 | fsummulc1 |  |-  ( ph -> ( sum_ j e. ( 1 ... M ) ( P ` j ) x. ( Q - S ) ) = sum_ j e. ( 1 ... M ) ( ( P ` j ) x. ( Q - S ) ) ) | 
						
							| 308 | 183 | adantr |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ( Q - S ) e. CC ) | 
						
							| 309 | 306 308 | mulcomd |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( P ` j ) x. ( Q - S ) ) = ( ( Q - S ) x. ( P ` j ) ) ) | 
						
							| 310 | 309 | sumeq2dv |  |-  ( ph -> sum_ j e. ( 1 ... M ) ( ( P ` j ) x. ( Q - S ) ) = sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) | 
						
							| 311 | 307 310 | eqtrd |  |-  ( ph -> ( sum_ j e. ( 1 ... M ) ( P ` j ) x. ( Q - S ) ) = sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) | 
						
							| 312 | 311 | oveq2d |  |-  ( ph -> ( ( 1 + E ) x. ( sum_ j e. ( 1 ... M ) ( P ` j ) x. ( Q - S ) ) ) = ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) | 
						
							| 313 | 305 312 | eqtrd |  |-  ( ph -> ( ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( P ` j ) ) x. ( Q - S ) ) = ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) | 
						
							| 314 | 302 313 | breqtrd |  |-  ( ph -> ( G x. ( Q - S ) ) <_ ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) | 
						
							| 315 | 201 195 212 279 295 314 | leadd12dd |  |-  ( ph -> ( ( G x. ( S - ( A ` Z ) ) ) + ( G x. ( Q - S ) ) ) <_ ( ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) + ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) ) | 
						
							| 316 |  | nnsplit |  |-  ( M e. NN -> NN = ( ( 1 ... M ) u. ( ZZ>= ` ( M + 1 ) ) ) ) | 
						
							| 317 | 21 316 | syl |  |-  ( ph -> NN = ( ( 1 ... M ) u. ( ZZ>= ` ( M + 1 ) ) ) ) | 
						
							| 318 |  | uncom |  |-  ( ( 1 ... M ) u. ( ZZ>= ` ( M + 1 ) ) ) = ( ( ZZ>= ` ( M + 1 ) ) u. ( 1 ... M ) ) | 
						
							| 319 | 318 | a1i |  |-  ( ph -> ( ( 1 ... M ) u. ( ZZ>= ` ( M + 1 ) ) ) = ( ( ZZ>= ` ( M + 1 ) ) u. ( 1 ... M ) ) ) | 
						
							| 320 | 317 319 | eqtr2d |  |-  ( ph -> ( ( ZZ>= ` ( M + 1 ) ) u. ( 1 ... M ) ) = NN ) | 
						
							| 321 | 320 | eqcomd |  |-  ( ph -> NN = ( ( ZZ>= ` ( M + 1 ) ) u. ( 1 ... M ) ) ) | 
						
							| 322 | 321 | mpteq1d |  |-  ( ph -> ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) = ( j e. ( ( ZZ>= ` ( M + 1 ) ) u. ( 1 ... M ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) | 
						
							| 323 | 322 | fveq2d |  |-  ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) = ( sum^ ` ( j e. ( ( ZZ>= ` ( M + 1 ) ) u. ( 1 ... M ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) | 
						
							| 324 |  | nfv |  |-  F/ j ph | 
						
							| 325 |  | fvexd |  |-  ( ph -> ( ZZ>= ` ( M + 1 ) ) e. _V ) | 
						
							| 326 |  | ovexd |  |-  ( ph -> ( 1 ... M ) e. _V ) | 
						
							| 327 |  | incom |  |-  ( ( ZZ>= ` ( M + 1 ) ) i^i ( 1 ... M ) ) = ( ( 1 ... M ) i^i ( ZZ>= ` ( M + 1 ) ) ) | 
						
							| 328 |  | nnuzdisj |  |-  ( ( 1 ... M ) i^i ( ZZ>= ` ( M + 1 ) ) ) = (/) | 
						
							| 329 | 327 328 | eqtri |  |-  ( ( ZZ>= ` ( M + 1 ) ) i^i ( 1 ... M ) ) = (/) | 
						
							| 330 | 329 | a1i |  |-  ( ph -> ( ( ZZ>= ` ( M + 1 ) ) i^i ( 1 ... M ) ) = (/) ) | 
						
							| 331 |  | icossicc |  |-  ( 0 [,) +oo ) C_ ( 0 [,] +oo ) | 
						
							| 332 |  | ssid |  |-  ( 0 [,) +oo ) C_ ( 0 [,) +oo ) | 
						
							| 333 |  | simpl |  |-  ( ( ph /\ j e. ( ZZ>= ` ( M + 1 ) ) ) -> ph ) | 
						
							| 334 | 21 | peano2nnd |  |-  ( ph -> ( M + 1 ) e. NN ) | 
						
							| 335 |  | uznnssnn |  |-  ( ( M + 1 ) e. NN -> ( ZZ>= ` ( M + 1 ) ) C_ NN ) | 
						
							| 336 | 334 335 | syl |  |-  ( ph -> ( ZZ>= ` ( M + 1 ) ) C_ NN ) | 
						
							| 337 | 336 | adantr |  |-  ( ( ph /\ j e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ZZ>= ` ( M + 1 ) ) C_ NN ) | 
						
							| 338 |  | simpr |  |-  ( ( ph /\ j e. ( ZZ>= ` ( M + 1 ) ) ) -> j e. ( ZZ>= ` ( M + 1 ) ) ) | 
						
							| 339 | 337 338 | sseldd |  |-  ( ( ph /\ j e. ( ZZ>= ` ( M + 1 ) ) ) -> j e. NN ) | 
						
							| 340 |  | snfi |  |-  { Z } e. Fin | 
						
							| 341 | 340 | a1i |  |-  ( ph -> { Z } e. Fin ) | 
						
							| 342 |  | unfi |  |-  ( ( Y e. Fin /\ { Z } e. Fin ) -> ( Y u. { Z } ) e. Fin ) | 
						
							| 343 | 173 341 342 | syl2anc |  |-  ( ph -> ( Y u. { Z } ) e. Fin ) | 
						
							| 344 | 5 343 | eqeltrid |  |-  ( ph -> W e. Fin ) | 
						
							| 345 | 344 | adantr |  |-  ( ( ph /\ j e. NN ) -> W e. Fin ) | 
						
							| 346 |  | eleq1w |  |-  ( j = l -> ( j e. Y <-> l e. Y ) ) | 
						
							| 347 |  | fveq2 |  |-  ( j = l -> ( c ` j ) = ( c ` l ) ) | 
						
							| 348 | 347 | breq1d |  |-  ( j = l -> ( ( c ` j ) <_ x <-> ( c ` l ) <_ x ) ) | 
						
							| 349 | 348 347 | ifbieq1d |  |-  ( j = l -> if ( ( c ` j ) <_ x , ( c ` j ) , x ) = if ( ( c ` l ) <_ x , ( c ` l ) , x ) ) | 
						
							| 350 | 346 347 349 | ifbieq12d |  |-  ( j = l -> if ( j e. Y , ( c ` j ) , if ( ( c ` j ) <_ x , ( c ` j ) , x ) ) = if ( l e. Y , ( c ` l ) , if ( ( c ` l ) <_ x , ( c ` l ) , x ) ) ) | 
						
							| 351 | 350 | cbvmptv |  |-  ( j e. W |-> if ( j e. Y , ( c ` j ) , if ( ( c ` j ) <_ x , ( c ` j ) , x ) ) ) = ( l e. W |-> if ( l e. Y , ( c ` l ) , if ( ( c ` l ) <_ x , ( c ` l ) , x ) ) ) | 
						
							| 352 | 351 | mpteq2i |  |-  ( c e. ( RR ^m W ) |-> ( j e. W |-> if ( j e. Y , ( c ` j ) , if ( ( c ` j ) <_ x , ( c ` j ) , x ) ) ) ) = ( c e. ( RR ^m W ) |-> ( l e. W |-> if ( l e. Y , ( c ` l ) , if ( ( c ` l ) <_ x , ( c ` l ) , x ) ) ) ) | 
						
