| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoidmvlelem2.l | ⊢ 𝐿  =  ( 𝑥  ∈  Fin  ↦  ( 𝑎  ∈  ( ℝ  ↑m  𝑥 ) ,  𝑏  ∈  ( ℝ  ↑m  𝑥 )  ↦  if ( 𝑥  =  ∅ ,  0 ,  ∏ 𝑘  ∈  𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 2 |  | hoidmvlelem2.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 3 |  | hoidmvlelem2.y | ⊢ ( 𝜑  →  𝑌  ⊆  𝑋 ) | 
						
							| 4 |  | hoidmvlelem2.z | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑋  ∖  𝑌 ) ) | 
						
							| 5 |  | hoidmvlelem2.w | ⊢ 𝑊  =  ( 𝑌  ∪  { 𝑍 } ) | 
						
							| 6 |  | hoidmvlelem2.a | ⊢ ( 𝜑  →  𝐴 : 𝑊 ⟶ ℝ ) | 
						
							| 7 |  | hoidmvlelem2.b | ⊢ ( 𝜑  →  𝐵 : 𝑊 ⟶ ℝ ) | 
						
							| 8 |  | hoidmvlelem2.c | ⊢ ( 𝜑  →  𝐶 : ℕ ⟶ ( ℝ  ↑m  𝑊 ) ) | 
						
							| 9 |  | hoidmvlelem2.f | ⊢ 𝐹  =  ( 𝑦  ∈  𝑌  ↦  0 ) | 
						
							| 10 |  | hoidmvlelem2.j | ⊢ 𝐽  =  ( 𝑗  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 11 |  | hoidmvlelem2.d | ⊢ ( 𝜑  →  𝐷 : ℕ ⟶ ( ℝ  ↑m  𝑊 ) ) | 
						
							| 12 |  | hoidmvlelem2.k | ⊢ 𝐾  =  ( 𝑗  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 13 |  | hoidmvlelem2.r | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) )  ∈  ℝ ) | 
						
							| 14 |  | hoidmvlelem2.h | ⊢ 𝐻  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( 𝑗  ∈  𝑊  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) ) ) ) ) | 
						
							| 15 |  | hoidmvlelem2.g | ⊢ 𝐺  =  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) ) | 
						
							| 16 |  | hoidmvlelem2.e | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 17 |  | hoidmvlelem2.u | ⊢ 𝑈  =  { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } | 
						
							| 18 |  | hoidmvlelem2.su | ⊢ ( 𝜑  →  𝑆  ∈  𝑈 ) | 
						
							| 19 |  | hoidmvlelem2.sb | ⊢ ( 𝜑  →  𝑆  <  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 20 |  | hoidmvlelem2.p | ⊢ 𝑃  =  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) | 
						
							| 21 |  | hoidmvlelem2.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 22 |  | hoidmvlelem2.le | ⊢ ( 𝜑  →  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 23 |  | hoidmvlelem2.O | ⊢ 𝑂  =  ran  ( 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  ↦  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) | 
						
							| 24 |  | hoidmvlelem2.v | ⊢ 𝑉  =  ( { ( 𝐵 ‘ 𝑍 ) }  ∪  𝑂 ) | 
						
							| 25 |  | hoidmvlelem2.q | ⊢ 𝑄  =  inf ( 𝑉 ,  ℝ ,   <  ) | 
						
							| 26 |  | snidg | ⊢ ( 𝑍  ∈  ( 𝑋  ∖  𝑌 )  →  𝑍  ∈  { 𝑍 } ) | 
						
							| 27 | 4 26 | syl | ⊢ ( 𝜑  →  𝑍  ∈  { 𝑍 } ) | 
						
							| 28 |  | elun2 | ⊢ ( 𝑍  ∈  { 𝑍 }  →  𝑍  ∈  ( 𝑌  ∪  { 𝑍 } ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑌  ∪  { 𝑍 } ) ) | 
						
							| 30 | 29 5 | eleqtrrdi | ⊢ ( 𝜑  →  𝑍  ∈  𝑊 ) | 
						
							| 31 | 6 30 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 32 | 7 30 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 33 | 32 | snssd | ⊢ ( 𝜑  →  { ( 𝐵 ‘ 𝑍 ) }  ⊆  ℝ ) | 
						
							| 34 |  | nfv | ⊢ Ⅎ 𝑖 𝜑 | 
						
							| 35 |  | eqid | ⊢ ( 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  ↦  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) )  =  ( 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  ↦  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) | 
						
							| 36 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) } )  →  𝜑 ) | 
						
							| 37 |  | fz1ssnn | ⊢ ( 1 ... 𝑀 )  ⊆  ℕ | 
						
							| 38 |  | elrabi | ⊢ ( 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  →  𝑖  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 39 | 37 38 | sselid | ⊢ ( 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  →  𝑖  ∈  ℕ ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) } )  →  𝑖  ∈  ℕ ) | 
						
							| 41 |  | eleq1w | ⊢ ( 𝑗  =  𝑖  →  ( 𝑗  ∈  ℕ  ↔  𝑖  ∈  ℕ ) ) | 
						
							| 42 | 41 | anbi2d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ↔  ( 𝜑  ∧  𝑖  ∈  ℕ ) ) ) | 
						
							| 43 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝐷 ‘ 𝑗 )  =  ( 𝐷 ‘ 𝑖 ) ) | 
						
							| 44 | 43 | fveq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) | 
						
							| 45 | 44 | eleq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ  ↔  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 )  ∈  ℝ ) ) | 
						
							| 46 | 42 45 | imbi12d | ⊢ ( 𝑗  =  𝑖  →  ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ )  ↔  ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 )  ∈  ℝ ) ) ) | 
						
							| 47 | 11 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐷 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑊 ) ) | 
						
							| 48 |  | elmapi | ⊢ ( ( 𝐷 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑊 )  →  ( 𝐷 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 49 | 47 48 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐷 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 50 | 30 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑍  ∈  𝑊 ) | 
						
							| 51 | 49 50 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 52 | 46 51 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 53 | 36 40 52 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) } )  →  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 54 | 34 35 53 | rnmptssd | ⊢ ( 𝜑  →  ran  ( 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  ↦  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) )  ⊆  ℝ ) | 
						
							| 55 | 23 54 | eqsstrid | ⊢ ( 𝜑  →  𝑂  ⊆  ℝ ) | 
						
							| 56 | 33 55 | unssd | ⊢ ( 𝜑  →  ( { ( 𝐵 ‘ 𝑍 ) }  ∪  𝑂 )  ⊆  ℝ ) | 
						
							| 57 | 24 56 | eqsstrid | ⊢ ( 𝜑  →  𝑉  ⊆  ℝ ) | 
						
							| 58 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 59 | 58 | a1i | ⊢ ( 𝜑  →   <   Or  ℝ ) | 
						
							| 60 |  | snfi | ⊢ { ( 𝐵 ‘ 𝑍 ) }  ∈  Fin | 
						
							| 61 | 60 | a1i | ⊢ ( 𝜑  →  { ( 𝐵 ‘ 𝑍 ) }  ∈  Fin ) | 
						
							| 62 |  | fzfi | ⊢ ( 1 ... 𝑀 )  ∈  Fin | 
						
							| 63 |  | rabfi | ⊢ ( ( 1 ... 𝑀 )  ∈  Fin  →  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  ∈  Fin ) | 
						
							| 64 | 62 63 | ax-mp | ⊢ { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  ∈  Fin | 
						
							| 65 | 64 | a1i | ⊢ ( 𝜑  →  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  ∈  Fin ) | 
						
							| 66 | 35 | rnmptfi | ⊢ ( { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  ∈  Fin  →  ran  ( 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  ↦  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) )  ∈  Fin ) | 
						
							| 67 | 65 66 | syl | ⊢ ( 𝜑  →  ran  ( 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  ↦  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) )  ∈  Fin ) | 
						
							| 68 | 23 67 | eqeltrid | ⊢ ( 𝜑  →  𝑂  ∈  Fin ) | 
						
							| 69 |  | unfi | ⊢ ( ( { ( 𝐵 ‘ 𝑍 ) }  ∈  Fin  ∧  𝑂  ∈  Fin )  →  ( { ( 𝐵 ‘ 𝑍 ) }  ∪  𝑂 )  ∈  Fin ) | 
						
							| 70 | 61 68 69 | syl2anc | ⊢ ( 𝜑  →  ( { ( 𝐵 ‘ 𝑍 ) }  ∪  𝑂 )  ∈  Fin ) | 
						
							| 71 | 24 70 | eqeltrid | ⊢ ( 𝜑  →  𝑉  ∈  Fin ) | 
						
							| 72 |  | fvex | ⊢ ( 𝐵 ‘ 𝑍 )  ∈  V | 
						
							| 73 | 72 | snid | ⊢ ( 𝐵 ‘ 𝑍 )  ∈  { ( 𝐵 ‘ 𝑍 ) } | 
						
							| 74 |  | elun1 | ⊢ ( ( 𝐵 ‘ 𝑍 )  ∈  { ( 𝐵 ‘ 𝑍 ) }  →  ( 𝐵 ‘ 𝑍 )  ∈  ( { ( 𝐵 ‘ 𝑍 ) }  ∪  𝑂 ) ) | 
						
							| 75 | 73 74 | ax-mp | ⊢ ( 𝐵 ‘ 𝑍 )  ∈  ( { ( 𝐵 ‘ 𝑍 ) }  ∪  𝑂 ) | 
						
							| 76 | 24 | eqcomi | ⊢ ( { ( 𝐵 ‘ 𝑍 ) }  ∪  𝑂 )  =  𝑉 | 
						
							| 77 | 75 76 | eleqtri | ⊢ ( 𝐵 ‘ 𝑍 )  ∈  𝑉 | 
						
							| 78 | 77 | a1i | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑍 )  ∈  𝑉 ) | 
						
							| 79 |  | ne0i | ⊢ ( ( 𝐵 ‘ 𝑍 )  ∈  𝑉  →  𝑉  ≠  ∅ ) | 
						
							| 80 | 78 79 | syl | ⊢ ( 𝜑  →  𝑉  ≠  ∅ ) | 
						
							| 81 |  | fiinfcl | ⊢ ( (  <   Or  ℝ  ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅  ∧  𝑉  ⊆  ℝ ) )  →  inf ( 𝑉 ,  ℝ ,   <  )  ∈  𝑉 ) | 
						
