| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoidmvlelem3.l | ⊢ 𝐿  =  ( 𝑥  ∈  Fin  ↦  ( 𝑎  ∈  ( ℝ  ↑m  𝑥 ) ,  𝑏  ∈  ( ℝ  ↑m  𝑥 )  ↦  if ( 𝑥  =  ∅ ,  0 ,  ∏ 𝑘  ∈  𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 2 |  | hoidmvlelem3.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 3 |  | hoidmvlelem3.y | ⊢ ( 𝜑  →  𝑌  ⊆  𝑋 ) | 
						
							| 4 |  | hoidmvlelem3.z | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑋  ∖  𝑌 ) ) | 
						
							| 5 |  | hoidmvlelem3.w | ⊢ 𝑊  =  ( 𝑌  ∪  { 𝑍 } ) | 
						
							| 6 |  | hoidmvlelem3.a | ⊢ ( 𝜑  →  𝐴 : 𝑊 ⟶ ℝ ) | 
						
							| 7 |  | hoidmvlelem3.b | ⊢ ( 𝜑  →  𝐵 : 𝑊 ⟶ ℝ ) | 
						
							| 8 |  | hoidmvlelem3.lt | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  →  ( 𝐴 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 9 |  | hoidmvlelem3.f | ⊢ 𝐹  =  ( 𝑦  ∈  𝑌  ↦  0 ) | 
						
							| 10 |  | hoidmvlelem3.c | ⊢ ( 𝜑  →  𝐶 : ℕ ⟶ ( ℝ  ↑m  𝑊 ) ) | 
						
							| 11 |  | hoidmvlelem3.j | ⊢ 𝐽  =  ( 𝑗  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 12 |  | hoidmvlelem3.d | ⊢ ( 𝜑  →  𝐷 : ℕ ⟶ ( ℝ  ↑m  𝑊 ) ) | 
						
							| 13 |  | hoidmvlelem3.k | ⊢ 𝐾  =  ( 𝑗  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 14 |  | hoidmvlelem3.r | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) )  ∈  ℝ ) | 
						
							| 15 |  | hoidmvlelem3.h | ⊢ 𝐻  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( 𝑗  ∈  𝑊  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) ) ) ) ) | 
						
							| 16 |  | hoidmvlelem3.g | ⊢ 𝐺  =  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) ) | 
						
							| 17 |  | hoidmvlelem3.e | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 18 |  | hoidmvlelem3.u | ⊢ 𝑈  =  { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) } | 
						
							| 19 |  | hoidmvlelem3.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑈 ) | 
						
							| 20 |  | hoidmvlelem3.sb | ⊢ ( 𝜑  →  𝑆  <  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 21 |  | hoidmvlelem3.p | ⊢ 𝑃  =  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) | 
						
							| 22 |  | hoidmvlelem3.i | ⊢ ( 𝜑  →  ∀ 𝑒  ∈  ( ℝ  ↑m  𝑌 ) ∀ 𝑓  ∈  ( ℝ  ↑m  𝑌 ) ∀ 𝑔  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( 𝑒 ( 𝐿 ‘ 𝑌 ) 𝑓 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 23 |  | hoidmvlelem3.i2 | ⊢ ( 𝜑  →  X 𝑘  ∈  𝑊 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 24 |  | hoidmvlelem3.o | ⊢ 𝑂  =  ( 𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ↦  ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) ) | 
						
							| 25 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 26 | 25 | a1i | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  1  ∈  ℕ ) | 
						
							| 27 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 28 | 27 | a1i | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  0  ≤  0 ) | 
						
							| 29 | 16 | a1i | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  𝐺  =  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) ) ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑌  =  ∅  →  ( 𝐿 ‘ 𝑌 )  =  ( 𝐿 ‘ ∅ ) ) | 
						