							| 353 | 352 | mpteq2i |  |-  ( x e. RR |-> ( c e. ( RR ^m W ) |-> ( j e. W |-> if ( j e. Y , ( c ` j ) , if ( ( c ` j ) <_ x , ( c ` j ) , x ) ) ) ) ) = ( x e. RR |-> ( c e. ( RR ^m W ) |-> ( l e. W |-> if ( l e. Y , ( c ` l ) , if ( ( c ` l ) <_ x , ( c ` l ) , x ) ) ) ) ) | 
						
							| 354 | 14 353 | eqtri |  |-  H = ( x e. RR |-> ( c e. ( RR ^m W ) |-> ( l e. W |-> if ( l e. Y , ( c ` l ) , if ( ( c ` l ) <_ x , ( c ` l ) , x ) ) ) ) ) | 
						
							| 355 | 90 | adantr |  |-  ( ( ph /\ j e. NN ) -> S e. RR ) | 
						
							| 356 | 354 355 345 49 | hsphoif |  |-  ( ( ph /\ j e. NN ) -> ( ( H ` S ) ` ( D ` j ) ) : W --> RR ) | 
						
							| 357 | 1 345 125 356 | hoidmvcl |  |-  ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. ( 0 [,) +oo ) ) | 
						
							| 358 | 333 339 357 | syl2anc |  |-  ( ( ph /\ j e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. ( 0 [,) +oo ) ) | 
						
							| 359 | 332 358 | sselid |  |-  ( ( ph /\ j e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. ( 0 [,) +oo ) ) | 
						
							| 360 | 331 359 | sselid |  |-  ( ( ph /\ j e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. ( 0 [,] +oo ) ) | 
						
							| 361 | 215 217 357 | syl2anc |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. ( 0 [,) +oo ) ) | 
						
							| 362 | 331 361 | sselid |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. ( 0 [,] +oo ) ) | 
						
							| 363 | 324 325 326 330 360 362 | sge0splitmpt |  |-  ( ph -> ( sum^ ` ( j e. ( ( ZZ>= ` ( M + 1 ) ) u. ( 1 ... M ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) +e ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 364 |  | nnex |  |-  NN e. _V | 
						
							| 365 | 364 | a1i |  |-  ( ph -> NN e. _V ) | 
						
							| 366 | 331 357 | sselid |  |-  ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. ( 0 [,] +oo ) ) | 
						
							| 367 | 324 365 366 211 336 | sge0ssrempt |  |-  ( ph -> ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) e. RR ) | 
						
							| 368 | 37 | a1i |  |-  ( ph -> ( 1 ... M ) C_ NN ) | 
						
							| 369 | 324 365 366 211 368 | sge0ssrempt |  |-  ( ph -> ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) e. RR ) | 
						
							| 370 |  | rexadd |  |-  ( ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) e. RR /\ ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) e. RR ) -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) +e ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 371 | 367 369 370 | syl2anc |  |-  ( ph -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) +e ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 372 | 323 363 371 | 3eqtrd |  |-  ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 373 | 372 | oveq2d |  |-  ( ph -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) = ( ( 1 + E ) x. ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 374 | 373 | oveq1d |  |-  ( ph -> ( ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) + ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) = ( ( ( 1 + E ) x. ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) + ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) ) | 
						
							| 375 | 372 211 | eqeltrrd |  |-  ( ph -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) e. RR ) | 
						
							| 376 | 375 | recnd |  |-  ( ph -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) e. CC ) | 
						
							| 377 | 278 | recnd |  |-  ( ph -> sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) e. CC ) | 
						
							| 378 | 303 376 377 | adddid |  |-  ( ph -> ( ( 1 + E ) x. ( ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) = ( ( ( 1 + E ) x. ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) + ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) ) | 
						
							| 379 | 378 | eqcomd |  |-  ( ph -> ( ( ( 1 + E ) x. ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) ) + ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) = ( ( 1 + E ) x. ( ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) ) | 
						
							| 380 | 367 | recnd |  |-  ( ph -> ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) e. CC ) | 
						
							| 381 | 369 | recnd |  |-  ( ph -> ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) e. CC ) | 
						
							| 382 | 380 381 377 | addassd |  |-  ( ph -> ( ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) ) | 
						
							| 383 | 213 361 | sge0fsummpt |  |-  ( ph -> ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) = sum_ j e. ( 1 ... M ) ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) | 
						
							| 384 | 383 | oveq1d |  |-  ( ph -> ( ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) = ( sum_ j e. ( 1 ... M ) ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) | 
						
							| 385 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 386 | 172 385 | sstri |  |-  ( 0 [,) +oo ) C_ CC | 
						
							| 387 | 386 357 | sselid |  |-  ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. CC ) | 
						
							| 388 | 215 217 387 | syl2anc |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. CC ) | 
						
							| 389 | 192 | adantr |  |-  ( ( ph /\ j e. NN ) -> ( Q - S ) e. RR ) | 
						
							| 390 | 389 275 | remulcld |  |-  ( ( ph /\ j e. NN ) -> ( ( Q - S ) x. ( P ` j ) ) e. RR ) | 
						
							| 391 | 390 | recnd |  |-  ( ( ph /\ j e. NN ) -> ( ( Q - S ) x. ( P ` j ) ) e. CC ) | 
						
							| 392 | 217 391 | syldan |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( Q - S ) x. ( P ` j ) ) e. CC ) | 
						
							| 393 | 213 388 392 | fsumadd |  |-  ( ph -> sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) = ( sum_ j e. ( 1 ... M ) ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) | 
						
							| 394 | 393 | eqcomd |  |-  ( ph -> ( sum_ j e. ( 1 ... M ) ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) = sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) | 
						
							| 395 | 384 394 | eqtrd |  |-  ( ph -> ( ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) = sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) | 
						
							| 396 | 395 | oveq2d |  |-  ( ph -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) ) | 
						
							| 397 | 382 396 | eqtrd |  |-  ( ph -> ( ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) ) | 
						
							| 398 | 397 | oveq2d |  |-  ( ph -> ( ( 1 + E ) x. ( ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) = ( ( 1 + E ) x. ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) ) ) | 
						
							| 399 | 374 379 398 | 3eqtrd |  |-  ( ph -> ( ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) + ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) = ( ( 1 + E ) x. ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) ) ) | 
						
							| 400 | 172 357 | sselid |  |-  ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) e. RR ) | 
						
							| 401 | 400 390 | readdcld |  |-  ( ( ph /\ j e. NN ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) e. RR ) | 
						
							| 402 | 215 217 401 | syl2anc |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) e. RR ) | 
						
							| 403 | 213 402 | fsumrecl |  |-  ( ph -> sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) e. RR ) | 
						
							| 404 | 367 403 | readdcld |  |-  ( ph -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) e. RR ) | 
						
							| 405 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 406 | 405 | a1i |  |-  ( ph -> 0 <_ 1 ) | 
						
							| 407 | 16 | rpge0d |  |-  ( ph -> 0 <_ E ) | 
						
							| 408 | 206 207 406 407 | addge0d |  |-  ( ph -> 0 <_ ( 1 + E ) ) | 
						
							| 409 | 84 | adantr |  |-  ( ( ph /\ j e. NN ) -> Q e. RR ) | 
						
							| 410 | 354 409 345 49 | hsphoif |  |-  ( ( ph /\ j e. NN ) -> ( ( H ` Q ) ` ( D ` j ) ) : W --> RR ) | 
						
							| 411 | 1 345 125 410 | hoidmvcl |  |-  ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) e. ( 0 [,) +oo ) ) | 
						
							| 412 | 331 411 | sselid |  |-  ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) e. ( 0 [,] +oo ) ) | 
						
							| 413 | 324 365 412 281 336 | sge0ssrempt |  |-  ( ph -> ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) e. RR ) | 
						
							| 414 | 172 411 | sselid |  |-  ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) e. RR ) | 
						
							| 415 | 215 217 414 | syl2anc |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) e. RR ) | 
						
							| 416 | 213 415 | fsumrecl |  |-  ( ph -> sum_ j e. ( 1 ... M ) ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) e. RR ) | 
						