							| 82 | 59 71 80 57 81 | syl13anc | ⊢ ( 𝜑  →  inf ( 𝑉 ,  ℝ ,   <  )  ∈  𝑉 ) | 
						
							| 83 | 25 82 | eqeltrid | ⊢ ( 𝜑  →  𝑄  ∈  𝑉 ) | 
						
							| 84 | 57 83 | sseldd | ⊢ ( 𝜑  →  𝑄  ∈  ℝ ) | 
						
							| 85 |  | ssrab2 | ⊢ { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) }  ⊆  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 86 | 17 85 | eqsstri | ⊢ 𝑈  ⊆  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 87 | 86 | a1i | ⊢ ( 𝜑  →  𝑈  ⊆  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 88 | 31 32 | iccssred | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ⊆  ℝ ) | 
						
							| 89 | 87 88 | sstrd | ⊢ ( 𝜑  →  𝑈  ⊆  ℝ ) | 
						
							| 90 | 89 18 | sseldd | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 91 | 31 | rexrd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  ∈  ℝ* ) | 
						
							| 92 | 32 | rexrd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑍 )  ∈  ℝ* ) | 
						
							| 93 | 86 18 | sselid | ⊢ ( 𝜑  →  𝑆  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 94 |  | iccgelb | ⊢ ( ( ( 𝐴 ‘ 𝑍 )  ∈  ℝ*  ∧  ( 𝐵 ‘ 𝑍 )  ∈  ℝ*  ∧  𝑆  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) )  →  ( 𝐴 ‘ 𝑍 )  ≤  𝑆 ) | 
						
							| 95 | 91 92 93 94 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  ≤  𝑆 ) | 
						
							| 96 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  =  ( 𝐵 ‘ 𝑍 ) )  →  𝑆  <  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 97 |  | id | ⊢ ( 𝑥  =  ( 𝐵 ‘ 𝑍 )  →  𝑥  =  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 98 | 97 | eqcomd | ⊢ ( 𝑥  =  ( 𝐵 ‘ 𝑍 )  →  ( 𝐵 ‘ 𝑍 )  =  𝑥 ) | 
						
							| 99 | 98 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  =  ( 𝐵 ‘ 𝑍 ) )  →  ( 𝐵 ‘ 𝑍 )  =  𝑥 ) | 
						
							| 100 | 96 99 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑥  =  ( 𝐵 ‘ 𝑍 ) )  →  𝑆  <  𝑥 ) | 
						
							| 101 | 100 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  =  ( 𝐵 ‘ 𝑍 ) )  →  𝑆  <  𝑥 ) | 
						
							| 102 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  ∧  ¬  𝑥  =  ( 𝐵 ‘ 𝑍 ) )  →  𝜑 ) | 
						
							| 103 |  | id | ⊢ ( 𝑥  ∈  𝑉  →  𝑥  ∈  𝑉 ) | 
						
							| 104 | 103 24 | eleqtrdi | ⊢ ( 𝑥  ∈  𝑉  →  𝑥  ∈  ( { ( 𝐵 ‘ 𝑍 ) }  ∪  𝑂 ) ) | 
						
							| 105 | 104 | adantr | ⊢ ( ( 𝑥  ∈  𝑉  ∧  ¬  𝑥  =  ( 𝐵 ‘ 𝑍 ) )  →  𝑥  ∈  ( { ( 𝐵 ‘ 𝑍 ) }  ∪  𝑂 ) ) | 
						
							| 106 |  | elsni | ⊢ ( 𝑥  ∈  { ( 𝐵 ‘ 𝑍 ) }  →  𝑥  =  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 107 | 106 | con3i | ⊢ ( ¬  𝑥  =  ( 𝐵 ‘ 𝑍 )  →  ¬  𝑥  ∈  { ( 𝐵 ‘ 𝑍 ) } ) | 
						
							| 108 | 107 | adantl | ⊢ ( ( 𝑥  ∈  𝑉  ∧  ¬  𝑥  =  ( 𝐵 ‘ 𝑍 ) )  →  ¬  𝑥  ∈  { ( 𝐵 ‘ 𝑍 ) } ) | 
						
							| 109 |  | elunnel1 | ⊢ ( ( 𝑥  ∈  ( { ( 𝐵 ‘ 𝑍 ) }  ∪  𝑂 )  ∧  ¬  𝑥  ∈  { ( 𝐵 ‘ 𝑍 ) } )  →  𝑥  ∈  𝑂 ) | 
						
							| 110 | 105 108 109 | syl2anc | ⊢ ( ( 𝑥  ∈  𝑉  ∧  ¬  𝑥  =  ( 𝐵 ‘ 𝑍 ) )  →  𝑥  ∈  𝑂 ) | 
						
							| 111 | 110 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  ∧  ¬  𝑥  =  ( 𝐵 ‘ 𝑍 ) )  →  𝑥  ∈  𝑂 ) | 
						
							| 112 |  | id | ⊢ ( 𝑥  ∈  𝑂  →  𝑥  ∈  𝑂 ) | 
						
							| 113 | 112 23 | eleqtrdi | ⊢ ( 𝑥  ∈  𝑂  →  𝑥  ∈  ran  ( 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  ↦  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ) | 
						
							| 114 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 115 | 35 | elrnmpt | ⊢ ( 𝑥  ∈  V  →  ( 𝑥  ∈  ran  ( 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  ↦  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) )  ↔  ∃ 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) } 𝑥  =  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ) | 
						
							| 116 | 114 115 | ax-mp | ⊢ ( 𝑥  ∈  ran  ( 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  ↦  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) )  ↔  ∃ 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) } 𝑥  =  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) | 
						
							| 117 | 113 116 | sylib | ⊢ ( 𝑥  ∈  𝑂  →  ∃ 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) } 𝑥  =  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) | 
						
							| 118 | 117 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑂 )  →  ∃ 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) } 𝑥  =  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) | 
						
							| 119 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝐶 ‘ 𝑗 )  =  ( 𝐶 ‘ 𝑖 ) ) | 
						
							| 120 | 119 | fveq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  =  ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) ) | 
						
							| 121 | 120 | eleq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ  ↔  ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 )  ∈  ℝ ) ) | 
						
							| 122 | 42 121 | imbi12d | ⊢ ( 𝑗  =  𝑖  →  ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ )  ↔  ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 )  ∈  ℝ ) ) ) | 
						
							| 123 | 8 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐶 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑊 ) ) | 
						
							| 124 |  | elmapi | ⊢ ( ( 𝐶 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑊 )  →  ( 𝐶 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 125 | 123 124 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐶 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 126 | 125 50 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 127 | 122 126 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 128 | 127 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 )  ∈  ℝ* ) | 
						
							| 129 | 36 40 128 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) } )  →  ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 )  ∈  ℝ* ) | 
						
							| 130 | 52 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 )  ∈  ℝ* ) | 
						
							| 131 | 36 40 130 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) } )  →  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 )  ∈  ℝ* ) | 
						
							| 132 | 120 44 | oveq12d | ⊢ ( 𝑗  =  𝑖  →  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) )  =  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ) | 
						
							| 133 | 132 | eleq2d | ⊢ ( 𝑗  =  𝑖  →  ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) )  ↔  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ) ) | 
						
							| 134 | 133 | elrab | ⊢ ( 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  ↔  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ) ) | 
						
							| 135 | 134 | biimpi | ⊢ ( 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  →  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ) ) | 
						
							| 136 | 135 | simprd | ⊢ ( 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  →  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ) | 
						
							| 137 | 136 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) } )  →  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ) | 
						
							| 138 |  | icoltub | ⊢ ( ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 )  ∈  ℝ*  ∧  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 )  ∈  ℝ*  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) )  →  𝑆  <  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) | 
						
							| 139 | 129 131 137 138 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) } )  →  𝑆  <  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) | 
						
							| 140 | 139 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  ∧  𝑥  =  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) )  →  𝑆  <  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) | 
						
							| 141 |  | id | ⊢ ( 𝑥  =  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 )  →  𝑥  =  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) | 
						
							| 142 | 141 | eqcomd | ⊢ ( 𝑥  =  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 )  →  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 )  =  𝑥 ) | 
						
							| 143 | 142 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  ∧  𝑥  =  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) )  →  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 )  =  𝑥 ) | 
						
							| 144 | 140 143 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  ∧  𝑥  =  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) )  →  𝑆  <  𝑥 ) | 
						
							| 145 | 144 | 3exp | ⊢ ( 𝜑  →  ( 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  →  ( 𝑥  =  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 )  →  𝑆  <  𝑥 ) ) ) | 
						
							| 146 | 145 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑂 )  →  ( 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  →  ( 𝑥  =  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 )  →  𝑆  <  𝑥 ) ) ) | 
						
							| 147 | 146 | rexlimdv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑂 )  →  ( ∃ 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) } 𝑥  =  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 )  →  𝑆  <  𝑥 ) ) | 
						
							| 148 | 118 147 | mpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑂 )  →  𝑆  <  𝑥 ) | 
						
							| 149 | 102 111 148 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  ∧  ¬  𝑥  =  ( 𝐵 ‘ 𝑍 ) )  →  𝑆  <  𝑥 ) | 
						
							| 150 | 101 149 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  𝑆  <  𝑥 ) | 
						
							| 151 | 150 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑉 𝑆  <  𝑥 ) | 
						
							| 152 |  | breq2 | ⊢ ( 𝑥  =  inf ( 𝑉 ,  ℝ ,   <  )  →  ( 𝑆  <  𝑥  ↔  𝑆  <  inf ( 𝑉 ,  ℝ ,   <  ) ) ) | 
						
							| 153 | 152 | rspcva | ⊢ ( ( inf ( 𝑉 ,  ℝ ,   <  )  ∈  𝑉  ∧  ∀ 𝑥  ∈  𝑉 𝑆  <  𝑥 )  →  𝑆  <  inf ( 𝑉 ,  ℝ ,   <  ) ) | 
						
							| 154 | 82 151 153 | syl2anc | ⊢ ( 𝜑  →  𝑆  <  inf ( 𝑉 ,  ℝ ,   <  ) ) | 
						
							| 155 | 25 | eqcomi | ⊢ inf ( 𝑉 ,  ℝ ,   <  )  =  𝑄 | 
						
							| 156 | 155 | a1i | ⊢ ( 𝜑  →  inf ( 𝑉 ,  ℝ ,   <  )  =  𝑄 ) | 
						
							| 157 | 154 156 | breqtrd | ⊢ ( 𝜑  →  𝑆  <  𝑄 ) | 
						
							| 158 | 31 90 84 95 157 | lelttrd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  <  𝑄 ) | 
						
							| 159 | 31 84 158 | ltled | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  ≤  𝑄 ) | 
						
							| 160 |  | fiminre | ⊢ ( ( 𝑉  ⊆  ℝ  ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ∃ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑉 𝑥  ≤  𝑦 ) | 
						