							| 31 |  | reseq2 | ⊢ ( 𝑌  =  ∅  →  ( 𝐴  ↾  𝑌 )  =  ( 𝐴  ↾  ∅ ) ) | 
						
							| 32 |  | res0 | ⊢ ( 𝐴  ↾  ∅ )  =  ∅ | 
						
							| 33 | 32 | a1i | ⊢ ( 𝑌  =  ∅  →  ( 𝐴  ↾  ∅ )  =  ∅ ) | 
						
							| 34 | 31 33 | eqtrd | ⊢ ( 𝑌  =  ∅  →  ( 𝐴  ↾  𝑌 )  =  ∅ ) | 
						
							| 35 |  | reseq2 | ⊢ ( 𝑌  =  ∅  →  ( 𝐵  ↾  𝑌 )  =  ( 𝐵  ↾  ∅ ) ) | 
						
							| 36 |  | res0 | ⊢ ( 𝐵  ↾  ∅ )  =  ∅ | 
						
							| 37 | 36 | a1i | ⊢ ( 𝑌  =  ∅  →  ( 𝐵  ↾  ∅ )  =  ∅ ) | 
						
							| 38 | 35 37 | eqtrd | ⊢ ( 𝑌  =  ∅  →  ( 𝐵  ↾  𝑌 )  =  ∅ ) | 
						
							| 39 | 30 34 38 | oveq123d | ⊢ ( 𝑌  =  ∅  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  =  ( ∅ ( 𝐿 ‘ ∅ ) ∅ ) ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  =  ( ∅ ( 𝐿 ‘ ∅ ) ∅ ) ) | 
						
							| 41 |  | f0 | ⊢ ∅ : ∅ ⟶ ℝ | 
						
							| 42 | 41 | a1i | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ∅ : ∅ ⟶ ℝ ) | 
						
							| 43 | 1 42 42 | hoidmv0val | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( ∅ ( 𝐿 ‘ ∅ ) ∅ )  =  0 ) | 
						
							| 44 | 29 40 43 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  𝐺  =  0 ) | 
						
							| 45 |  | nfcvd | ⊢ ( 𝜑  →  Ⅎ 𝑗 ( 𝑃 ‘ 1 ) ) | 
						
							| 46 |  | nfv | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 47 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  =  1 )  →  𝑗  =  1 ) | 
						
							| 48 | 47 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑗  =  1 )  →  ( 𝑃 ‘ 𝑗 )  =  ( 𝑃 ‘ 1 ) ) | 
						
							| 49 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 50 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 51 |  | id | ⊢ ( 𝜑  →  𝜑 ) | 
						
							| 52 | 25 | a1i | ⊢ ( 𝜑  →  1  ∈  ℕ ) | 
						
							| 53 | 25 | elexi | ⊢ 1  ∈  V | 
						
							| 54 |  | eleq1 | ⊢ ( 𝑗  =  1  →  ( 𝑗  ∈  ℕ  ↔  1  ∈  ℕ ) ) | 
						
							| 55 | 54 | anbi2d | ⊢ ( 𝑗  =  1  →  ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ↔  ( 𝜑  ∧  1  ∈  ℕ ) ) ) | 
						
							| 56 |  | fveq2 | ⊢ ( 𝑗  =  1  →  ( 𝑃 ‘ 𝑗 )  =  ( 𝑃 ‘ 1 ) ) | 
						
							| 57 | 56 | eleq1d | ⊢ ( 𝑗  =  1  →  ( ( 𝑃 ‘ 𝑗 )  ∈  ( 0 [,) +∞ )  ↔  ( 𝑃 ‘ 1 )  ∈  ( 0 [,) +∞ ) ) ) | 
						
							| 58 | 55 57 | imbi12d | ⊢ ( 𝑗  =  1  →  ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑃 ‘ 𝑗 )  ∈  ( 0 [,) +∞ ) )  ↔  ( ( 𝜑  ∧  1  ∈  ℕ )  →  ( 𝑃 ‘ 1 )  ∈  ( 0 [,) +∞ ) ) ) ) | 
						
							| 59 |  | id | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℕ ) | 
						
							| 60 |  | ovexd | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) )  ∈  V ) | 
						
							| 61 | 21 | fvmpt2 | ⊢ ( ( 𝑗  ∈  ℕ  ∧  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) )  ∈  V )  →  ( 𝑃 ‘ 𝑗 )  =  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) | 
						
							| 62 | 59 60 61 | syl2anc | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝑃 ‘ 𝑗 )  =  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑃 ‘ 𝑗 )  =  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) | 
						