							| 417 | 333 339 412 | syl2anc |  |-  ( ( ph /\ j e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) e. ( 0 [,] +oo ) ) | 
						
							| 418 | 210 | adantr |  |-  ( ( ph /\ j e. NN ) -> Z e. ( W \ Y ) ) | 
						
							| 419 | 90 84 157 | ltled |  |-  ( ph -> S <_ Q ) | 
						
							| 420 | 419 | adantr |  |-  ( ( ph /\ j e. NN ) -> S <_ Q ) | 
						
							| 421 | 1 345 418 5 355 409 420 354 125 49 | hsphoidmvle2 |  |-  ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) <_ ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) | 
						
							| 422 | 333 339 421 | syl2anc |  |-  ( ( ph /\ j e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) <_ ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) | 
						
							| 423 | 324 325 360 417 422 | sge0lempt |  |-  ( ph -> ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) <_ ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) | 
						
							| 424 | 215 | adantr |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) = 0 ) -> ph ) | 
						
							| 425 | 217 | adantr |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) = 0 ) -> j e. NN ) | 
						
							| 426 |  | simpr |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) = 0 ) -> ( P ` j ) = 0 ) | 
						
							| 427 |  | oveq2 |  |-  ( ( P ` j ) = 0 -> ( ( Q - S ) x. ( P ` j ) ) = ( ( Q - S ) x. 0 ) ) | 
						
							| 428 | 427 | adantl |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) = 0 ) -> ( ( Q - S ) x. ( P ` j ) ) = ( ( Q - S ) x. 0 ) ) | 
						
							| 429 | 183 | mul01d |  |-  ( ph -> ( ( Q - S ) x. 0 ) = 0 ) | 
						
							| 430 | 429 | ad2antrr |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) = 0 ) -> ( ( Q - S ) x. 0 ) = 0 ) | 
						
							| 431 | 428 430 | eqtrd |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) = 0 ) -> ( ( Q - S ) x. ( P ` j ) ) = 0 ) | 
						
							| 432 | 431 | oveq2d |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) = 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) = ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + 0 ) ) | 
						
							| 433 | 387 | addridd |  |-  ( ( ph /\ j e. NN ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + 0 ) = ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) | 
						
							| 434 | 433 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) = 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + 0 ) = ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) | 
						
							| 435 | 432 434 | eqtrd |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) = 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) = ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) | 
						
							| 436 | 421 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) = 0 ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) <_ ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) | 
						
							| 437 | 435 436 | eqbrtrd |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) = 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) <_ ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) | 
						
							| 438 | 424 425 426 437 | syl21anc |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) = 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) <_ ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) | 
						
							| 439 |  | simpl |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ -. ( P ` j ) = 0 ) -> ( ph /\ j e. ( 1 ... M ) ) ) | 
						
							| 440 |  | neqne |  |-  ( -. ( P ` j ) = 0 -> ( P ` j ) =/= 0 ) | 
						
							| 441 | 440 | adantl |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ -. ( P ` j ) = 0 ) -> ( P ` j ) =/= 0 ) | 
						
							| 442 | 402 | adantr |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) e. RR ) | 
						
							| 443 | 215 | adantr |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ph ) | 
						
							| 444 | 217 | adantr |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> j e. NN ) | 
						
							| 445 |  | simpr |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( P ` j ) =/= 0 ) | 
						
							| 446 | 4 | adantr |  |-  ( ( ph /\ j e. NN ) -> Z e. ( X \ Y ) ) | 
						
							| 447 | 209 | adantr |  |-  ( ( ph /\ j e. NN ) -> -. Z e. Y ) | 
						
							| 448 |  | eqid |  |-  prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` k ) ) ) = prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` k ) ) ) | 
						
							| 449 | 1 223 446 447 5 125 356 448 | hoiprodp1 |  |-  ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) = ( prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` k ) ) ) x. ( vol ` ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` Z ) ) ) ) ) | 
						
							| 450 | 449 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) = ( prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` k ) ) ) x. ( vol ` ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` Z ) ) ) ) ) | 
						
							| 451 | 222 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( P ` j ) = ( ( J ` j ) ( L ` Y ) ( K ` j ) ) ) | 
						
							| 452 | 223 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> Y e. Fin ) | 
						
							| 453 | 222 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ Y = (/) ) -> ( P ` j ) = ( ( J ` j ) ( L ` Y ) ( K ` j ) ) ) | 
						
							| 454 |  | fveq2 |  |-  ( Y = (/) -> ( L ` Y ) = ( L ` (/) ) ) | 
						
							| 455 | 454 | oveqd |  |-  ( Y = (/) -> ( ( J ` j ) ( L ` Y ) ( K ` j ) ) = ( ( J ` j ) ( L ` (/) ) ( K ` j ) ) ) | 
						
							| 456 | 455 | adantl |  |-  ( ( ( ph /\ j e. NN ) /\ Y = (/) ) -> ( ( J ` j ) ( L ` Y ) ( K ` j ) ) = ( ( J ` j ) ( L ` (/) ) ( K ` j ) ) ) | 
						
							| 457 | 252 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ Y = (/) ) -> ( J ` j ) : Y --> RR ) | 
						
							| 458 |  | id |  |-  ( Y = (/) -> Y = (/) ) | 
						
							| 459 | 458 | eqcomd |  |-  ( Y = (/) -> (/) = Y ) | 
						
							| 460 | 459 | adantl |  |-  ( ( ( ph /\ j e. NN ) /\ Y = (/) ) -> (/) = Y ) | 
						
							| 461 | 460 | feq2d |  |-  ( ( ( ph /\ j e. NN ) /\ Y = (/) ) -> ( ( J ` j ) : (/) --> RR <-> ( J ` j ) : Y --> RR ) ) | 
						
							| 462 | 457 461 | mpbird |  |-  ( ( ( ph /\ j e. NN ) /\ Y = (/) ) -> ( J ` j ) : (/) --> RR ) | 
						
							| 463 | 272 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ Y = (/) ) -> ( K ` j ) : Y --> RR ) | 
						
							| 464 | 460 | feq2d |  |-  ( ( ( ph /\ j e. NN ) /\ Y = (/) ) -> ( ( K ` j ) : (/) --> RR <-> ( K ` j ) : Y --> RR ) ) | 
						
							| 465 | 463 464 | mpbird |  |-  ( ( ( ph /\ j e. NN ) /\ Y = (/) ) -> ( K ` j ) : (/) --> RR ) | 
						
							| 466 | 1 462 465 | hoidmv0val |  |-  ( ( ( ph /\ j e. NN ) /\ Y = (/) ) -> ( ( J ` j ) ( L ` (/) ) ( K ` j ) ) = 0 ) | 
						
							| 467 | 453 456 466 | 3eqtrd |  |-  ( ( ( ph /\ j e. NN ) /\ Y = (/) ) -> ( P ` j ) = 0 ) | 
						
							| 468 | 467 | adantlr |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ Y = (/) ) -> ( P ` j ) = 0 ) | 
						
							| 469 |  | neneq |  |-  ( ( P ` j ) =/= 0 -> -. ( P ` j ) = 0 ) | 
						
							| 470 | 469 | ad2antlr |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ Y = (/) ) -> -. ( P ` j ) = 0 ) | 
						
							| 471 | 468 470 | pm2.65da |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> -. Y = (/) ) | 
						
							| 472 | 471 | neqned |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> Y =/= (/) ) | 
						
							| 473 | 252 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( J ` j ) : Y --> RR ) | 
						
							| 474 | 272 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( K ` j ) : Y --> RR ) | 
						
							| 475 | 1 452 472 473 474 | hoidmvn0val |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( J ` j ) ( L ` Y ) ( K ` j ) ) = prod_ k e. Y ( vol ` ( ( ( J ` j ) ` k ) [,) ( ( K ` j ) ` k ) ) ) ) | 
						
							| 476 | 250 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( J ` j ) = if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) ) | 
						
							| 477 | 222 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( P ` j ) = ( ( J ` j ) ( L ` Y ) ( K ` j ) ) ) | 
						