							| 161 | 57 71 80 160 | syl3anc | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑉 𝑥  ≤  𝑦 ) | 
						
							| 162 |  | lbinfle | ⊢ ( ( 𝑉  ⊆  ℝ  ∧  ∃ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑉 𝑥  ≤  𝑦  ∧  ( 𝐵 ‘ 𝑍 )  ∈  𝑉 )  →  inf ( 𝑉 ,  ℝ ,   <  )  ≤  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 163 | 57 161 78 162 | syl3anc | ⊢ ( 𝜑  →  inf ( 𝑉 ,  ℝ ,   <  )  ≤  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 164 | 25 163 | eqbrtrid | ⊢ ( 𝜑  →  𝑄  ≤  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 165 | 31 32 84 159 164 | eliccd | ⊢ ( 𝜑  →  𝑄  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 166 | 84 | recnd | ⊢ ( 𝜑  →  𝑄  ∈  ℂ ) | 
						
							| 167 | 90 | recnd | ⊢ ( 𝜑  →  𝑆  ∈  ℂ ) | 
						
							| 168 | 31 | recnd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  ∈  ℂ ) | 
						
							| 169 | 166 167 168 | npncand | ⊢ ( 𝜑  →  ( ( 𝑄  −  𝑆 )  +  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) )  =  ( 𝑄  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 170 | 169 | eqcomd | ⊢ ( 𝜑  →  ( 𝑄  −  ( 𝐴 ‘ 𝑍 ) )  =  ( ( 𝑄  −  𝑆 )  +  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 171 | 170 | oveq2d | ⊢ ( 𝜑  →  ( 𝐺  ·  ( 𝑄  −  ( 𝐴 ‘ 𝑍 ) ) )  =  ( 𝐺  ·  ( ( 𝑄  −  𝑆 )  +  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) ) ) ) | 
						
							| 172 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 173 | 2 3 | ssfid | ⊢ ( 𝜑  →  𝑌  ∈  Fin ) | 
						
							| 174 |  | ssun1 | ⊢ 𝑌  ⊆  ( 𝑌  ∪  { 𝑍 } ) | 
						
							| 175 | 174 5 | sseqtrri | ⊢ 𝑌  ⊆  𝑊 | 
						
							| 176 | 175 | a1i | ⊢ ( 𝜑  →  𝑌  ⊆  𝑊 ) | 
						
							| 177 | 6 176 | fssresd | ⊢ ( 𝜑  →  ( 𝐴  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) | 
						
							| 178 | 7 176 | fssresd | ⊢ ( 𝜑  →  ( 𝐵  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) | 
						
							| 179 | 1 173 177 178 | hoidmvcl | ⊢ ( 𝜑  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 180 | 15 179 | eqeltrid | ⊢ ( 𝜑  →  𝐺  ∈  ( 0 [,) +∞ ) ) | 
						
							| 181 | 172 180 | sselid | ⊢ ( 𝜑  →  𝐺  ∈  ℝ ) | 
						
							| 182 | 181 | recnd | ⊢ ( 𝜑  →  𝐺  ∈  ℂ ) | 
						
							| 183 | 166 167 | subcld | ⊢ ( 𝜑  →  ( 𝑄  −  𝑆 )  ∈  ℂ ) | 
						
							| 184 | 167 168 | subcld | ⊢ ( 𝜑  →  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) )  ∈  ℂ ) | 
						
							| 185 | 182 183 184 | adddid | ⊢ ( 𝜑  →  ( 𝐺  ·  ( ( 𝑄  −  𝑆 )  +  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) ) )  =  ( ( 𝐺  ·  ( 𝑄  −  𝑆 ) )  +  ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) ) ) ) | 
						
							| 186 | 182 183 | mulcld | ⊢ ( 𝜑  →  ( 𝐺  ·  ( 𝑄  −  𝑆 ) )  ∈  ℂ ) | 
						
							| 187 | 182 184 | mulcld | ⊢ ( 𝜑  →  ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) )  ∈  ℂ ) | 
						
							| 188 | 186 187 | addcomd | ⊢ ( 𝜑  →  ( ( 𝐺  ·  ( 𝑄  −  𝑆 ) )  +  ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) ) )  =  ( ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) )  +  ( 𝐺  ·  ( 𝑄  −  𝑆 ) ) ) ) | 
						
							| 189 | 171 185 188 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐺  ·  ( 𝑄  −  ( 𝐴 ‘ 𝑍 ) ) )  =  ( ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) )  +  ( 𝐺  ·  ( 𝑄  −  𝑆 ) ) ) ) | 
						
							| 190 | 84 90 | jca | ⊢ ( 𝜑  →  ( 𝑄  ∈  ℝ  ∧  𝑆  ∈  ℝ ) ) | 
						
							| 191 |  | resubcl | ⊢ ( ( 𝑄  ∈  ℝ  ∧  𝑆  ∈  ℝ )  →  ( 𝑄  −  𝑆 )  ∈  ℝ ) | 
						
							| 192 | 190 191 | syl | ⊢ ( 𝜑  →  ( 𝑄  −  𝑆 )  ∈  ℝ ) | 
						
							| 193 | 181 192 | jca | ⊢ ( 𝜑  →  ( 𝐺  ∈  ℝ  ∧  ( 𝑄  −  𝑆 )  ∈  ℝ ) ) | 
						
							| 194 |  | remulcl | ⊢ ( ( 𝐺  ∈  ℝ  ∧  ( 𝑄  −  𝑆 )  ∈  ℝ )  →  ( 𝐺  ·  ( 𝑄  −  𝑆 ) )  ∈  ℝ ) | 
						
							| 195 | 193 194 | syl | ⊢ ( 𝜑  →  ( 𝐺  ·  ( 𝑄  −  𝑆 ) )  ∈  ℝ ) | 
						
							| 196 | 90 31 | jca | ⊢ ( 𝜑  →  ( 𝑆  ∈  ℝ  ∧  ( 𝐴 ‘ 𝑍 )  ∈  ℝ ) ) | 
						
							| 197 |  | resubcl | ⊢ ( ( 𝑆  ∈  ℝ  ∧  ( 𝐴 ‘ 𝑍 )  ∈  ℝ )  →  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) )  ∈  ℝ ) | 
						
							| 198 | 196 197 | syl | ⊢ ( 𝜑  →  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) )  ∈  ℝ ) | 
						
							| 199 | 181 198 | jca | ⊢ ( 𝜑  →  ( 𝐺  ∈  ℝ  ∧  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) )  ∈  ℝ ) ) | 
						
							| 200 |  | remulcl | ⊢ ( ( 𝐺  ∈  ℝ  ∧  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) )  ∈  ℝ )  →  ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) )  ∈  ℝ ) | 
						
							| 201 | 199 200 | syl | ⊢ ( 𝜑  →  ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) )  ∈  ℝ ) | 
						
							| 202 | 195 201 | jca | ⊢ ( 𝜑  →  ( ( 𝐺  ·  ( 𝑄  −  𝑆 ) )  ∈  ℝ  ∧  ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) )  ∈  ℝ ) ) | 
						
							| 203 |  | readdcl | ⊢ ( ( ( 𝐺  ·  ( 𝑄  −  𝑆 ) )  ∈  ℝ  ∧  ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) )  ∈  ℝ )  →  ( ( 𝐺  ·  ( 𝑄  −  𝑆 ) )  +  ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) ) )  ∈  ℝ ) | 
						
							| 204 | 202 203 | syl | ⊢ ( 𝜑  →  ( ( 𝐺  ·  ( 𝑄  −  𝑆 ) )  +  ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) ) )  ∈  ℝ ) | 
						
							| 205 | 188 204 | eqeltrrd | ⊢ ( 𝜑  →  ( ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) )  +  ( 𝐺  ·  ( 𝑄  −  𝑆 ) ) )  ∈  ℝ ) | 
						
							| 206 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 207 | 16 | rpred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 208 | 206 207 | readdcld | ⊢ ( 𝜑  →  ( 1  +  𝐸 )  ∈  ℝ ) | 
						
							| 209 | 4 | eldifbd | ⊢ ( 𝜑  →  ¬  𝑍  ∈  𝑌 ) | 
						
							| 210 | 30 209 | eldifd | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑊  ∖  𝑌 ) ) | 
						
							| 211 | 1 173 210 5 8 11 13 14 90 | sge0hsphoire | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ ) | 
						
							| 212 | 208 211 | remulcld | ⊢ ( 𝜑  →  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  ∈  ℝ ) | 
						
							| 213 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  ∈  Fin ) | 
						
							| 214 | 192 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑄  −  𝑆 )  ∈  ℝ ) | 
						
							| 215 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝜑 ) | 
						
							| 216 |  | elfznn | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  𝑗  ∈  ℕ ) | 
						
							| 217 | 216 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝑗  ∈  ℕ ) | 
						
							| 218 |  | id | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℕ ) | 
						
							| 219 |  | ovexd | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) )  ∈  V ) | 
						
							| 220 | 20 | fvmpt2 | ⊢ ( ( 𝑗  ∈  ℕ  ∧  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) )  ∈  V )  →  ( 𝑃 ‘ 𝑗 )  =  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) | 
						
							| 221 | 218 219 220 | syl2anc | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝑃 ‘ 𝑗 )  =  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) | 
						
							| 222 | 221 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑃 ‘ 𝑗 )  =  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) | 
						
							| 223 | 173 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑌  ∈  Fin ) | 
						
							| 224 | 175 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑌  ⊆  𝑊 ) | 
						
							| 225 | 125 224 | fssresd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) | 
						
							| 226 | 225 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) | 
						
							| 227 |  | iftrue | ⊢ ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  =  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ) | 
						
							| 228 | 227 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  =  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ) | 
						
							| 229 | 228 | feq1d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) : 𝑌 ⟶ ℝ  ↔  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) ) | 
						
							| 230 | 226 229 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) : 𝑌 ⟶ ℝ ) | 
						
							| 231 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  0  ∈  ℝ ) | 
						
							| 232 | 231 9 | fmptd | ⊢ ( 𝜑  →  𝐹 : 𝑌 ⟶ ℝ ) | 
						
							| 233 | 232 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  𝐹 : 𝑌 ⟶ ℝ ) | 
						
							| 234 |  | iffalse | ⊢ ( ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  =  𝐹 ) | 
						
							| 235 | 234 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  =  𝐹 ) | 
						
							| 236 | 235 | feq1d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) : 𝑌 ⟶ ℝ  ↔  𝐹 : 𝑌 ⟶ ℝ ) ) | 
						
							| 237 | 233 236 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) : 𝑌 ⟶ ℝ ) | 
						
							| 238 | 230 237 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) : 𝑌 ⟶ ℝ ) | 
						