							| 64 | 5 | a1i | ⊢ ( 𝜑  →  𝑊  =  ( 𝑌  ∪  { 𝑍 } ) ) | 
						
							| 65 | 4 | eldifad | ⊢ ( 𝜑  →  𝑍  ∈  𝑋 ) | 
						
							| 66 |  | snssi | ⊢ ( 𝑍  ∈  𝑋  →  { 𝑍 }  ⊆  𝑋 ) | 
						
							| 67 | 65 66 | syl | ⊢ ( 𝜑  →  { 𝑍 }  ⊆  𝑋 ) | 
						
							| 68 | 3 67 | unssd | ⊢ ( 𝜑  →  ( 𝑌  ∪  { 𝑍 } )  ⊆  𝑋 ) | 
						
							| 69 | 64 68 | eqsstrd | ⊢ ( 𝜑  →  𝑊  ⊆  𝑋 ) | 
						
							| 70 | 2 69 | ssfid | ⊢ ( 𝜑  →  𝑊  ∈  Fin ) | 
						
							| 71 |  | ssun1 | ⊢ 𝑌  ⊆  ( 𝑌  ∪  { 𝑍 } ) | 
						
							| 72 | 5 | eqcomi | ⊢ ( 𝑌  ∪  { 𝑍 } )  =  𝑊 | 
						
							| 73 | 71 72 | sseqtri | ⊢ 𝑌  ⊆  𝑊 | 
						
							| 74 | 73 | a1i | ⊢ ( 𝜑  →  𝑌  ⊆  𝑊 ) | 
						
							| 75 | 70 74 | ssfid | ⊢ ( 𝜑  →  𝑌  ∈  Fin ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑌  ∈  Fin ) | 
						
							| 77 |  | iftrue | ⊢ ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  =  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ) | 
						
							| 78 | 77 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  =  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ) | 
						
							| 79 | 10 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐶 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑊 ) ) | 
						
							| 80 |  | elmapi | ⊢ ( ( 𝐶 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑊 )  →  ( 𝐶 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 81 | 79 80 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐶 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 82 | 71 5 | sseqtrri | ⊢ 𝑌  ⊆  𝑊 | 
						
							| 83 | 82 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑌  ⊆  𝑊 ) | 
						
							| 84 | 81 83 | fssresd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) | 
						
							| 85 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 86 | 85 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ℝ  ∈  V ) | 
						
							| 87 | 70 74 | ssexd | ⊢ ( 𝜑  →  𝑌  ∈  V ) | 
						
							| 88 | 87 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑌  ∈  V ) | 
						
							| 89 | 86 88 | elmapd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 )  ∈  ( ℝ  ↑m  𝑌 )  ↔  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) ) | 
						
							| 90 | 84 89 | mpbird | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 )  ∈  ( ℝ  ↑m  𝑌 ) ) | 
						
							| 91 | 90 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 )  ∈  ( ℝ  ↑m  𝑌 ) ) | 
						
							| 92 | 78 91 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  ∈  ( ℝ  ↑m  𝑌 ) ) | 
						
							| 93 |  | iffalse | ⊢ ( ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  =  𝐹 ) | 
						
							| 94 | 93 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  =  𝐹 ) | 
						
							| 95 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  0  ∈  ℝ ) | 
						
							| 96 | 95 9 | fmptd | ⊢ ( 𝜑  →  𝐹 : 𝑌 ⟶ ℝ ) | 
						
							| 97 | 85 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 98 | 97 75 | elmapd | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( ℝ  ↑m  𝑌 )  ↔  𝐹 : 𝑌 ⟶ ℝ ) ) | 
						
							| 99 | 96 98 | mpbird | ⊢ ( 𝜑  →  𝐹  ∈  ( ℝ  ↑m  𝑌 ) ) | 
						
							| 100 | 99 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  𝐹  ∈  ( ℝ  ↑m  𝑌 ) ) | 
						
							| 101 | 94 100 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  ∈  ( ℝ  ↑m  𝑌 ) ) | 
						
							| 102 | 92 101 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  ∈  ( ℝ  ↑m  𝑌 ) ) | 
						
							| 103 | 102 11 | fmptd | ⊢ ( 𝜑  →  𝐽 : ℕ ⟶ ( ℝ  ↑m  𝑌 ) ) | 
						
							| 104 | 103 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐽 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑌 ) ) | 
						