							| 478 | 250 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( J ` j ) = if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) ) | 
						
							| 479 | 478 235 | eqtrd |  |-  ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( J ` j ) = F ) | 
						
							| 480 | 270 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( K ` j ) = if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) ) | 
						
							| 481 | 480 260 | eqtrd |  |-  ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( K ` j ) = F ) | 
						
							| 482 | 479 481 | oveq12d |  |-  ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( ( J ` j ) ( L ` Y ) ( K ` j ) ) = ( F ( L ` Y ) F ) ) | 
						
							| 483 | 1 173 232 | hoidmvval0b |  |-  ( ph -> ( F ( L ` Y ) F ) = 0 ) | 
						
							| 484 | 483 | ad2antrr |  |-  ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( F ( L ` Y ) F ) = 0 ) | 
						
							| 485 | 477 482 484 | 3eqtrd |  |-  ( ( ( ph /\ j e. NN ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( P ` j ) = 0 ) | 
						
							| 486 | 485 | adantlr |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( P ` j ) = 0 ) | 
						
							| 487 | 469 | ad2antlr |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> -. ( P ` j ) = 0 ) | 
						
							| 488 | 486 487 | condan |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) | 
						
							| 489 | 488 | iftrued |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( C ` j ) |` Y ) , F ) = ( ( C ` j ) |` Y ) ) | 
						
							| 490 | 476 489 | eqtrd |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( J ` j ) = ( ( C ` j ) |` Y ) ) | 
						
							| 491 | 490 | fveq1d |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( J ` j ) ` k ) = ( ( ( C ` j ) |` Y ) ` k ) ) | 
						
							| 492 | 491 | adantr |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ k e. Y ) -> ( ( J ` j ) ` k ) = ( ( ( C ` j ) |` Y ) ` k ) ) | 
						
							| 493 |  | fvres |  |-  ( k e. Y -> ( ( ( C ` j ) |` Y ) ` k ) = ( ( C ` j ) ` k ) ) | 
						
							| 494 | 493 | adantl |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ k e. Y ) -> ( ( ( C ` j ) |` Y ) ` k ) = ( ( C ` j ) ` k ) ) | 
						
							| 495 | 492 494 | eqtrd |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ k e. Y ) -> ( ( J ` j ) ` k ) = ( ( C ` j ) ` k ) ) | 
						
							| 496 | 270 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( K ` j ) = if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) ) | 
						
							| 497 | 488 255 | syl |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> if ( S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) , ( ( D ` j ) |` Y ) , F ) = ( ( D ` j ) |` Y ) ) | 
						
							| 498 | 496 497 | eqtrd |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( K ` j ) = ( ( D ` j ) |` Y ) ) | 
						
							| 499 | 498 | fveq1d |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( K ` j ) ` k ) = ( ( ( D ` j ) |` Y ) ` k ) ) | 
						
							| 500 | 499 | adantr |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ k e. Y ) -> ( ( K ` j ) ` k ) = ( ( ( D ` j ) |` Y ) ` k ) ) | 
						
							| 501 |  | fvres |  |-  ( k e. Y -> ( ( ( D ` j ) |` Y ) ` k ) = ( ( D ` j ) ` k ) ) | 
						
							| 502 | 501 | adantl |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ k e. Y ) -> ( ( ( D ` j ) |` Y ) ` k ) = ( ( D ` j ) ` k ) ) | 
						
							| 503 | 500 502 | eqtrd |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ k e. Y ) -> ( ( K ` j ) ` k ) = ( ( D ` j ) ` k ) ) | 
						
							| 504 | 495 503 | oveq12d |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ k e. Y ) -> ( ( ( J ` j ) ` k ) [,) ( ( K ` j ) ` k ) ) = ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) | 
						
							| 505 | 504 | fveq2d |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ k e. Y ) -> ( vol ` ( ( ( J ` j ) ` k ) [,) ( ( K ` j ) ` k ) ) ) = ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) ) | 
						
							| 506 | 505 | prodeq2dv |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> prod_ k e. Y ( vol ` ( ( ( J ` j ) ` k ) [,) ( ( K ` j ) ` k ) ) ) = prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) ) | 
						
							| 507 | 475 506 | eqtrd |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( J ` j ) ( L ` Y ) ( K ` j ) ) = prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) ) | 
						
							| 508 | 355 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> S e. RR ) | 
						
							| 509 | 345 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> W e. Fin ) | 
						
							| 510 | 49 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> ( D ` j ) : W --> RR ) | 
						
							| 511 |  | elun1 |  |-  ( k e. Y -> k e. ( Y u. { Z } ) ) | 
						
							| 512 | 511 5 | eleqtrrdi |  |-  ( k e. Y -> k e. W ) | 
						
							| 513 | 512 | adantl |  |-  ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> k e. W ) | 
						
							| 514 | 354 508 509 510 513 | hsphoival |  |-  ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> ( ( ( H ` S ) ` ( D ` j ) ) ` k ) = if ( k e. Y , ( ( D ` j ) ` k ) , if ( ( ( D ` j ) ` k ) <_ S , ( ( D ` j ) ` k ) , S ) ) ) | 
						
							| 515 |  | iftrue |  |-  ( k e. Y -> if ( k e. Y , ( ( D ` j ) ` k ) , if ( ( ( D ` j ) ` k ) <_ S , ( ( D ` j ) ` k ) , S ) ) = ( ( D ` j ) ` k ) ) | 
						
							| 516 | 515 | adantl |  |-  ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> if ( k e. Y , ( ( D ` j ) ` k ) , if ( ( ( D ` j ) ` k ) <_ S , ( ( D ` j ) ` k ) , S ) ) = ( ( D ` j ) ` k ) ) | 
						
							| 517 | 514 516 | eqtrd |  |-  ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> ( ( ( H ` S ) ` ( D ` j ) ) ` k ) = ( ( D ` j ) ` k ) ) | 
						
							| 518 | 517 | oveq2d |  |-  ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> ( ( ( C ` j ) ` k ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` k ) ) = ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) | 
						
							| 519 | 518 | fveq2d |  |-  ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` k ) ) ) = ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) ) | 
						
							| 520 | 519 | prodeq2dv |  |-  ( ( ph /\ j e. NN ) -> prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` k ) ) ) = prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) ) | 
						
							| 521 | 520 | eqcomd |  |-  ( ( ph /\ j e. NN ) -> prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) = prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` k ) ) ) ) | 
						
							| 522 | 521 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) = prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` k ) ) ) ) | 
						
							| 523 | 451 507 522 | 3eqtrrd |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` k ) ) ) = ( P ` j ) ) | 
						
							| 524 | 354 355 345 49 50 | hsphoival |  |-  ( ( ph /\ j e. NN ) -> ( ( ( H ` S ) ` ( D ` j ) ) ` Z ) = if ( Z e. Y , ( ( D ` j ) ` Z ) , if ( ( ( D ` j ) ` Z ) <_ S , ( ( D ` j ) ` Z ) , S ) ) ) | 
						
							| 525 | 209 | iffalsed |  |-  ( ph -> if ( Z e. Y , ( ( D ` j ) ` Z ) , if ( ( ( D ` j ) ` Z ) <_ S , ( ( D ` j ) ` Z ) , S ) ) = if ( ( ( D ` j ) ` Z ) <_ S , ( ( D ` j ) ` Z ) , S ) ) | 
						
							| 526 | 525 | adantr |  |-  ( ( ph /\ j e. NN ) -> if ( Z e. Y , ( ( D ` j ) ` Z ) , if ( ( ( D ` j ) ` Z ) <_ S , ( ( D ` j ) ` Z ) , S ) ) = if ( ( ( D ` j ) ` Z ) <_ S , ( ( D ` j ) ` Z ) , S ) ) | 
						
							| 527 | 524 526 | eqtrd |  |-  ( ( ph /\ j e. NN ) -> ( ( ( H ` S ) ` ( D ` j ) ) ` Z ) = if ( ( ( D ` j ) ` Z ) <_ S , ( ( D ` j ) ` Z ) , S ) ) | 
						