							| 239 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ℕ ) | 
						
							| 240 |  | fvex | ⊢ ( 𝐶 ‘ 𝑗 )  ∈  V | 
						
							| 241 | 240 | resex | ⊢ ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 )  ∈  V | 
						
							| 242 | 241 | a1i | ⊢ ( 𝜑  →  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 )  ∈  V ) | 
						
							| 243 | 2 3 | ssexd | ⊢ ( 𝜑  →  𝑌  ∈  V ) | 
						
							| 244 |  | mptexg | ⊢ ( 𝑌  ∈  V  →  ( 𝑦  ∈  𝑌  ↦  0 )  ∈  V ) | 
						
							| 245 | 243 244 | syl | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑌  ↦  0 )  ∈  V ) | 
						
							| 246 | 9 245 | eqeltrid | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 247 | 242 246 | ifcld | ⊢ ( 𝜑  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  ∈  V ) | 
						
							| 248 | 247 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  ∈  V ) | 
						
							| 249 | 10 | fvmpt2 | ⊢ ( ( 𝑗  ∈  ℕ  ∧  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  ∈  V )  →  ( 𝐽 ‘ 𝑗 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 250 | 239 248 249 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐽 ‘ 𝑗 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 251 | 250 | feq1d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐽 ‘ 𝑗 ) : 𝑌 ⟶ ℝ  ↔  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) : 𝑌 ⟶ ℝ ) ) | 
						
							| 252 | 238 251 | mpbird | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐽 ‘ 𝑗 ) : 𝑌 ⟶ ℝ ) | 
						
							| 253 | 49 224 | fssresd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) | 
						
							| 254 | 253 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) | 
						
							| 255 |  | iftrue | ⊢ ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  =  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ) | 
						
							| 256 | 255 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  =  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ) | 
						
							| 257 | 256 | feq1d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) : 𝑌 ⟶ ℝ  ↔  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) ) | 
						
							| 258 | 254 257 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) : 𝑌 ⟶ ℝ ) | 
						
							| 259 |  | iffalse | ⊢ ( ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  =  𝐹 ) | 
						
							| 260 | 259 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  =  𝐹 ) | 
						
							| 261 | 260 | feq1d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) : 𝑌 ⟶ ℝ  ↔  𝐹 : 𝑌 ⟶ ℝ ) ) | 
						
							| 262 | 233 261 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) : 𝑌 ⟶ ℝ ) | 
						
							| 263 | 258 262 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) : 𝑌 ⟶ ℝ ) | 
						
							| 264 |  | fvex | ⊢ ( 𝐷 ‘ 𝑗 )  ∈  V | 
						
							| 265 | 264 | resex | ⊢ ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 )  ∈  V | 
						
							| 266 | 265 | a1i | ⊢ ( 𝜑  →  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 )  ∈  V ) | 
						
							| 267 | 266 246 | ifcld | ⊢ ( 𝜑  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  ∈  V ) | 
						
							| 268 | 267 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  ∈  V ) | 
						
							| 269 | 12 | fvmpt2 | ⊢ ( ( 𝑗  ∈  ℕ  ∧  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  ∈  V )  →  ( 𝐾 ‘ 𝑗 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 270 | 239 268 269 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐾 ‘ 𝑗 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 271 | 270 | feq1d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐾 ‘ 𝑗 ) : 𝑌 ⟶ ℝ  ↔  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) : 𝑌 ⟶ ℝ ) ) | 
						
							| 272 | 263 271 | mpbird | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐾 ‘ 𝑗 ) : 𝑌 ⟶ ℝ ) | 
						
							| 273 | 1 223 252 272 | hoidmvcl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 274 | 222 273 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑃 ‘ 𝑗 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 275 | 172 274 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑃 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 276 | 215 217 275 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑃 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 277 | 214 276 | remulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) )  ∈  ℝ ) | 
						
							| 278 | 213 277 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) )  ∈  ℝ ) | 
						
							| 279 | 208 278 | remulcld | ⊢ ( 𝜑  →  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 280 | 212 279 | readdcld | ⊢ ( 𝜑  →  ( ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  +  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) )  ∈  ℝ ) | 
						
							| 281 | 1 173 210 5 8 11 13 14 84 | sge0hsphoire | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ ) | 
						
							| 282 | 208 281 | remulcld | ⊢ ( 𝜑  →  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  ∈  ℝ ) | 
						
							| 283 | 18 17 | eleqtrdi | ⊢ ( 𝜑  →  𝑆  ∈  { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } ) | 
						
							| 284 |  | oveq1 | ⊢ ( 𝑧  =  𝑆  →  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) )  =  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 285 | 284 | oveq2d | ⊢ ( 𝑧  =  𝑆  →  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  =  ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 286 |  | fveq2 | ⊢ ( 𝑧  =  𝑆  →  ( 𝐻 ‘ 𝑧 )  =  ( 𝐻 ‘ 𝑆 ) ) | 
						
							| 287 | 286 | fveq1d | ⊢ ( 𝑧  =  𝑆  →  ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) )  =  ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 288 | 287 | oveq2d | ⊢ ( 𝑧  =  𝑆  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  =  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 289 | 288 | mpteq2dv | ⊢ ( 𝑧  =  𝑆  →  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) | 
						
							| 290 | 289 | fveq2d | ⊢ ( 𝑧  =  𝑆  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  =  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 291 | 290 | oveq2d | ⊢ ( 𝑧  =  𝑆  →  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  =  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 292 | 285 291 | breq12d | ⊢ ( 𝑧  =  𝑆  →  ( ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  ↔  ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 293 | 292 | elrab | ⊢ ( 𝑆  ∈  { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) }  ↔  ( 𝑆  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∧  ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 294 | 283 293 | sylib | ⊢ ( 𝜑  →  ( 𝑆  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∧  ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 295 | 294 | simprd | ⊢ ( 𝜑  →  ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 296 | 213 276 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝑃 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 297 | 208 296 | remulcld | ⊢ ( 𝜑  →  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝑃 ‘ 𝑗 ) )  ∈  ℝ ) | 
						
							| 298 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 299 | 90 84 | posdifd | ⊢ ( 𝜑  →  ( 𝑆  <  𝑄  ↔  0  <  ( 𝑄  −  𝑆 ) ) ) | 
						
							| 300 | 157 299 | mpbid | ⊢ ( 𝜑  →  0  <  ( 𝑄  −  𝑆 ) ) | 
						
							| 301 | 298 192 300 | ltled | ⊢ ( 𝜑  →  0  ≤  ( 𝑄  −  𝑆 ) ) | 
						
							| 302 | 181 297 192 301 22 | lemul1ad | ⊢ ( 𝜑  →  ( 𝐺  ·  ( 𝑄  −  𝑆 ) )  ≤  ( ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝑃 ‘ 𝑗 ) )  ·  ( 𝑄  −  𝑆 ) ) ) | 
						
							| 303 | 208 | recnd | ⊢ ( 𝜑  →  ( 1  +  𝐸 )  ∈  ℂ ) | 
						
							| 304 | 296 | recnd | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝑃 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 305 | 303 304 183 | mulassd | ⊢ ( 𝜑  →  ( ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝑃 ‘ 𝑗 ) )  ·  ( 𝑄  −  𝑆 ) )  =  ( ( 1  +  𝐸 )  ·  ( Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝑃 ‘ 𝑗 )  ·  ( 𝑄  −  𝑆 ) ) ) ) | 
						
							| 306 | 276 | recnd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑃 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 307 | 213 183 306 | fsummulc1 | ⊢ ( 𝜑  →  ( Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝑃 ‘ 𝑗 )  ·  ( 𝑄  −  𝑆 ) )  =  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑃 ‘ 𝑗 )  ·  ( 𝑄  −  𝑆 ) ) ) | 
						
							| 308 | 183 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑄  −  𝑆 )  ∈  ℂ ) | 
						
							| 309 | 306 308 | mulcomd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑃 ‘ 𝑗 )  ·  ( 𝑄  −  𝑆 ) )  =  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 310 | 309 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑃 ‘ 𝑗 )  ·  ( 𝑄  −  𝑆 ) )  =  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 311 | 307 310 | eqtrd | ⊢ ( 𝜑  →  ( Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝑃 ‘ 𝑗 )  ·  ( 𝑄  −  𝑆 ) )  =  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 312 | 311 | oveq2d | ⊢ ( 𝜑  →  ( ( 1  +  𝐸 )  ·  ( Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝑃 ‘ 𝑗 )  ·  ( 𝑄  −  𝑆 ) ) )  =  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 313 | 305 312 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝑃 ‘ 𝑗 ) )  ·  ( 𝑄  −  𝑆 ) )  =  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 314 | 302 313 | breqtrd | ⊢ ( 𝜑  →  ( 𝐺  ·  ( 𝑄  −  𝑆 ) )  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 315 | 201 195 212 279 295 314 | leadd12dd | ⊢ ( 𝜑  →  ( ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) )  +  ( 𝐺  ·  ( 𝑄  −  𝑆 ) ) )  ≤  ( ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  +  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) ) ) | 
						
							| 316 |  | nnsplit | ⊢ ( 𝑀  ∈  ℕ  →  ℕ  =  ( ( 1 ... 𝑀 )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 317 | 21 316 | syl | ⊢ ( 𝜑  →  ℕ  =  ( ( 1 ... 𝑀 )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 318 |  | uncom | ⊢ ( ( 1 ... 𝑀 )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  =  ( ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∪  ( 1 ... 𝑀 ) ) | 
						
							| 319 | 318 | a1i | ⊢ ( 𝜑  →  ( ( 1 ... 𝑀 )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  =  ( ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∪  ( 1 ... 𝑀 ) ) ) | 
						
							| 320 | 317 319 | eqtr2d | ⊢ ( 𝜑  →  ( ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∪  ( 1 ... 𝑀 ) )  =  ℕ ) | 
						
							| 321 | 320 | eqcomd | ⊢ ( 𝜑  →  ℕ  =  ( ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∪  ( 1 ... 𝑀 ) ) ) | 
						
							| 322 | 321 | mpteq1d | ⊢ ( 𝜑  →  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) )  =  ( 𝑗  ∈  ( ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∪  ( 1 ... 𝑀 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) | 
						
							| 323 | 322 | fveq2d | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  =  ( Σ^ ‘ ( 𝑗  ∈  ( ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∪  ( 1 ... 𝑀 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 324 |  | nfv | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 325 |  | fvexd | ⊢ ( 𝜑  →  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∈  V ) | 
						
							| 326 |  | ovexd | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  ∈  V ) | 
						