							| 105 |  | elmapi | ⊢ ( ( 𝐽 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑌 )  →  ( 𝐽 ‘ 𝑗 ) : 𝑌 ⟶ ℝ ) | 
						
							| 106 | 104 105 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐽 ‘ 𝑗 ) : 𝑌 ⟶ ℝ ) | 
						
							| 107 |  | iftrue | ⊢ ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  =  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ) | 
						
							| 108 | 107 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  =  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ) | 
						
							| 109 | 12 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐷 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑊 ) ) | 
						
							| 110 |  | elmapi | ⊢ ( ( 𝐷 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑊 )  →  ( 𝐷 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 111 | 109 110 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐷 ‘ 𝑗 ) : 𝑊 ⟶ ℝ ) | 
						
							| 112 | 111 83 | fssresd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) | 
						
							| 113 | 86 88 | elmapd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 )  ∈  ( ℝ  ↑m  𝑌 )  ↔  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) ) | 
						
							| 114 | 112 113 | mpbird | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 )  ∈  ( ℝ  ↑m  𝑌 ) ) | 
						
							| 115 | 114 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 )  ∈  ( ℝ  ↑m  𝑌 ) ) | 
						
							| 116 | 108 115 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  ∈  ( ℝ  ↑m  𝑌 ) ) | 
						
							| 117 |  | iffalse | ⊢ ( ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  =  𝐹 ) | 
						
							| 118 | 117 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  =  𝐹 ) | 
						
							| 119 | 118 100 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  ∈  ( ℝ  ↑m  𝑌 ) ) | 
						
							| 120 | 116 119 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  ∈  ( ℝ  ↑m  𝑌 ) ) | 
						
							| 121 | 120 13 | fmptd | ⊢ ( 𝜑  →  𝐾 : ℕ ⟶ ( ℝ  ↑m  𝑌 ) ) | 
						
							| 122 | 121 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐾 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑌 ) ) | 
						
							| 123 |  | elmapi | ⊢ ( ( 𝐾 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝑌 )  →  ( 𝐾 ‘ 𝑗 ) : 𝑌 ⟶ ℝ ) | 
						
							| 124 | 122 123 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐾 ‘ 𝑗 ) : 𝑌 ⟶ ℝ ) | 
						
							| 125 | 1 76 106 124 | hoidmvcl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 126 | 63 125 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑃 ‘ 𝑗 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 127 | 53 58 126 | vtocl | ⊢ ( ( 𝜑  ∧  1  ∈  ℕ )  →  ( 𝑃 ‘ 1 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 128 | 51 52 127 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃 ‘ 1 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 129 | 50 128 | sselid | ⊢ ( 𝜑  →  ( 𝑃 ‘ 1 )  ∈  ℝ ) | 
						
							| 130 | 129 | recnd | ⊢ ( 𝜑  →  ( 𝑃 ‘ 1 )  ∈  ℂ ) | 
						
							| 131 | 45 46 48 49 130 | sumsnd | ⊢ ( 𝜑  →  Σ 𝑗  ∈  { 1 } ( 𝑃 ‘ 𝑗 )  =  ( 𝑃 ‘ 1 ) ) | 
						
							| 132 | 131 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  Σ 𝑗  ∈  { 1 } ( 𝑃 ‘ 𝑗 )  =  ( 𝑃 ‘ 1 ) ) | 
						
							| 133 |  | fveq2 | ⊢ ( 𝑗  =  1  →  ( 𝐽 ‘ 𝑗 )  =  ( 𝐽 ‘ 1 ) ) | 
						
							| 134 |  | fveq2 | ⊢ ( 𝑗  =  1  →  ( 𝐾 ‘ 𝑗 )  =  ( 𝐾 ‘ 1 ) ) | 
						
							| 135 | 133 134 | oveq12d | ⊢ ( 𝑗  =  1  →  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) )  =  ( ( 𝐽 ‘ 1 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 1 ) ) ) | 
						
							| 136 |  | ovex | ⊢ ( ( 𝐽 ‘ 1 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 1 ) )  ∈  V | 
						
							| 137 | 135 21 136 | fvmpt | ⊢ ( 1  ∈  ℕ  →  ( 𝑃 ‘ 1 )  =  ( ( 𝐽 ‘ 1 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 1 ) ) ) | 
						