							| 528 | 527 | oveq2d |  |-  ( ( ph /\ j e. NN ) -> ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` Z ) ) = ( ( ( C ` j ) ` Z ) [,) if ( ( ( D ` j ) ` Z ) <_ S , ( ( D ` j ) ` Z ) , S ) ) ) | 
						
							| 529 | 528 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` Z ) ) = ( ( ( C ` j ) ` Z ) [,) if ( ( ( D ` j ) ` Z ) <_ S , ( ( D ` j ) ` Z ) , S ) ) ) | 
						
							| 530 | 126 | rexrd |  |-  ( ( ph /\ j e. NN ) -> ( ( C ` j ) ` Z ) e. RR* ) | 
						
							| 531 | 530 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( C ` j ) ` Z ) e. RR* ) | 
						
							| 532 | 51 | rexrd |  |-  ( ( ph /\ j e. NN ) -> ( ( D ` j ) ` Z ) e. RR* ) | 
						
							| 533 | 532 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( D ` j ) ` Z ) e. RR* ) | 
						
							| 534 |  | icoltub |  |-  ( ( ( ( C ` j ) ` Z ) e. RR* /\ ( ( D ` j ) ` Z ) e. RR* /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> S < ( ( D ` j ) ` Z ) ) | 
						
							| 535 | 531 533 488 534 | syl3anc |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> S < ( ( D ` j ) ` Z ) ) | 
						
							| 536 | 355 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> S e. RR ) | 
						
							| 537 | 51 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( D ` j ) ` Z ) e. RR ) | 
						
							| 538 | 536 537 | ltnled |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( S < ( ( D ` j ) ` Z ) <-> -. ( ( D ` j ) ` Z ) <_ S ) ) | 
						
							| 539 | 535 538 | mpbid |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> -. ( ( D ` j ) ` Z ) <_ S ) | 
						
							| 540 | 539 | iffalsed |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> if ( ( ( D ` j ) ` Z ) <_ S , ( ( D ` j ) ` Z ) , S ) = S ) | 
						
							| 541 | 540 | oveq2d |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( ( C ` j ) ` Z ) [,) if ( ( ( D ` j ) ` Z ) <_ S , ( ( D ` j ) ` Z ) , S ) ) = ( ( ( C ` j ) ` Z ) [,) S ) ) | 
						
							| 542 | 529 541 | eqtrd |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` Z ) ) = ( ( ( C ` j ) ` Z ) [,) S ) ) | 
						
							| 543 | 542 | fveq2d |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( vol ` ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` Z ) ) ) = ( vol ` ( ( ( C ` j ) ` Z ) [,) S ) ) ) | 
						
							| 544 |  | volico |  |-  ( ( ( ( C ` j ) ` Z ) e. RR /\ S e. RR ) -> ( vol ` ( ( ( C ` j ) ` Z ) [,) S ) ) = if ( ( ( C ` j ) ` Z ) < S , ( S - ( ( C ` j ) ` Z ) ) , 0 ) ) | 
						
							| 545 | 126 536 544 | syl2an |  |-  ( ( ( ph /\ j e. NN ) /\ ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) ) -> ( vol ` ( ( ( C ` j ) ` Z ) [,) S ) ) = if ( ( ( C ` j ) ` Z ) < S , ( S - ( ( C ` j ) ` Z ) ) , 0 ) ) | 
						
							| 546 | 545 | anabss5 |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( vol ` ( ( ( C ` j ) ` Z ) [,) S ) ) = if ( ( ( C ` j ) ` Z ) < S , ( S - ( ( C ` j ) ` Z ) ) , 0 ) ) | 
						
							| 547 |  | iftrue |  |-  ( ( ( C ` j ) ` Z ) < S -> if ( ( ( C ` j ) ` Z ) < S , ( S - ( ( C ` j ) ` Z ) ) , 0 ) = ( S - ( ( C ` j ) ` Z ) ) ) | 
						
							| 548 | 547 | adantl |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ ( ( C ` j ) ` Z ) < S ) -> if ( ( ( C ` j ) ` Z ) < S , ( S - ( ( C ` j ) ` Z ) ) , 0 ) = ( S - ( ( C ` j ) ` Z ) ) ) | 
						
							| 549 |  | iffalse |  |-  ( -. ( ( C ` j ) ` Z ) < S -> if ( ( ( C ` j ) ` Z ) < S , ( S - ( ( C ` j ) ` Z ) ) , 0 ) = 0 ) | 
						
							| 550 | 549 | adantl |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( C ` j ) ` Z ) < S ) -> if ( ( ( C ` j ) ` Z ) < S , ( S - ( ( C ` j ) ` Z ) ) , 0 ) = 0 ) | 
						
							| 551 |  | simpll |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( C ` j ) ` Z ) < S ) -> ( ph /\ j e. NN ) ) | 
						
							| 552 |  | icogelb |  |-  ( ( ( ( C ` j ) ` Z ) e. RR* /\ ( ( D ` j ) ` Z ) e. RR* /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) -> ( ( C ` j ) ` Z ) <_ S ) | 
						
							| 553 | 531 533 488 552 | syl3anc |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( C ` j ) ` Z ) <_ S ) | 
						
							| 554 | 553 | adantr |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( C ` j ) ` Z ) < S ) -> ( ( C ` j ) ` Z ) <_ S ) | 
						
							| 555 |  | simpr |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( C ` j ) ` Z ) < S ) -> -. ( ( C ` j ) ` Z ) < S ) | 
						
							| 556 | 554 555 | jca |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( C ` j ) ` Z ) < S ) -> ( ( ( C ` j ) ` Z ) <_ S /\ -. ( ( C ` j ) ` Z ) < S ) ) | 
						
							| 557 | 551 126 | syl |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( C ` j ) ` Z ) < S ) -> ( ( C ` j ) ` Z ) e. RR ) | 
						
							| 558 | 551 355 | syl |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( C ` j ) ` Z ) < S ) -> S e. RR ) | 
						
							| 559 | 557 558 | eqleltd |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( C ` j ) ` Z ) < S ) -> ( ( ( C ` j ) ` Z ) = S <-> ( ( ( C ` j ) ` Z ) <_ S /\ -. ( ( C ` j ) ` Z ) < S ) ) ) | 
						
							| 560 | 556 559 | mpbird |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( C ` j ) ` Z ) < S ) -> ( ( C ` j ) ` Z ) = S ) | 
						
							| 561 |  | id |  |-  ( ( ( C ` j ) ` Z ) = S -> ( ( C ` j ) ` Z ) = S ) | 
						
							| 562 | 561 | eqcomd |  |-  ( ( ( C ` j ) ` Z ) = S -> S = ( ( C ` j ) ` Z ) ) | 
						
							| 563 | 562 | oveq1d |  |-  ( ( ( C ` j ) ` Z ) = S -> ( S - ( ( C ` j ) ` Z ) ) = ( ( ( C ` j ) ` Z ) - ( ( C ` j ) ` Z ) ) ) | 
						
							| 564 | 563 | adantl |  |-  ( ( ( ph /\ j e. NN ) /\ ( ( C ` j ) ` Z ) = S ) -> ( S - ( ( C ` j ) ` Z ) ) = ( ( ( C ` j ) ` Z ) - ( ( C ` j ) ` Z ) ) ) | 
						
							| 565 | 385 126 | sselid |  |-  ( ( ph /\ j e. NN ) -> ( ( C ` j ) ` Z ) e. CC ) | 
						
							| 566 | 565 | subidd |  |-  ( ( ph /\ j e. NN ) -> ( ( ( C ` j ) ` Z ) - ( ( C ` j ) ` Z ) ) = 0 ) | 
						
							| 567 | 566 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ ( ( C ` j ) ` Z ) = S ) -> ( ( ( C ` j ) ` Z ) - ( ( C ` j ) ` Z ) ) = 0 ) | 
						
							| 568 | 564 567 | eqtr2d |  |-  ( ( ( ph /\ j e. NN ) /\ ( ( C ` j ) ` Z ) = S ) -> 0 = ( S - ( ( C ` j ) ` Z ) ) ) | 
						