							| 327 |  | incom | ⊢ ( ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∩  ( 1 ... 𝑀 ) )  =  ( ( 1 ... 𝑀 )  ∩  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 328 |  | nnuzdisj | ⊢ ( ( 1 ... 𝑀 )  ∩  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  =  ∅ | 
						
							| 329 | 327 328 | eqtri | ⊢ ( ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∩  ( 1 ... 𝑀 ) )  =  ∅ | 
						
							| 330 | 329 | a1i | ⊢ ( 𝜑  →  ( ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∩  ( 1 ... 𝑀 ) )  =  ∅ ) | 
						
							| 331 |  | icossicc | ⊢ ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) | 
						
							| 332 |  | ssid | ⊢ ( 0 [,) +∞ )  ⊆  ( 0 [,) +∞ ) | 
						
							| 333 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  𝜑 ) | 
						
							| 334 | 21 | peano2nnd | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ℕ ) | 
						
							| 335 |  | uznnssnn | ⊢ ( ( 𝑀  +  1 )  ∈  ℕ  →  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ⊆  ℕ ) | 
						
							| 336 | 334 335 | syl | ⊢ ( 𝜑  →  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ⊆  ℕ ) | 
						
							| 337 | 336 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ⊆  ℕ ) | 
						
							| 338 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 339 | 337 338 | sseldd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  𝑗  ∈  ℕ ) | 
						
							| 340 |  | snfi | ⊢ { 𝑍 }  ∈  Fin | 
						
							| 341 | 340 | a1i | ⊢ ( 𝜑  →  { 𝑍 }  ∈  Fin ) | 
						
							| 342 |  | unfi | ⊢ ( ( 𝑌  ∈  Fin  ∧  { 𝑍 }  ∈  Fin )  →  ( 𝑌  ∪  { 𝑍 } )  ∈  Fin ) | 
						
							| 343 | 173 341 342 | syl2anc | ⊢ ( 𝜑  →  ( 𝑌  ∪  { 𝑍 } )  ∈  Fin ) | 
						
							| 344 | 5 343 | eqeltrid | ⊢ ( 𝜑  →  𝑊  ∈  Fin ) | 
						
							| 345 | 344 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑊  ∈  Fin ) | 
						
							| 346 |  | eleq1w | ⊢ ( 𝑗  =  𝑙  →  ( 𝑗  ∈  𝑌  ↔  𝑙  ∈  𝑌 ) ) | 
						
							| 347 |  | fveq2 | ⊢ ( 𝑗  =  𝑙  →  ( 𝑐 ‘ 𝑗 )  =  ( 𝑐 ‘ 𝑙 ) ) | 
						
							| 348 | 347 | breq1d | ⊢ ( 𝑗  =  𝑙  →  ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥  ↔  ( 𝑐 ‘ 𝑙 )  ≤  𝑥 ) ) | 
						
							| 349 | 348 347 | ifbieq1d | ⊢ ( 𝑗  =  𝑙  →  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 )  =  if ( ( 𝑐 ‘ 𝑙 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑙 ) ,  𝑥 ) ) | 
						
							| 350 | 346 347 349 | ifbieq12d | ⊢ ( 𝑗  =  𝑙  →  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) )  =  if ( 𝑙  ∈  𝑌 ,  ( 𝑐 ‘ 𝑙 ) ,  if ( ( 𝑐 ‘ 𝑙 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑙 ) ,  𝑥 ) ) ) | 
						
							| 351 | 350 | cbvmptv | ⊢ ( 𝑗  ∈  𝑊  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) ) )  =  ( 𝑙  ∈  𝑊  ↦  if ( 𝑙  ∈  𝑌 ,  ( 𝑐 ‘ 𝑙 ) ,  if ( ( 𝑐 ‘ 𝑙 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑙 ) ,  𝑥 ) ) ) | 
						
							| 352 | 351 | mpteq2i | ⊢ ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( 𝑗  ∈  𝑊  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) ) ) )  =  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( 𝑙  ∈  𝑊  ↦  if ( 𝑙  ∈  𝑌 ,  ( 𝑐 ‘ 𝑙 ) ,  if ( ( 𝑐 ‘ 𝑙 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑙 ) ,  𝑥 ) ) ) ) | 
						
							| 353 | 352 | mpteq2i | ⊢ ( 𝑥  ∈  ℝ  ↦  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( 𝑗  ∈  𝑊  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) ) ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( 𝑙  ∈  𝑊  ↦  if ( 𝑙  ∈  𝑌 ,  ( 𝑐 ‘ 𝑙 ) ,  if ( ( 𝑐 ‘ 𝑙 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑙 ) ,  𝑥 ) ) ) ) ) | 
						
							| 354 | 14 353 | eqtri | ⊢ 𝐻  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( 𝑙  ∈  𝑊  ↦  if ( 𝑙  ∈  𝑌 ,  ( 𝑐 ‘ 𝑙 ) ,  if ( ( 𝑐 ‘ 𝑙 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑙 ) ,  𝑥 ) ) ) ) ) | 
						
							| 355 | 90 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑆  ∈  ℝ ) | 
						
							| 356 | 354 355 345 49 | hsphoif | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) : 𝑊 ⟶ ℝ ) | 
						
							| 357 | 1 345 125 356 | hoidmvcl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 358 | 333 339 357 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 359 | 332 358 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 360 | 331 359 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 361 | 215 217 357 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 362 | 331 361 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 363 | 324 325 326 330 360 362 | sge0splitmpt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ( ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∪  ( 1 ... 𝑀 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  =  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +𝑒  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 364 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 365 | 364 | a1i | ⊢ ( 𝜑  →  ℕ  ∈  V ) | 
						
							| 366 | 331 357 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 367 | 324 365 366 211 336 | sge0ssrempt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ ) | 
						
							| 368 | 37 | a1i | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  ⊆  ℕ ) | 
						
							| 369 | 324 365 366 211 368 | sge0ssrempt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ ) | 
						
							| 370 |  | rexadd | ⊢ ( ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ  ∧  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ )  →  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +𝑒  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  =  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 371 | 367 369 370 | syl2anc | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +𝑒  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  =  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 372 | 323 363 371 | 3eqtrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  =  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 373 | 372 | oveq2d | ⊢ ( 𝜑  →  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  =  ( ( 1  +  𝐸 )  ·  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 374 | 373 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  +  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) )  =  ( ( ( 1  +  𝐸 )  ·  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) )  +  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) ) ) | 
						
							| 375 | 372 211 | eqeltrrd | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  ∈  ℝ ) | 
						
							| 376 | 375 | recnd | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  ∈  ℂ ) | 
						
							| 377 | 278 | recnd | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 378 | 303 376 377 | adddid | ⊢ ( 𝜑  →  ( ( 1  +  𝐸 )  ·  ( ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) )  =  ( ( ( 1  +  𝐸 )  ·  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) )  +  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) ) ) | 
						
							| 379 | 378 | eqcomd | ⊢ ( 𝜑  →  ( ( ( 1  +  𝐸 )  ·  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) )  +  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) )  =  ( ( 1  +  𝐸 )  ·  ( ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) ) ) | 
						
							| 380 | 367 | recnd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℂ ) | 
						
							| 381 | 369 | recnd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℂ ) | 
						
							| 382 | 380 381 377 | addassd | ⊢ ( 𝜑  →  ( ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  =  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  ( ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) ) ) | 
						
							| 383 | 213 361 | sge0fsummpt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  =  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 384 | 383 | oveq1d | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  =  ( Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 385 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 386 | 172 385 | sstri | ⊢ ( 0 [,) +∞ )  ⊆  ℂ | 
						
							| 387 | 386 357 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ℂ ) | 
						
							| 388 | 215 217 387 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ℂ ) | 
						
							| 389 | 192 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑄  −  𝑆 )  ∈  ℝ ) | 
						
							| 390 | 389 275 | remulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) )  ∈  ℝ ) | 
						
							| 391 | 390 | recnd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 392 | 217 391 | syldan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 393 | 213 388 392 | fsumadd | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  =  ( Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 394 | 393 | eqcomd | ⊢ ( 𝜑  →  ( Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  =  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 395 | 384 394 | eqtrd | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  =  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 396 | 395 | oveq2d | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  ( ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) )  =  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) ) ) | 
						
							| 397 | 382 396 | eqtrd | ⊢ ( 𝜑  →  ( ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  =  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) ) ) | 
						
							| 398 | 397 | oveq2d | ⊢ ( 𝜑  →  ( ( 1  +  𝐸 )  ·  ( ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) )  =  ( ( 1  +  𝐸 )  ·  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 399 | 374 379 398 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  +  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) )  =  ( ( 1  +  𝐸 )  ·  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 400 | 172 357 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 401 | 400 390 | readdcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 402 | 215 217 401 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 403 | 213 402 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 404 | 367 403 | readdcld | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) )  ∈  ℝ ) | 
						
							| 405 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 406 | 405 | a1i | ⊢ ( 𝜑  →  0  ≤  1 ) | 
						
							| 407 | 16 | rpge0d | ⊢ ( 𝜑  →  0  ≤  𝐸 ) | 
						
							| 408 | 206 207 406 407 | addge0d | ⊢ ( 𝜑  →  0  ≤  ( 1  +  𝐸 ) ) | 
						
							| 409 | 84 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑄  ∈  ℝ ) | 
						
							| 410 | 354 409 345 49 | hsphoif | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) : 𝑊 ⟶ ℝ ) | 
						
							| 411 | 1 345 125 410 | hoidmvcl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 412 | 331 411 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 413 | 324 365 412 281 336 | sge0ssrempt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ ) | 
						
							| 414 | 172 411 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 415 | 215 217 414 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 416 | 213 415 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 417 | 333 339 412 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 418 | 210 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑍  ∈  ( 𝑊  ∖  𝑌 ) ) | 
						
							| 419 | 90 84 157 | ltled | ⊢ ( 𝜑  →  𝑆  ≤  𝑄 ) | 
						
							| 420 | 419 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑆  ≤  𝑄 ) | 
						
							| 421 | 1 345 418 5 355 409 420 354 125 49 | hsphoidmvle2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ≤  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 422 | 333 339 421 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ≤  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 423 | 324 325 360 417 422 | sge0lempt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 424 | 215 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  =  0 )  →  𝜑 ) | 
						
							| 425 | 217 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  =  0 )  →  𝑗  ∈  ℕ ) | 
						
							| 426 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  =  0 )  →  ( 𝑃 ‘ 𝑗 )  =  0 ) | 
						
							| 427 |  | oveq2 | ⊢ ( ( 𝑃 ‘ 𝑗 )  =  0  →  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) )  =  ( ( 𝑄  −  𝑆 )  ·  0 ) ) | 
						
							| 428 | 427 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  =  0 )  →  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) )  =  ( ( 𝑄  −  𝑆 )  ·  0 ) ) | 
						