							| 138 | 25 137 | ax-mp | ⊢ ( 𝑃 ‘ 1 )  =  ( ( 𝐽 ‘ 1 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 1 ) ) | 
						
							| 139 | 138 | a1i | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( 𝑃 ‘ 1 )  =  ( ( 𝐽 ‘ 1 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 1 ) ) ) | 
						
							| 140 | 30 | oveqd | ⊢ ( 𝑌  =  ∅  →  ( ( 𝐽 ‘ 1 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 1 ) )  =  ( ( 𝐽 ‘ 1 ) ( 𝐿 ‘ ∅ ) ( 𝐾 ‘ 1 ) ) ) | 
						
							| 141 | 140 | adantl | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( ( 𝐽 ‘ 1 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 1 ) )  =  ( ( 𝐽 ‘ 1 ) ( 𝐿 ‘ ∅ ) ( 𝐾 ‘ 1 ) ) ) | 
						
							| 142 | 133 | feq1d | ⊢ ( 𝑗  =  1  →  ( ( 𝐽 ‘ 𝑗 ) : 𝑌 ⟶ ℝ  ↔  ( 𝐽 ‘ 1 ) : 𝑌 ⟶ ℝ ) ) | 
						
							| 143 | 55 142 | imbi12d | ⊢ ( 𝑗  =  1  →  ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐽 ‘ 𝑗 ) : 𝑌 ⟶ ℝ )  ↔  ( ( 𝜑  ∧  1  ∈  ℕ )  →  ( 𝐽 ‘ 1 ) : 𝑌 ⟶ ℝ ) ) ) | 
						
							| 144 | 84 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) | 
						
							| 145 | 78 | feq1d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) : 𝑌 ⟶ ℝ  ↔  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) ) | 
						
							| 146 | 144 145 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) : 𝑌 ⟶ ℝ ) | 
						
							| 147 | 96 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  𝐹 : 𝑌 ⟶ ℝ ) | 
						
							| 148 | 94 | feq1d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) : 𝑌 ⟶ ℝ  ↔  𝐹 : 𝑌 ⟶ ℝ ) ) | 
						
							| 149 | 147 148 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) : 𝑌 ⟶ ℝ ) | 
						
							| 150 | 146 149 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) : 𝑌 ⟶ ℝ ) | 
						
							| 151 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ℕ ) | 
						
							| 152 |  | fvex | ⊢ ( 𝐶 ‘ 𝑗 )  ∈  V | 
						
							| 153 | 152 | resex | ⊢ ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 )  ∈  V | 
						
							| 154 | 78 153 | eqeltrdi | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  ∈  V ) | 
						
							| 155 | 99 | elexd | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 156 | 155 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝐹  ∈  V ) | 
						
							| 157 | 156 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  𝐹  ∈  V ) | 
						
							| 158 | 94 157 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  ¬  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  ∈  V ) | 
						
							| 159 | 154 158 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  ∈  V ) | 
						
							| 160 | 11 | fvmpt2 | ⊢ ( ( 𝑗  ∈  ℕ  ∧  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  ∈  V )  →  ( 𝐽 ‘ 𝑗 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 161 | 151 159 160 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐽 ‘ 𝑗 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 162 | 161 | feq1d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐽 ‘ 𝑗 ) : 𝑌 ⟶ ℝ  ↔  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) : 𝑌 ⟶ ℝ ) ) | 
						
							| 163 | 150 162 | mpbird | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐽 ‘ 𝑗 ) : 𝑌 ⟶ ℝ ) | 
						
							| 164 | 53 143 163 | vtocl | ⊢ ( ( 𝜑  ∧  1  ∈  ℕ )  →  ( 𝐽 ‘ 1 ) : 𝑌 ⟶ ℝ ) | 
						
							| 165 | 51 52 164 | syl2anc | ⊢ ( 𝜑  →  ( 𝐽 ‘ 1 ) : 𝑌 ⟶ ℝ ) | 
						
							| 166 | 165 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( 𝐽 ‘ 1 ) : 𝑌 ⟶ ℝ ) | 
						