							| 569 | 551 560 568 | syl2anc |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( C ` j ) ` Z ) < S ) -> 0 = ( S - ( ( C ` j ) ` Z ) ) ) | 
						
							| 570 | 550 569 | eqtrd |  |-  ( ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( C ` j ) ` Z ) < S ) -> if ( ( ( C ` j ) ` Z ) < S , ( S - ( ( C ` j ) ` Z ) ) , 0 ) = ( S - ( ( C ` j ) ` Z ) ) ) | 
						
							| 571 | 548 570 | pm2.61dan |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> if ( ( ( C ` j ) ` Z ) < S , ( S - ( ( C ` j ) ` Z ) ) , 0 ) = ( S - ( ( C ` j ) ` Z ) ) ) | 
						
							| 572 | 543 546 571 | 3eqtrd |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( vol ` ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` Z ) ) ) = ( S - ( ( C ` j ) ` Z ) ) ) | 
						
							| 573 | 523 572 | oveq12d |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` k ) ) ) x. ( vol ` ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` S ) ` ( D ` j ) ) ` Z ) ) ) ) = ( ( P ` j ) x. ( S - ( ( C ` j ) ` Z ) ) ) ) | 
						
							| 574 | 386 274 | sselid |  |-  ( ( ph /\ j e. NN ) -> ( P ` j ) e. CC ) | 
						
							| 575 | 355 126 | resubcld |  |-  ( ( ph /\ j e. NN ) -> ( S - ( ( C ` j ) ` Z ) ) e. RR ) | 
						
							| 576 | 575 | recnd |  |-  ( ( ph /\ j e. NN ) -> ( S - ( ( C ` j ) ` Z ) ) e. CC ) | 
						
							| 577 | 574 576 | mulcomd |  |-  ( ( ph /\ j e. NN ) -> ( ( P ` j ) x. ( S - ( ( C ` j ) ` Z ) ) ) = ( ( S - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) ) | 
						
							| 578 | 577 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( P ` j ) x. ( S - ( ( C ` j ) ` Z ) ) ) = ( ( S - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) ) | 
						
							| 579 | 450 573 578 | 3eqtrd |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) = ( ( S - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) ) | 
						
							| 580 | 579 | oveq1d |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) = ( ( ( S - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) | 
						
							| 581 | 183 | adantr |  |-  ( ( ph /\ j e. NN ) -> ( Q - S ) e. CC ) | 
						
							| 582 | 576 581 574 | adddird |  |-  ( ( ph /\ j e. NN ) -> ( ( ( S - ( ( C ` j ) ` Z ) ) + ( Q - S ) ) x. ( P ` j ) ) = ( ( ( S - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) | 
						
							| 583 | 582 | eqcomd |  |-  ( ( ph /\ j e. NN ) -> ( ( ( S - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) + ( ( Q - S ) x. ( P ` j ) ) ) = ( ( ( S - ( ( C ` j ) ` Z ) ) + ( Q - S ) ) x. ( P ` j ) ) ) | 
						
							| 584 | 583 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( ( S - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) + ( ( Q - S ) x. ( P ` j ) ) ) = ( ( ( S - ( ( C ` j ) ` Z ) ) + ( Q - S ) ) x. ( P ` j ) ) ) | 
						
							| 585 | 576 581 | addcomd |  |-  ( ( ph /\ j e. NN ) -> ( ( S - ( ( C ` j ) ` Z ) ) + ( Q - S ) ) = ( ( Q - S ) + ( S - ( ( C ` j ) ` Z ) ) ) ) | 
						
							| 586 | 166 | adantr |  |-  ( ( ph /\ j e. NN ) -> Q e. CC ) | 
						
							| 587 | 167 | adantr |  |-  ( ( ph /\ j e. NN ) -> S e. CC ) | 
						
							| 588 | 586 587 565 | npncand |  |-  ( ( ph /\ j e. NN ) -> ( ( Q - S ) + ( S - ( ( C ` j ) ` Z ) ) ) = ( Q - ( ( C ` j ) ` Z ) ) ) | 
						
							| 589 | 585 588 | eqtrd |  |-  ( ( ph /\ j e. NN ) -> ( ( S - ( ( C ` j ) ` Z ) ) + ( Q - S ) ) = ( Q - ( ( C ` j ) ` Z ) ) ) | 
						
							| 590 | 589 | oveq1d |  |-  ( ( ph /\ j e. NN ) -> ( ( ( S - ( ( C ` j ) ` Z ) ) + ( Q - S ) ) x. ( P ` j ) ) = ( ( Q - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) ) | 
						
							| 591 | 590 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( ( S - ( ( C ` j ) ` Z ) ) + ( Q - S ) ) x. ( P ` j ) ) = ( ( Q - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) ) | 
						
							| 592 | 580 584 591 | 3eqtrd |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) = ( ( Q - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) ) | 
						
							| 593 | 443 444 445 592 | syl21anc |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) = ( ( Q - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) ) | 
						
							| 594 |  | eqid |  |-  prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) ) = prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) ) | 
						
							| 595 | 1 223 50 447 5 125 410 594 | hoiprodp1 |  |-  ( ( ph /\ j e. NN ) -> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) = ( prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) ) x. ( vol ` ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` Z ) ) ) ) ) | 
						
							| 596 | 215 217 595 | syl2anc |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) = ( prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) ) x. ( vol ` ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` Z ) ) ) ) ) | 
						
							| 597 | 596 | adantr |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) = ( prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) ) x. ( vol ` ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` Z ) ) ) ) ) | 
						
							| 598 | 507 | eqcomd |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) = ( ( J ` j ) ( L ` Y ) ( K ` j ) ) ) | 
						
							| 599 | 409 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> Q e. RR ) | 
						
							| 600 | 354 599 509 510 513 | hsphoival |  |-  ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) = if ( k e. Y , ( ( D ` j ) ` k ) , if ( ( ( D ` j ) ` k ) <_ Q , ( ( D ` j ) ` k ) , Q ) ) ) | 
						
							| 601 |  | iftrue |  |-  ( k e. Y -> if ( k e. Y , ( ( D ` j ) ` k ) , if ( ( ( D ` j ) ` k ) <_ Q , ( ( D ` j ) ` k ) , Q ) ) = ( ( D ` j ) ` k ) ) | 
						
							| 602 | 601 | adantl |  |-  ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> if ( k e. Y , ( ( D ` j ) ` k ) , if ( ( ( D ` j ) ` k ) <_ Q , ( ( D ` j ) ` k ) , Q ) ) = ( ( D ` j ) ` k ) ) | 
						
							| 603 | 600 602 | eqtrd |  |-  ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) = ( ( D ` j ) ` k ) ) | 
						
							| 604 | 603 | oveq2d |  |-  ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) = ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) | 
						
							| 605 | 604 | fveq2d |  |-  ( ( ( ph /\ j e. NN ) /\ k e. Y ) -> ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) ) = ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) ) | 
						
							| 606 | 605 | prodeq2dv |  |-  ( ( ph /\ j e. NN ) -> prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) ) = prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) ) | 
						
							| 607 | 606 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) ) = prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( D ` j ) ` k ) ) ) ) | 
						
							| 608 | 598 607 451 | 3eqtr4d |  |-  ( ( ( ph /\ j e. NN ) /\ ( P ` j ) =/= 0 ) -> prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) ) = ( P ` j ) ) | 
						
							| 609 | 443 444 445 608 | syl21anc |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) ) = ( P ` j ) ) | 
						
							| 610 | 354 409 345 49 50 | hsphoival |  |-  ( ( ph /\ j e. NN ) -> ( ( ( H ` Q ) ` ( D ` j ) ) ` Z ) = if ( Z e. Y , ( ( D ` j ) ` Z ) , if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) ) ) | 
						
							| 611 | 217 610 | syldan |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( ( H ` Q ) ` ( D ` j ) ) ` Z ) = if ( Z e. Y , ( ( D ` j ) ` Z ) , if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) ) ) | 
						
							| 612 | 611 | adantr |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( ( H ` Q ) ` ( D ` j ) ) ` Z ) = if ( Z e. Y , ( ( D ` j ) ` Z ) , if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) ) ) | 
						