							| 429 | 183 | mul01d | ⊢ ( 𝜑  →  ( ( 𝑄  −  𝑆 )  ·  0 )  =  0 ) | 
						
							| 430 | 429 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  =  0 )  →  ( ( 𝑄  −  𝑆 )  ·  0 )  =  0 ) | 
						
							| 431 | 428 430 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  =  0 )  →  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) )  =  0 ) | 
						
							| 432 | 431 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  =  0 )  →  ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  =  ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  0 ) ) | 
						
							| 433 | 387 | addridd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  0 )  =  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 434 | 433 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  =  0 )  →  ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  0 )  =  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 435 | 432 434 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  =  0 )  →  ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  =  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 436 | 421 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  =  0 )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ≤  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 437 | 435 436 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  =  0 )  →  ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  ≤  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 438 | 424 425 426 437 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  =  0 )  →  ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  ≤  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 439 |  | simpl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  ( 𝑃 ‘ 𝑗 )  =  0 )  →  ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) ) ) | 
						
							| 440 |  | neqne | ⊢ ( ¬  ( 𝑃 ‘ 𝑗 )  =  0  →  ( 𝑃 ‘ 𝑗 )  ≠  0 ) | 
						
							| 441 | 440 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  ( 𝑃 ‘ 𝑗 )  =  0 )  →  ( 𝑃 ‘ 𝑗 )  ≠  0 ) | 
						
							| 442 | 402 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 443 | 215 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  𝜑 ) | 
						
							| 444 | 217 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  𝑗  ∈  ℕ ) | 
						
							| 445 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( 𝑃 ‘ 𝑗 )  ≠  0 ) | 
						
							| 446 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑍  ∈  ( 𝑋  ∖  𝑌 ) ) | 
						
							| 447 | 209 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ¬  𝑍  ∈  𝑌 ) | 
						
							| 448 |  | eqid | ⊢ ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) )  =  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 449 | 1 223 446 447 5 125 356 448 | hoiprodp1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  =  ( ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) )  ·  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑍 ) ) ) ) ) | 
						
							| 450 | 449 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  =  ( ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) )  ·  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑍 ) ) ) ) ) | 
						
							| 451 | 222 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( 𝑃 ‘ 𝑗 )  =  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) | 
						
							| 452 | 223 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  𝑌  ∈  Fin ) | 
						
							| 453 | 222 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑌  =  ∅ )  →  ( 𝑃 ‘ 𝑗 )  =  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) | 
						
							| 454 |  | fveq2 | ⊢ ( 𝑌  =  ∅  →  ( 𝐿 ‘ 𝑌 )  =  ( 𝐿 ‘ ∅ ) ) | 
						
							| 455 | 454 | oveqd | ⊢ ( 𝑌  =  ∅  →  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) )  =  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝐾 ‘ 𝑗 ) ) ) | 
						
							| 456 | 455 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑌  =  ∅ )  →  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) )  =  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝐾 ‘ 𝑗 ) ) ) | 
						
							| 457 | 252 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑌  =  ∅ )  →  ( 𝐽 ‘ 𝑗 ) : 𝑌 ⟶ ℝ ) | 
						
							| 458 |  | id | ⊢ ( 𝑌  =  ∅  →  𝑌  =  ∅ ) | 
						
							| 459 | 458 | eqcomd | ⊢ ( 𝑌  =  ∅  →  ∅  =  𝑌 ) | 
						
							| 460 | 459 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑌  =  ∅ )  →  ∅  =  𝑌 ) | 
						
							| 461 | 460 | feq2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑌  =  ∅ )  →  ( ( 𝐽 ‘ 𝑗 ) : ∅ ⟶ ℝ  ↔  ( 𝐽 ‘ 𝑗 ) : 𝑌 ⟶ ℝ ) ) | 
						
							| 462 | 457 461 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑌  =  ∅ )  →  ( 𝐽 ‘ 𝑗 ) : ∅ ⟶ ℝ ) | 
						
							| 463 | 272 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑌  =  ∅ )  →  ( 𝐾 ‘ 𝑗 ) : 𝑌 ⟶ ℝ ) | 
						
							| 464 | 460 | feq2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑌  =  ∅ )  →  ( ( 𝐾 ‘ 𝑗 ) : ∅ ⟶ ℝ  ↔  ( 𝐾 ‘ 𝑗 ) : 𝑌 ⟶ ℝ ) ) | 
						
							| 465 | 463 464 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑌  =  ∅ )  →  ( 𝐾 ‘ 𝑗 ) : ∅ ⟶ ℝ ) | 
						
							| 466 | 1 462 465 | hoidmv0val | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑌  =  ∅ )  →  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ ∅ ) ( 𝐾 ‘ 𝑗 ) )  =  0 ) | 
						
							| 467 | 453 456 466 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑌  =  ∅ )  →  ( 𝑃 ‘ 𝑗 )  =  0 ) | 
						
							| 468 | 467 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  𝑌  =  ∅ )  →  ( 𝑃 ‘ 𝑗 )  =  0 ) | 
						
							| 469 |  | neneq | ⊢ ( ( 𝑃 ‘ 𝑗 )  ≠  0  →  ¬  ( 𝑃 ‘ 𝑗 )  =  0 ) | 
						
							| 470 | 469 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  𝑌  =  ∅ )  →  ¬  ( 𝑃 ‘ 𝑗 )  =  0 ) | 
						
							| 471 | 468 470 | pm2.65da | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ¬  𝑌  =  ∅ ) | 
						
							| 472 | 471 | neqned | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  𝑌  ≠  ∅ ) | 
						
							| 473 | 252 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( 𝐽 ‘ 𝑗 ) : 𝑌 ⟶ ℝ ) | 
						
							| 474 | 272 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( 𝐾 ‘ 𝑗 ) : 𝑌 ⟶ ℝ ) | 
						
							| 475 | 1 452 472 473 474 | hoidmvn0val | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) )  =  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) | 
						
							| 476 | 250 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( 𝐽 ‘ 𝑗 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 477 | 222 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( 𝑃 ‘ 𝑗 )  =  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) | 
						
							| 478 | 250 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( 𝐽 ‘ 𝑗 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 479 | 478 235 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( 𝐽 ‘ 𝑗 )  =  𝐹 ) | 
						
							| 480 | 270 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( 𝐾 ‘ 𝑗 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 481 | 480 260 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( 𝐾 ‘ 𝑗 )  =  𝐹 ) | 
						
							| 482 | 479 481 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) )  =  ( 𝐹 ( 𝐿 ‘ 𝑌 ) 𝐹 ) ) | 
						
							| 483 | 1 173 232 | hoidmvval0b | ⊢ ( 𝜑  →  ( 𝐹 ( 𝐿 ‘ 𝑌 ) 𝐹 )  =  0 ) | 
						
							| 484 | 483 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( 𝐹 ( 𝐿 ‘ 𝑌 ) 𝐹 )  =  0 ) | 
						
							| 485 | 477 482 484 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( 𝑃 ‘ 𝑗 )  =  0 ) | 
						
							| 486 | 485 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( 𝑃 ‘ 𝑗 )  =  0 ) | 
						
							| 487 | 469 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ¬  ( 𝑃 ‘ 𝑗 )  =  0 ) | 
						
							| 488 | 486 487 | condan | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ) | 
						
							| 489 | 488 | iftrued | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  =  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ) | 
						
							| 490 | 476 489 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( 𝐽 ‘ 𝑗 )  =  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ) | 
						
							| 491 | 490 | fveq1d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 )  =  ( ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ‘ 𝑘 ) ) | 
						
							| 492 | 491 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  𝑘  ∈  𝑌 )  →  ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 )  =  ( ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ‘ 𝑘 ) ) | 
						
							| 493 |  | fvres | ⊢ ( 𝑘  ∈  𝑌  →  ( ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) | 
						
							| 494 | 493 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  𝑘  ∈  𝑌 )  →  ( ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) | 
						
							| 495 | 492 494 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  𝑘  ∈  𝑌 )  →  ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) | 
						
							| 496 | 270 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( 𝐾 ‘ 𝑗 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 497 | 488 255 | syl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  =  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ) | 
						
							| 498 | 496 497 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( 𝐾 ‘ 𝑗 )  =  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ) | 
						
							| 499 | 498 | fveq1d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 )  =  ( ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ‘ 𝑘 ) ) | 
						
							| 500 | 499 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  𝑘  ∈  𝑌 )  →  ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 )  =  ( ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ‘ 𝑘 ) ) | 
						
							| 501 |  | fvres | ⊢ ( 𝑘  ∈  𝑌  →  ( ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ‘ 𝑘 )  =  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) | 
						
							| 502 | 501 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  𝑘  ∈  𝑌 )  →  ( ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ‘ 𝑘 )  =  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) | 
						
							| 503 | 500 502 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  𝑘  ∈  𝑌 )  →  ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 )  =  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) | 
						
							| 504 | 495 503 | oveq12d | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  𝑘  ∈  𝑌 )  →  ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) )  =  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 505 | 504 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  𝑘  ∈  𝑌 )  →  ( vol ‘ ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) )  =  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) | 
						
							| 506 | 505 | prodeq2dv | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) )  =  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) | 
						
							| 507 | 475 506 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) )  =  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) | 
						
							| 508 | 355 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  𝑌 )  →  𝑆  ∈  ℝ ) | 
						
							| 509 | 345 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  𝑌 )  →  𝑊  ∈  Fin ) | 
						
							| 510 | 49 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  𝑌 )  →  ( 𝐷 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 511 |  | elun1 | ⊢ ( 𝑘  ∈  𝑌  →  𝑘  ∈  ( 𝑌  ∪  { 𝑍 } ) ) | 
						
							| 512 | 511 5 | eleqtrrdi | ⊢ ( 𝑘  ∈  𝑌  →  𝑘  ∈  𝑊 ) | 
						
							| 513 | 512 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  𝑌 )  →  𝑘  ∈  𝑊 ) | 
						
							| 514 | 354 508 509 510 513 | hsphoival | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  𝑌 )  →  ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 )  =  if ( 𝑘  ∈  𝑌 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ,  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 )  ≤  𝑆 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ,  𝑆 ) ) ) | 
						
							| 515 |  | iftrue | ⊢ ( 𝑘  ∈  𝑌  →  if ( 𝑘  ∈  𝑌 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ,  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 )  ≤  𝑆 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ,  𝑆 ) )  =  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) | 
						
							| 516 | 515 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  𝑌 )  →  if ( 𝑘  ∈  𝑌 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ,  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 )  ≤  𝑆 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ,  𝑆 ) )  =  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) | 
						
							| 517 | 514 516 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  𝑌 )  →  ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 )  =  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) | 
						