							| 167 |  | id | ⊢ ( 𝑌  =  ∅  →  𝑌  =  ∅ ) | 
						
							| 168 | 167 | eqcomd | ⊢ ( 𝑌  =  ∅  →  ∅  =  𝑌 ) | 
						
							| 169 | 168 | feq2d | ⊢ ( 𝑌  =  ∅  →  ( ( 𝐽 ‘ 1 ) : ∅ ⟶ ℝ  ↔  ( 𝐽 ‘ 1 ) : 𝑌 ⟶ ℝ ) ) | 
						
							| 170 | 169 | adantl | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( ( 𝐽 ‘ 1 ) : ∅ ⟶ ℝ  ↔  ( 𝐽 ‘ 1 ) : 𝑌 ⟶ ℝ ) ) | 
						
							| 171 | 166 170 | mpbird | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( 𝐽 ‘ 1 ) : ∅ ⟶ ℝ ) | 
						
							| 172 | 134 | feq1d | ⊢ ( 𝑗  =  1  →  ( ( 𝐾 ‘ 𝑗 ) : 𝑌 ⟶ ℝ  ↔  ( 𝐾 ‘ 1 ) : 𝑌 ⟶ ℝ ) ) | 
						
							| 173 | 55 172 | imbi12d | ⊢ ( 𝑗  =  1  →  ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐾 ‘ 𝑗 ) : 𝑌 ⟶ ℝ )  ↔  ( ( 𝜑  ∧  1  ∈  ℕ )  →  ( 𝐾 ‘ 1 ) : 𝑌 ⟶ ℝ ) ) ) | 
						
							| 174 | 53 173 124 | vtocl | ⊢ ( ( 𝜑  ∧  1  ∈  ℕ )  →  ( 𝐾 ‘ 1 ) : 𝑌 ⟶ ℝ ) | 
						
							| 175 | 51 52 174 | syl2anc | ⊢ ( 𝜑  →  ( 𝐾 ‘ 1 ) : 𝑌 ⟶ ℝ ) | 
						
							| 176 | 175 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( 𝐾 ‘ 1 ) : 𝑌 ⟶ ℝ ) | 
						
							| 177 | 168 | feq2d | ⊢ ( 𝑌  =  ∅  →  ( ( 𝐾 ‘ 1 ) : ∅ ⟶ ℝ  ↔  ( 𝐾 ‘ 1 ) : 𝑌 ⟶ ℝ ) ) | 
						
							| 178 | 177 | adantl | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( ( 𝐾 ‘ 1 ) : ∅ ⟶ ℝ  ↔  ( 𝐾 ‘ 1 ) : 𝑌 ⟶ ℝ ) ) | 
						
							| 179 | 176 178 | mpbird | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( 𝐾 ‘ 1 ) : ∅ ⟶ ℝ ) | 
						
							| 180 | 1 171 179 | hoidmv0val | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( ( 𝐽 ‘ 1 ) ( 𝐿 ‘ ∅ ) ( 𝐾 ‘ 1 ) )  =  0 ) | 
						
							| 181 | 141 180 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( ( 𝐽 ‘ 1 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 1 ) )  =  0 ) | 
						
							| 182 | 132 139 181 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  Σ 𝑗  ∈  { 1 } ( 𝑃 ‘ 𝑗 )  =  0 ) | 
						
							| 183 | 182 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  { 1 } ( 𝑃 ‘ 𝑗 ) )  =  ( ( 1  +  𝐸 )  ·  0 ) ) | 
						
							| 184 | 17 | rpred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 185 | 49 184 | readdcld | ⊢ ( 𝜑  →  ( 1  +  𝐸 )  ∈  ℝ ) | 
						
							| 186 | 185 | recnd | ⊢ ( 𝜑  →  ( 1  +  𝐸 )  ∈  ℂ ) | 
						
							| 187 | 186 | mul01d | ⊢ ( 𝜑  →  ( ( 1  +  𝐸 )  ·  0 )  =  0 ) | 
						
							| 188 | 187 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( ( 1  +  𝐸 )  ·  0 )  =  0 ) | 
						
							| 189 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  0  =  0 ) | 
						
							| 190 | 183 188 189 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  { 1 } ( 𝑃 ‘ 𝑗 ) )  =  0 ) | 
						