							| 613 | 209 | iffalsed |  |-  ( ph -> if ( Z e. Y , ( ( D ` j ) ` Z ) , if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) ) = if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) ) | 
						
							| 614 | 613 | ad2antrr |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> if ( Z e. Y , ( ( D ` j ) ` Z ) , if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) ) = if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) ) | 
						
							| 615 | 217 51 | syldan |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( D ` j ) ` Z ) e. RR ) | 
						
							| 616 | 615 | adantr |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( ( D ` j ) ` Z ) = Q ) -> ( ( D ` j ) ` Z ) e. RR ) | 
						
							| 617 |  | simpr |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( ( D ` j ) ` Z ) = Q ) -> ( ( D ` j ) ` Z ) = Q ) | 
						
							| 618 | 616 617 | eqled |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( ( D ` j ) ` Z ) = Q ) -> ( ( D ` j ) ` Z ) <_ Q ) | 
						
							| 619 | 618 | iftrued |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( ( D ` j ) ` Z ) = Q ) -> if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) = ( ( D ` j ) ` Z ) ) | 
						
							| 620 | 619 617 | eqtrd |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( ( D ` j ) ` Z ) = Q ) -> if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) = Q ) | 
						
							| 621 | 620 | adantlr |  |-  ( ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) /\ ( ( D ` j ) ` Z ) = Q ) -> if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) = Q ) | 
						
							| 622 | 84 | adantr |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> Q e. RR ) | 
						
							| 623 | 622 | adantr |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ -. ( ( D ` j ) ` Z ) = Q ) -> Q e. RR ) | 
						
							| 624 | 623 | adantlr |  |-  ( ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( D ` j ) ` Z ) = Q ) -> Q e. RR ) | 
						
							| 625 | 615 | adantr |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ -. ( ( D ` j ) ` Z ) = Q ) -> ( ( D ` j ) ` Z ) e. RR ) | 
						
							| 626 | 625 | adantlr |  |-  ( ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( D ` j ) ` Z ) = Q ) -> ( ( D ` j ) ` Z ) e. RR ) | 
						
							| 627 | 25 | a1i |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> Q = inf ( V , RR , < ) ) | 
						
							| 628 | 443 57 | syl |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> V C_ RR ) | 
						
							| 629 | 161 | ad2antrr |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> E. x e. V A. y e. V x <_ y ) | 
						
							| 630 |  | simplr |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> j e. ( 1 ... M ) ) | 
						
							| 631 | 216 488 | sylanl2 |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) | 
						
							| 632 | 630 631 | jca |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( j e. ( 1 ... M ) /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) ) | 
						
							| 633 |  | rabid |  |-  ( j e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } <-> ( j e. ( 1 ... M ) /\ S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) ) ) | 
						
							| 634 | 632 633 | sylibr |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> j e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } ) | 
						
							| 635 |  | eqidd |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( D ` j ) ` Z ) = ( ( D ` j ) ` Z ) ) | 
						
							| 636 |  | fveq2 |  |-  ( i = j -> ( D ` i ) = ( D ` j ) ) | 
						
							| 637 | 636 | fveq1d |  |-  ( i = j -> ( ( D ` i ) ` Z ) = ( ( D ` j ) ` Z ) ) | 
						
							| 638 | 637 | eqeq2d |  |-  ( i = j -> ( ( ( D ` j ) ` Z ) = ( ( D ` i ) ` Z ) <-> ( ( D ` j ) ` Z ) = ( ( D ` j ) ` Z ) ) ) | 
						
							| 639 | 638 | rspcev |  |-  ( ( j e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } /\ ( ( D ` j ) ` Z ) = ( ( D ` j ) ` Z ) ) -> E. i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } ( ( D ` j ) ` Z ) = ( ( D ` i ) ` Z ) ) | 
						
							| 640 | 634 635 639 | syl2anc |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> E. i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } ( ( D ` j ) ` Z ) = ( ( D ` i ) ` Z ) ) | 
						
							| 641 |  | fvexd |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( D ` j ) ` Z ) e. _V ) | 
						
							| 642 | 35 640 641 | elrnmptd |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( D ` j ) ` Z ) e. ran ( i e. { j e. ( 1 ... M ) | S e. ( ( ( C ` j ) ` Z ) [,) ( ( D ` j ) ` Z ) ) } |-> ( ( D ` i ) ` Z ) ) ) | 
						
							| 643 | 642 23 | eleqtrrdi |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( D ` j ) ` Z ) e. O ) | 
						
							| 644 |  | elun2 |  |-  ( ( ( D ` j ) ` Z ) e. O -> ( ( D ` j ) ` Z ) e. ( { ( B ` Z ) } u. O ) ) | 
						
							| 645 | 643 644 | syl |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( D ` j ) ` Z ) e. ( { ( B ` Z ) } u. O ) ) | 
						
							| 646 | 76 | a1i |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( { ( B ` Z ) } u. O ) = V ) | 
						
							| 647 | 645 646 | eleqtrd |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( D ` j ) ` Z ) e. V ) | 
						
							| 648 |  | lbinfle |  |-  ( ( V C_ RR /\ E. x e. V A. y e. V x <_ y /\ ( ( D ` j ) ` Z ) e. V ) -> inf ( V , RR , < ) <_ ( ( D ` j ) ` Z ) ) | 
						
							| 649 | 628 629 647 648 | syl3anc |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> inf ( V , RR , < ) <_ ( ( D ` j ) ` Z ) ) | 
						
							| 650 | 627 649 | eqbrtrd |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> Q <_ ( ( D ` j ) ` Z ) ) | 
						
							| 651 | 650 | adantr |  |-  ( ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( D ` j ) ` Z ) = Q ) -> Q <_ ( ( D ` j ) ` Z ) ) | 
						
							| 652 |  | neqne |  |-  ( -. ( ( D ` j ) ` Z ) = Q -> ( ( D ` j ) ` Z ) =/= Q ) | 
						
							| 653 | 652 | adantl |  |-  ( ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( D ` j ) ` Z ) = Q ) -> ( ( D ` j ) ` Z ) =/= Q ) | 
						
							| 654 | 624 626 651 653 | leneltd |  |-  ( ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( D ` j ) ` Z ) = Q ) -> Q < ( ( D ` j ) ` Z ) ) | 
						
							| 655 | 624 626 | ltnled |  |-  ( ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( D ` j ) ` Z ) = Q ) -> ( Q < ( ( D ` j ) ` Z ) <-> -. ( ( D ` j ) ` Z ) <_ Q ) ) | 
						
							| 656 | 654 655 | mpbid |  |-  ( ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( D ` j ) ` Z ) = Q ) -> -. ( ( D ` j ) ` Z ) <_ Q ) | 
						
							| 657 | 656 | iffalsed |  |-  ( ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) /\ -. ( ( D ` j ) ` Z ) = Q ) -> if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) = Q ) | 
						
							| 658 | 621 657 | pm2.61dan |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> if ( ( ( D ` j ) ` Z ) <_ Q , ( ( D ` j ) ` Z ) , Q ) = Q ) | 
						
							| 659 | 612 614 658 | 3eqtrd |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( ( H ` Q ) ` ( D ` j ) ) ` Z ) = Q ) | 
						
							| 660 | 659 | oveq2d |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` Z ) ) = ( ( ( C ` j ) ` Z ) [,) Q ) ) | 
						
							| 661 | 660 | fveq2d |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( vol ` ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` Z ) ) ) = ( vol ` ( ( ( C ` j ) ` Z ) [,) Q ) ) ) | 
						
							| 662 | 215 217 126 | syl2anc |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( C ` j ) ` Z ) e. RR ) | 
						
							| 663 | 662 | adantr |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( C ` j ) ` Z ) e. RR ) | 
						
							| 664 | 443 84 | syl |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> Q e. RR ) | 
						
							| 665 |  | volico |  |-  ( ( ( ( C ` j ) ` Z ) e. RR /\ Q e. RR ) -> ( vol ` ( ( ( C ` j ) ` Z ) [,) Q ) ) = if ( ( ( C ` j ) ` Z ) < Q , ( Q - ( ( C ` j ) ` Z ) ) , 0 ) ) | 
						