							| 518 | 517 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  𝑌 )  →  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) )  =  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 519 | 518 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  𝑌 )  →  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) )  =  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) | 
						
							| 520 | 519 | prodeq2dv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) )  =  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) | 
						
							| 521 | 520 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  =  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 522 | 521 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  =  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 523 | 451 507 522 | 3eqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) )  =  ( 𝑃 ‘ 𝑗 ) ) | 
						
							| 524 | 354 355 345 49 50 | hsphoival | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑍 )  =  if ( 𝑍  ∈  𝑌 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑆 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  𝑆 ) ) ) | 
						
							| 525 | 209 | iffalsed | ⊢ ( 𝜑  →  if ( 𝑍  ∈  𝑌 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑆 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  𝑆 ) )  =  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑆 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  𝑆 ) ) | 
						
							| 526 | 525 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  if ( 𝑍  ∈  𝑌 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑆 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  𝑆 ) )  =  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑆 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  𝑆 ) ) | 
						
							| 527 | 524 526 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑍 )  =  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑆 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  𝑆 ) ) | 
						
							| 528 | 527 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑍 ) )  =  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑆 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  𝑆 ) ) ) | 
						
							| 529 | 528 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑍 ) )  =  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑆 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  𝑆 ) ) ) | 
						
							| 530 | 126 | rexrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ* ) | 
						
							| 531 | 530 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ* ) | 
						
							| 532 | 51 | rexrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ* ) | 
						
							| 533 | 532 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ* ) | 
						
							| 534 |  | icoltub | ⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ*  ∧  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ*  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  𝑆  <  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) | 
						
							| 535 | 531 533 488 534 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  𝑆  <  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) | 
						
							| 536 | 355 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  𝑆  ∈  ℝ ) | 
						
							| 537 | 51 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 538 | 536 537 | ltnled | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( 𝑆  <  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ↔  ¬  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑆 ) ) | 
						
							| 539 | 535 538 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ¬  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑆 ) | 
						
							| 540 | 539 | iffalsed | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑆 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  𝑆 )  =  𝑆 ) | 
						
							| 541 | 540 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑆 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  𝑆 ) )  =  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) 𝑆 ) ) | 
						
							| 542 | 529 541 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑍 ) )  =  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) 𝑆 ) ) | 
						
							| 543 | 542 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑍 ) ) )  =  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) 𝑆 ) ) ) | 
						
							| 544 |  | volico | ⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ  ∧  𝑆  ∈  ℝ )  →  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) 𝑆 ) )  =  if ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 ,  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  0 ) ) | 
						
							| 545 | 126 536 544 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 ) )  →  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) 𝑆 ) )  =  if ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 ,  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  0 ) ) | 
						
							| 546 | 545 | anabss5 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) 𝑆 ) )  =  if ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 ,  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  0 ) ) | 
						
							| 547 |  | iftrue | ⊢ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆  →  if ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 ,  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  0 )  =  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ) | 
						
							| 548 | 547 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 )  →  if ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 ,  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  0 )  =  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ) | 
						
							| 549 |  | iffalse | ⊢ ( ¬  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆  →  if ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 ,  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  0 )  =  0 ) | 
						
							| 550 | 549 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ¬  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 )  →  if ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 ,  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  0 )  =  0 ) | 
						
							| 551 |  | simpll | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ¬  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 )  →  ( 𝜑  ∧  𝑗  ∈  ℕ ) ) | 
						
							| 552 |  | icogelb | ⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ*  ∧  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ*  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑆 ) | 
						
							| 553 | 531 533 488 552 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑆 ) | 
						
							| 554 | 553 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ¬  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 )  →  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑆 ) | 
						
							| 555 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ¬  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 )  →  ¬  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 ) | 
						
							| 556 | 554 555 | jca | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ¬  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 )  →  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑆  ∧  ¬  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 ) ) | 
						
							| 557 | 551 126 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ¬  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 )  →  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 558 | 551 355 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ¬  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 )  →  𝑆  ∈  ℝ ) | 
						
							| 559 | 557 558 | eqleltd | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ¬  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 )  →  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑆  ↔  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑆  ∧  ¬  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 ) ) ) | 
						
							| 560 | 556 559 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ¬  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 )  →  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑆 ) | 
						
							| 561 |  | id | ⊢ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑆  →  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑆 ) | 
						
							| 562 | 561 | eqcomd | ⊢ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑆  →  𝑆  =  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) | 
						
							| 563 | 562 | oveq1d | ⊢ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑆  →  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  =  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ) | 
						
							| 564 | 563 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑆 )  →  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  =  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ) | 
						
							| 565 | 385 126 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℂ ) | 
						
							| 566 | 565 | subidd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  =  0 ) | 
						
							| 567 | 566 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑆 )  →  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  =  0 ) | 
						
							| 568 | 564 567 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑆 )  →  0  =  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ) | 
						
							| 569 | 551 560 568 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ¬  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 )  →  0  =  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ) | 
						
							| 570 | 550 569 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ¬  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 )  →  if ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 ,  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  0 )  =  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ) | 
						
							| 571 | 548 570 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  if ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑆 ,  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  0 )  =  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ) | 
						
							| 572 | 543 546 571 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑍 ) ) )  =  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ) | 
						
							| 573 | 523 572 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) )  ·  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑍 ) ) ) )  =  ( ( 𝑃 ‘ 𝑗 )  ·  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ) ) | 
						
							| 574 | 386 274 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑃 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 575 | 355 126 | resubcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  ∈  ℝ ) | 
						
							| 576 | 575 | recnd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  ∈  ℂ ) | 
						
							| 577 | 574 576 | mulcomd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑃 ‘ 𝑗 )  ·  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) )  =  ( ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  ·  ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 578 | 577 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝑃 ‘ 𝑗 )  ·  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) )  =  ( ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  ·  ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 579 | 450 573 578 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  =  ( ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  ·  ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 580 | 579 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  =  ( ( ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  ·  ( 𝑃 ‘ 𝑗 ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 581 | 183 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑄  −  𝑆 )  ∈  ℂ ) | 
						
							| 582 | 576 581 574 | adddird | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  +  ( 𝑄  −  𝑆 ) )  ·  ( 𝑃 ‘ 𝑗 ) )  =  ( ( ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  ·  ( 𝑃 ‘ 𝑗 ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 583 | 582 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  ·  ( 𝑃 ‘ 𝑗 ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  =  ( ( ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  +  ( 𝑄  −  𝑆 ) )  ·  ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 584 | 583 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  ·  ( 𝑃 ‘ 𝑗 ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  =  ( ( ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  +  ( 𝑄  −  𝑆 ) )  ·  ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 585 | 576 581 | addcomd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  +  ( 𝑄  −  𝑆 ) )  =  ( ( 𝑄  −  𝑆 )  +  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ) ) | 
						
							| 586 | 166 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑄  ∈  ℂ ) | 
						
							| 587 | 167 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑆  ∈  ℂ ) | 
						
							| 588 | 586 587 565 | npncand | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑄  −  𝑆 )  +  ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) )  =  ( 𝑄  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ) | 
						
							| 589 | 585 588 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  +  ( 𝑄  −  𝑆 ) )  =  ( 𝑄  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ) | 
						
							| 590 | 589 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  +  ( 𝑄  −  𝑆 ) )  ·  ( 𝑃 ‘ 𝑗 ) )  =  ( ( 𝑄  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  ·  ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 591 | 590 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( ( 𝑆  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  +  ( 𝑄  −  𝑆 ) )  ·  ( 𝑃 ‘ 𝑗 ) )  =  ( ( 𝑄  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  ·  ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 592 | 580 584 591 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  =  ( ( 𝑄  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  ·  ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 593 | 443 444 445 592 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  =  ( ( 𝑄  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  ·  ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 594 |  | eqid | ⊢ ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) )  =  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 595 | 1 223 50 447 5 125 410 594 | hoiprodp1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  =  ( ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) )  ·  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑍 ) ) ) ) ) | 
						
							| 596 | 215 217 595 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  =  ( ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) )  ·  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑍 ) ) ) ) ) | 
						
							| 597 | 596 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  =  ( ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) )  ·  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑍 ) ) ) ) ) | 
						
							| 598 | 507 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  =  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) | 
						
							| 599 | 409 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  𝑌 )  →  𝑄  ∈  ℝ ) | 
						
							| 600 | 354 599 509 510 513 | hsphoival | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  𝑌 )  →  ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 )  =  if ( 𝑘  ∈  𝑌 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ,  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 )  ≤  𝑄 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ,  𝑄 ) ) ) | 
						
							| 601 |  | iftrue | ⊢ ( 𝑘  ∈  𝑌  →  if ( 𝑘  ∈  𝑌 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ,  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 )  ≤  𝑄 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ,  𝑄 ) )  =  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) | 
						
							| 602 | 601 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  𝑌 )  →  if ( 𝑘  ∈  𝑌 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ,  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 )  ≤  𝑄 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ,  𝑄 ) )  =  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) | 
						
							| 603 | 600 602 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  𝑌 )  →  ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 )  =  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) | 
						
							| 604 | 603 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  𝑌 )  →  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) )  =  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 605 | 604 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  𝑌 )  →  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) )  =  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) | 
						
							| 606 | 605 | prodeq2dv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) )  =  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) | 
						
							| 607 | 606 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) )  =  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) | 
						
							| 608 | 598 607 451 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) )  =  ( 𝑃 ‘ 𝑗 ) ) | 
						
							| 609 | 443 444 445 608 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) )  =  ( 𝑃 ‘ 𝑗 ) ) | 
						
							| 610 | 354 409 345 49 50 | hsphoival | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑍 )  =  if ( 𝑍  ∈  𝑌 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑄 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  𝑄 ) ) ) | 
						
							| 611 | 217 610 | syldan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑍 )  =  if ( 𝑍  ∈  𝑌 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑄 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  𝑄 ) ) ) | 
						
							| 612 | 611 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑍 )  =  if ( 𝑍  ∈  𝑌 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑄 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  𝑄 ) ) ) | 
						
							| 613 | 209 | iffalsed | ⊢ ( 𝜑  →  if ( 𝑍  ∈  𝑌 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑄 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  𝑄 ) )  =  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑄 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  𝑄 ) ) | 
						
							| 614 | 613 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  if ( 𝑍  ∈  𝑌 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑄 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  𝑄 ) )  =  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑄 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  𝑄 ) ) | 
						
							| 615 | 217 51 | syldan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 616 | 615 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑄 )  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 617 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑄 )  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑄 ) | 
						
							| 618 | 616 617 | eqled | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑄 )  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑄 ) | 
						
							| 619 | 618 | iftrued | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑄 )  →  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑄 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  𝑄 )  =  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) | 
						
							| 620 | 619 617 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑄 )  →  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑄 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  𝑄 )  =  𝑄 ) | 
						