							| 191 | 44 190 | breq12d | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( 𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  { 1 } ( 𝑃 ‘ 𝑗 ) )  ↔  0  ≤  0 ) ) | 
						
							| 192 | 28 191 | mpbird | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  { 1 } ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 193 |  | oveq2 | ⊢ ( 𝑚  =  1  →  ( 1 ... 𝑚 )  =  ( 1 ... 1 ) ) | 
						
							| 194 | 25 | nnzi | ⊢ 1  ∈  ℤ | 
						
							| 195 |  | fzsn | ⊢ ( 1  ∈  ℤ  →  ( 1 ... 1 )  =  { 1 } ) | 
						
							| 196 | 194 195 | ax-mp | ⊢ ( 1 ... 1 )  =  { 1 } | 
						
							| 197 | 196 | a1i | ⊢ ( 𝑚  =  1  →  ( 1 ... 1 )  =  { 1 } ) | 
						
							| 198 | 193 197 | eqtrd | ⊢ ( 𝑚  =  1  →  ( 1 ... 𝑚 )  =  { 1 } ) | 
						
							| 199 | 198 | sumeq1d | ⊢ ( 𝑚  =  1  →  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 )  =  Σ 𝑗  ∈  { 1 } ( 𝑃 ‘ 𝑗 ) ) | 
						
							| 200 | 199 | oveq2d | ⊢ ( 𝑚  =  1  →  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) )  =  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  { 1 } ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 201 | 200 | breq2d | ⊢ ( 𝑚  =  1  →  ( 𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) )  ↔  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  { 1 } ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 202 | 201 | rspcev | ⊢ ( ( 1  ∈  ℕ  ∧  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  { 1 } ( 𝑃 ‘ 𝑗 ) ) )  →  ∃ 𝑚  ∈  ℕ 𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 203 | 26 192 202 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ∃ 𝑚  ∈  ℕ 𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 204 |  | simpl | ⊢ ( ( 𝜑  ∧  ¬  𝑌  =  ∅ )  →  𝜑 ) | 
						
							| 205 |  | neqne | ⊢ ( ¬  𝑌  =  ∅  →  𝑌  ≠  ∅ ) | 
						
							| 206 | 205 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝑌  =  ∅ )  →  𝑌  ≠  ∅ ) | 
						
							| 207 |  | nfv | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑌  ≠  ∅ ) | 
						
							| 208 | 194 | a1i | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  1  ∈  ℤ ) | 
						
							| 209 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 210 | 126 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑌  ≠  ∅ )  ∧  𝑗  ∈  ℕ )  →  ( 𝑃 ‘ 𝑗 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 211 | 82 | a1i | ⊢ ( 𝜑  →  𝑌  ⊆  𝑊 ) | 
						
							| 212 | 6 211 | fssresd | ⊢ ( 𝜑  →  ( 𝐴  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) | 
						
							| 213 | 7 211 | fssresd | ⊢ ( 𝜑  →  ( 𝐵  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) | 
						
							| 214 | 1 75 212 213 | hoidmvcl | ⊢ ( 𝜑  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 215 | 50 214 | sselid | ⊢ ( 𝜑  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ∈  ℝ ) | 
						
							| 216 | 16 215 | eqeltrid | ⊢ ( 𝜑  →  𝐺  ∈  ℝ ) | 
						
							| 217 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 218 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 219 | 218 | a1i | ⊢ ( 𝜑  →  1  ∈  ℝ+ ) | 
						
							| 220 | 219 17 | jca | ⊢ ( 𝜑  →  ( 1  ∈  ℝ+  ∧  𝐸  ∈  ℝ+ ) ) | 
						
							| 221 |  | rpaddcl | ⊢ ( ( 1  ∈  ℝ+  ∧  𝐸  ∈  ℝ+ )  →  ( 1  +  𝐸 )  ∈  ℝ+ ) | 
						
							| 222 | 220 221 | syl | ⊢ ( 𝜑  →  ( 1  +  𝐸 )  ∈  ℝ+ ) | 
						
							| 223 |  | rpgt0 | ⊢ ( ( 1  +  𝐸 )  ∈  ℝ+  →  0  <  ( 1  +  𝐸 ) ) | 
						
							| 224 | 222 223 | syl | ⊢ ( 𝜑  →  0  <  ( 1  +  𝐸 ) ) | 
						
							| 225 | 217 224 | gtned | ⊢ ( 𝜑  →  ( 1  +  𝐸 )  ≠  0 ) | 
						
							| 226 | 216 185 225 | redivcld | ⊢ ( 𝜑  →  ( 𝐺  /  ( 1  +  𝐸 ) )  ∈  ℝ ) | 
						
							| 227 | 226 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  ( 𝐺  /  ( 1  +  𝐸 ) )  ∈  ℝ ) | 
						