							| 666 | 663 664 665 | syl2anc |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( vol ` ( ( ( C ` j ) ` Z ) [,) Q ) ) = if ( ( ( C ` j ) ` Z ) < Q , ( Q - ( ( C ` j ) ` Z ) ) , 0 ) ) | 
						
							| 667 | 443 90 | syl |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> S e. RR ) | 
						
							| 668 | 443 444 445 553 | syl21anc |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( C ` j ) ` Z ) <_ S ) | 
						
							| 669 | 443 157 | syl |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> S < Q ) | 
						
							| 670 | 663 667 664 668 669 | lelttrd |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( C ` j ) ` Z ) < Q ) | 
						
							| 671 | 670 | iftrued |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> if ( ( ( C ` j ) ` Z ) < Q , ( Q - ( ( C ` j ) ` Z ) ) , 0 ) = ( Q - ( ( C ` j ) ` Z ) ) ) | 
						
							| 672 | 661 666 671 | 3eqtrd |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( vol ` ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` Z ) ) ) = ( Q - ( ( C ` j ) ` Z ) ) ) | 
						
							| 673 | 609 672 | oveq12d |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( prod_ k e. Y ( vol ` ( ( ( C ` j ) ` k ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` k ) ) ) x. ( vol ` ( ( ( C ` j ) ` Z ) [,) ( ( ( H ` Q ) ` ( D ` j ) ) ` Z ) ) ) ) = ( ( P ` j ) x. ( Q - ( ( C ` j ) ` Z ) ) ) ) | 
						
							| 674 | 215 166 | syl |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> Q e. CC ) | 
						
							| 675 | 385 662 | sselid |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( C ` j ) ` Z ) e. CC ) | 
						
							| 676 | 674 675 | subcld |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ( Q - ( ( C ` j ) ` Z ) ) e. CC ) | 
						
							| 677 | 306 676 | mulcomd |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( P ` j ) x. ( Q - ( ( C ` j ) ` Z ) ) ) = ( ( Q - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) ) | 
						
							| 678 | 677 | adantr |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( P ` j ) x. ( Q - ( ( C ` j ) ` Z ) ) ) = ( ( Q - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) ) | 
						
							| 679 | 597 673 678 | 3eqtrd |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) = ( ( Q - ( ( C ` j ) ` Z ) ) x. ( P ` j ) ) ) | 
						
							| 680 | 593 679 | eqtr4d |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) = ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) | 
						
							| 681 | 442 680 | eqled |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ ( P ` j ) =/= 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) <_ ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) | 
						
							| 682 | 439 441 681 | syl2anc |  |-  ( ( ( ph /\ j e. ( 1 ... M ) ) /\ -. ( P ` j ) = 0 ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) <_ ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) | 
						
							| 683 | 438 682 | pm2.61dan |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) <_ ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) | 
						
							| 684 | 213 402 415 683 | fsumle |  |-  ( ph -> sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) <_ sum_ j e. ( 1 ... M ) ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) | 
						
							| 685 | 367 403 413 416 423 684 | leadd12dd |  |-  ( ph -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) <_ ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) | 
						
							| 686 | 321 | mpteq1d |  |-  ( ph -> ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) = ( j e. ( ( ZZ>= ` ( M + 1 ) ) u. ( 1 ... M ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) | 
						
							| 687 | 686 | fveq2d |  |-  ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) = ( sum^ ` ( j e. ( ( ZZ>= ` ( M + 1 ) ) u. ( 1 ... M ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) | 
						
							| 688 | 217 412 | syldan |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) e. ( 0 [,] +oo ) ) | 
						
							| 689 | 324 325 326 330 417 688 | sge0splitmpt |  |-  ( ph -> ( sum^ ` ( j e. ( ( ZZ>= ` ( M + 1 ) ) u. ( 1 ... M ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) +e ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 690 | 687 689 | eqtrd |  |-  ( ph -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) +e ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 691 | 215 217 411 | syl2anc |  |-  ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) e. ( 0 [,) +oo ) ) | 
						
							| 692 | 213 691 | sge0fsummpt |  |-  ( ph -> ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) = sum_ j e. ( 1 ... M ) ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) | 
						
							| 693 | 692 416 | eqeltrd |  |-  ( ph -> ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) e. RR ) | 
						
							| 694 |  | rexadd |  |-  ( ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) e. RR /\ ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) e. RR ) -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) +e ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 695 | 413 693 694 | syl2anc |  |-  ( ph -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) +e ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 696 | 692 | oveq2d |  |-  ( ph -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) + ( sum^ ` ( j e. ( 1 ... M ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) = ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) | 
						
							| 697 | 690 695 696 | 3eqtrrd |  |-  ( ph -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) | 
						
							| 698 | 685 697 | breqtrd |  |-  ( ph -> ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) <_ ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) | 
						
							| 699 | 404 281 208 408 698 | lemul2ad |  |-  ( ph -> ( ( 1 + E ) x. ( ( sum^ ` ( j e. ( ZZ>= ` ( M + 1 ) ) |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) + sum_ j e. ( 1 ... M ) ( ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) + ( ( Q - S ) x. ( P ` j ) ) ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 700 | 399 699 | eqbrtrd |  |-  ( ph -> ( ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` S ) ` ( D ` j ) ) ) ) ) ) + ( ( 1 + E ) x. sum_ j e. ( 1 ... M ) ( ( Q - S ) x. ( P ` j ) ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 701 | 205 280 282 315 700 | letrd |  |-  ( ph -> ( ( G x. ( S - ( A ` Z ) ) ) + ( G x. ( Q - S ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 702 | 189 701 | eqbrtrd |  |-  ( ph -> ( G x. ( Q - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 703 | 165 702 | jca |  |-  ( ph -> ( Q e. ( ( A ` Z ) [,] ( B ` Z ) ) /\ ( G x. ( Q - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 704 |  | oveq1 |  |-  ( z = Q -> ( z - ( A ` Z ) ) = ( Q - ( A ` Z ) ) ) | 
						
							| 705 | 704 | oveq2d |  |-  ( z = Q -> ( G x. ( z - ( A ` Z ) ) ) = ( G x. ( Q - ( A ` Z ) ) ) ) | 
						
							| 706 |  | fveq2 |  |-  ( z = Q -> ( H ` z ) = ( H ` Q ) ) | 
						
							| 707 | 706 | fveq1d |  |-  ( z = Q -> ( ( H ` z ) ` ( D ` j ) ) = ( ( H ` Q ) ` ( D ` j ) ) ) | 
						
							| 708 | 707 | oveq2d |  |-  ( z = Q -> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) = ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) | 
						
							| 709 | 708 | mpteq2dv |  |-  ( z = Q -> ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) = ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) | 
						
							| 710 | 709 | fveq2d |  |-  ( z = Q -> ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) = ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) | 
						
							| 711 | 710 | oveq2d |  |-  ( z = Q -> ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) = ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) | 
						
							| 712 | 705 711 | breq12d |  |-  ( z = Q -> ( ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) <-> ( G x. ( Q - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 713 | 712 | elrab |  |-  ( Q e. { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } <-> ( Q e. ( ( A ` Z ) [,] ( B ` Z ) ) /\ ( G x. ( Q - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` Q ) ` ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 714 | 703 713 | sylibr |  |-  ( ph -> Q e. { z e. ( ( A ` Z ) [,] ( B ` Z ) ) | ( G x. ( z - ( A ` Z ) ) ) <_ ( ( 1 + E ) x. ( sum^ ` ( j e. NN |-> ( ( C ` j ) ( L ` W ) ( ( H ` z ) ` ( D ` j ) ) ) ) ) ) } ) | 
						
							| 715 | 714 17 | eleqtrrdi |  |-  ( ph -> Q e. U ) | 
						
							| 716 |  | breq2 |  |-  ( u = Q -> ( S < u <-> S < Q ) ) | 
						
							| 717 | 716 | rspcev |  |-  ( ( Q e. U /\ S < Q ) -> E. u e. U S < u ) | 
						
							| 718 | 715 157 717 | syl2anc |  |-  ( ph -> E. u e. U S < u ) |