							| 621 | 620 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑄 )  →  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑄 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  𝑄 )  =  𝑄 ) | 
						
							| 622 | 84 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝑄  ∈  ℝ ) | 
						
							| 623 | 622 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑄 )  →  𝑄  ∈  ℝ ) | 
						
							| 624 | 623 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ¬  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑄 )  →  𝑄  ∈  ℝ ) | 
						
							| 625 | 615 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑄 )  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 626 | 625 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ¬  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑄 )  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 627 | 25 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  𝑄  =  inf ( 𝑉 ,  ℝ ,   <  ) ) | 
						
							| 628 | 443 57 | syl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  𝑉  ⊆  ℝ ) | 
						
							| 629 | 161 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ∃ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑉 𝑥  ≤  𝑦 ) | 
						
							| 630 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  𝑗  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 631 | 216 488 | sylanl2 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ) | 
						
							| 632 | 630 631 | jca | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ) ) | 
						
							| 633 |  | rabid | ⊢ ( 𝑗  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  ↔  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ) ) | 
						
							| 634 | 632 633 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  𝑗  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) } ) | 
						
							| 635 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) | 
						
							| 636 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐷 ‘ 𝑖 )  =  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 637 | 636 | fveq1d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 )  =  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) | 
						
							| 638 | 637 | eqeq2d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 )  ↔  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ) | 
						
							| 639 | 638 | rspcev | ⊢ ( ( 𝑗  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  ∧  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) )  →  ∃ 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) } ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) | 
						
							| 640 | 634 635 639 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ∃ 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) } ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) | 
						
							| 641 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ∈  V ) | 
						
							| 642 | 35 640 641 | elrnmptd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ran  ( 𝑖  ∈  { 𝑗  ∈  ( 1 ... 𝑀 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) }  ↦  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ) | 
						
							| 643 | 642 23 | eleqtrrdi | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ∈  𝑂 ) | 
						
							| 644 |  | elun2 | ⊢ ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ∈  𝑂  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ( { ( 𝐵 ‘ 𝑍 ) }  ∪  𝑂 ) ) | 
						
							| 645 | 643 644 | syl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ( { ( 𝐵 ‘ 𝑍 ) }  ∪  𝑂 ) ) | 
						
							| 646 | 76 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( { ( 𝐵 ‘ 𝑍 ) }  ∪  𝑂 )  =  𝑉 ) | 
						
							| 647 | 645 646 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ∈  𝑉 ) | 
						
							| 648 |  | lbinfle | ⊢ ( ( 𝑉  ⊆  ℝ  ∧  ∃ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑉 𝑥  ≤  𝑦  ∧  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ∈  𝑉 )  →  inf ( 𝑉 ,  ℝ ,   <  )  ≤  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) | 
						
							| 649 | 628 629 647 648 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  inf ( 𝑉 ,  ℝ ,   <  )  ≤  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) | 
						
							| 650 | 627 649 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  𝑄  ≤  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) | 
						
							| 651 | 650 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ¬  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑄 )  →  𝑄  ≤  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) | 
						
							| 652 |  | neqne | ⊢ ( ¬  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑄  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≠  𝑄 ) | 
						
							| 653 | 652 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ¬  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑄 )  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≠  𝑄 ) | 
						
							| 654 | 624 626 651 653 | leneltd | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ¬  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑄 )  →  𝑄  <  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) | 
						
							| 655 | 624 626 | ltnled | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ¬  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑄 )  →  ( 𝑄  <  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ↔  ¬  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑄 ) ) | 
						
							| 656 | 654 655 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ¬  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑄 )  →  ¬  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑄 ) | 
						
							| 657 | 656 | iffalsed | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  ∧  ¬  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  𝑄 )  →  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑄 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  𝑄 )  =  𝑄 ) | 
						
							| 658 | 621 657 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  if ( ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑄 ,  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ,  𝑄 )  =  𝑄 ) | 
						
							| 659 | 612 614 658 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑍 )  =  𝑄 ) | 
						
							| 660 | 659 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑍 ) )  =  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) 𝑄 ) ) | 
						
							| 661 | 660 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑍 ) ) )  =  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) 𝑄 ) ) ) | 
						
							| 662 | 215 217 126 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 663 | 662 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 664 | 443 84 | syl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  𝑄  ∈  ℝ ) | 
						
							| 665 |  | volico | ⊢ ( ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℝ  ∧  𝑄  ∈  ℝ )  →  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) 𝑄 ) )  =  if ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑄 ,  ( 𝑄  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  0 ) ) | 
						
							| 666 | 663 664 665 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) 𝑄 ) )  =  if ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑄 ,  ( 𝑄  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  0 ) ) | 
						
							| 667 | 443 90 | syl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  𝑆  ∈  ℝ ) | 
						
							| 668 | 443 444 445 553 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  ≤  𝑆 ) | 
						
							| 669 | 443 157 | syl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  𝑆  <  𝑄 ) | 
						
							| 670 | 663 667 664 668 669 | lelttrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑄 ) | 
						
							| 671 | 670 | iftrued | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  if ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  <  𝑄 ,  ( 𝑄  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  0 )  =  ( 𝑄  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ) | 
						
							| 672 | 661 666 671 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑍 ) ) )  =  ( 𝑄  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ) | 
						
							| 673 | 609 672 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑘 ) ) )  ·  ( vol ‘ ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ‘ 𝑍 ) ) ) )  =  ( ( 𝑃 ‘ 𝑗 )  ·  ( 𝑄  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) ) ) | 
						
							| 674 | 215 166 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝑄  ∈  ℂ ) | 
						
							| 675 | 385 662 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  ∈  ℂ ) | 
						
							| 676 | 674 675 | subcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑄  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  ∈  ℂ ) | 
						
							| 677 | 306 676 | mulcomd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑃 ‘ 𝑗 )  ·  ( 𝑄  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) )  =  ( ( 𝑄  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  ·  ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 678 | 677 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝑃 ‘ 𝑗 )  ·  ( 𝑄  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) )  =  ( ( 𝑄  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  ·  ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 679 | 597 673 678 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  =  ( ( 𝑄  −  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) )  ·  ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 680 | 593 679 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  =  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 681 | 442 680 | eqled | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝑗 )  ≠  0 )  →  ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  ≤  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 682 | 439 441 681 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  ( 𝑃 ‘ 𝑗 )  =  0 )  →  ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  ≤  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 683 | 438 682 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  ≤  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 684 | 213 402 415 683 | fsumle | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) )  ≤  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 685 | 367 403 413 416 423 684 | leadd12dd | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) )  ≤  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) | 
						
							| 686 | 321 | mpteq1d | ⊢ ( 𝜑  →  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) )  =  ( 𝑗  ∈  ( ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∪  ( 1 ... 𝑀 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) | 
						
							| 687 | 686 | fveq2d | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  =  ( Σ^ ‘ ( 𝑗  ∈  ( ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∪  ( 1 ... 𝑀 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 688 | 217 412 | syldan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 689 | 324 325 326 330 417 688 | sge0splitmpt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ( ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∪  ( 1 ... 𝑀 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  =  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +𝑒  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 690 | 687 689 | eqtrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  =  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +𝑒  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 691 | 215 217 411 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 692 | 213 691 | sge0fsummpt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  =  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 693 | 692 416 | eqeltrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ ) | 
						
							| 694 |  | rexadd | ⊢ ( ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ  ∧  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  ∈  ℝ )  →  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +𝑒  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  =  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 695 | 413 693 694 | syl2anc | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +𝑒  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  =  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 696 | 692 | oveq2d | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  ( Σ^ ‘ ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  =  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) | 
						
							| 697 | 690 695 696 | 3eqtrrd | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) )  =  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 698 | 685 697 | breqtrd | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 699 | 404 281 208 408 698 | lemul2ad | ⊢ ( 𝜑  →  ( ( 1  +  𝐸 )  ·  ( ( Σ^ ‘ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  +  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  +  ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 700 | 399 699 | eqbrtrd | ⊢ ( 𝜑  →  ( ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑆 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  +  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑄  −  𝑆 )  ·  ( 𝑃 ‘ 𝑗 ) ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 701 | 205 280 282 315 700 | letrd | ⊢ ( 𝜑  →  ( ( 𝐺  ·  ( 𝑆  −  ( 𝐴 ‘ 𝑍 ) ) )  +  ( 𝐺  ·  ( 𝑄  −  𝑆 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 702 | 189 701 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝐺  ·  ( 𝑄  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 703 | 165 702 | jca | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∧  ( 𝐺  ·  ( 𝑄  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 704 |  | oveq1 | ⊢ ( 𝑧  =  𝑄  →  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) )  =  ( 𝑄  −  ( 𝐴 ‘ 𝑍 ) ) ) | 
						
							| 705 | 704 | oveq2d | ⊢ ( 𝑧  =  𝑄  →  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  =  ( 𝐺  ·  ( 𝑄  −  ( 𝐴 ‘ 𝑍 ) ) ) ) | 
						
							| 706 |  | fveq2 | ⊢ ( 𝑧  =  𝑄  →  ( 𝐻 ‘ 𝑧 )  =  ( 𝐻 ‘ 𝑄 ) ) | 
						
							| 707 | 706 | fveq1d | ⊢ ( 𝑧  =  𝑄  →  ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) )  =  ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 708 | 707 | oveq2d | ⊢ ( 𝑧  =  𝑄  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  =  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 709 | 708 | mpteq2dv | ⊢ ( 𝑧  =  𝑄  →  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) | 
						
							| 710 | 709 | fveq2d | ⊢ ( 𝑧  =  𝑄  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  =  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 711 | 710 | oveq2d | ⊢ ( 𝑧  =  𝑄  →  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  =  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 712 | 705 711 | breq12d | ⊢ ( 𝑧  =  𝑄  →  ( ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  ↔  ( 𝐺  ·  ( 𝑄  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 713 | 712 | elrab | ⊢ ( 𝑄  ∈  { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) }  ↔  ( 𝑄  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∧  ( 𝐺  ·  ( 𝑄  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑄 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 714 | 703 713 | sylibr | ⊢ ( 𝜑  →  𝑄  ∈  { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } ) | 
						
							| 715 | 714 17 | eleqtrrdi | ⊢ ( 𝜑  →  𝑄  ∈  𝑈 ) | 
						
							| 716 |  | breq2 | ⊢ ( 𝑢  =  𝑄  →  ( 𝑆  <  𝑢  ↔  𝑆  <  𝑄 ) ) | 
						
							| 717 | 716 | rspcev | ⊢ ( ( 𝑄  ∈  𝑈  ∧  𝑆  <  𝑄 )  →  ∃ 𝑢  ∈  𝑈 𝑆  <  𝑢 ) | 
						
							| 718 | 715 157 717 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑢  ∈  𝑈 𝑆  <  𝑢 ) |