							| 228 | 226 | ltpnfd | ⊢ ( 𝜑  →  ( 𝐺  /  ( 1  +  𝐸 ) )  <  +∞ ) | 
						
							| 229 | 228 | adantr | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  =  +∞ )  →  ( 𝐺  /  ( 1  +  𝐸 ) )  <  +∞ ) | 
						
							| 230 |  | id | ⊢ ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  =  +∞  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  =  +∞ ) | 
						
							| 231 | 230 | eqcomd | ⊢ ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  =  +∞  →  +∞  =  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 232 | 231 | adantl | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  =  +∞ )  →  +∞  =  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 233 | 229 232 | breqtrd | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  =  +∞ )  →  ( 𝐺  /  ( 1  +  𝐸 ) )  <  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 234 | 233 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑌  ≠  ∅ )  ∧  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  =  +∞ )  →  ( 𝐺  /  ( 1  +  𝐸 ) )  <  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 235 |  | simpl | ⊢ ( ( ( 𝜑  ∧  𝑌  ≠  ∅ )  ∧  ¬  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  =  +∞ )  →  ( 𝜑  ∧  𝑌  ≠  ∅ ) ) | 
						
							| 236 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  =  +∞ )  →  ¬  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  =  +∞ ) | 
						
							| 237 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 238 | 237 | a1i | ⊢ ( ( 𝜑  ∧  ¬  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  =  +∞ )  →  ℕ  ∈  V ) | 
						
							| 239 |  | icossicc | ⊢ ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) | 
						
							| 240 | 239 126 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑃 ‘ 𝑗 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 241 |  | eqid | ⊢ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) )  =  ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) | 
						
							| 242 | 240 241 | fmptd | ⊢ ( 𝜑  →  ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) : ℕ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 243 | 242 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  =  +∞ )  →  ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) : ℕ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 244 | 238 243 | sge0repnf | ⊢ ( ( 𝜑  ∧  ¬  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  =  +∞ )  →  ( ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  ∈  ℝ  ↔  ¬  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  =  +∞ ) ) | 
						
							| 245 | 236 244 | mpbird | ⊢ ( ( 𝜑  ∧  ¬  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  =  +∞ )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 246 | 245 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑌  ≠  ∅ )  ∧  ¬  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  =  +∞ )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 247 | 227 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑌  ≠  ∅ )  ∧  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  ∈  ℝ )  →  ( 𝐺  /  ( 1  +  𝐸 ) )  ∈  ℝ ) | 
						
							| 248 | 216 | adantr | ⊢ ( ( 𝜑  ∧  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  ∈  ℝ )  →  𝐺  ∈  ℝ ) | 
						
							| 249 | 248 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑌  ≠  ∅ )  ∧  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  ∈  ℝ )  →  𝐺  ∈  ℝ ) | 
						
							| 250 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑌  ≠  ∅ )  ∧  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  ∈  ℝ )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 251 | 49 17 | ltaddrpd | ⊢ ( 𝜑  →  1  <  ( 1  +  𝐸 ) ) | 
						
							| 252 | 251 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  1  <  ( 1  +  𝐸 ) ) | 
						
							| 253 | 75 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  𝑌  ∈  Fin ) | 
						
							| 254 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  𝑌  ≠  ∅ ) | 
						
							| 255 | 212 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  ( 𝐴  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) | 
						
							| 256 | 213 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  ( 𝐵  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) | 
						
							| 257 | 1 253 254 255 256 | hoidmvn0val | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  =  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐴  ↾  𝑌 ) ‘ 𝑘 ) [,) ( ( 𝐵  ↾  𝑌 ) ‘ 𝑘 ) ) ) ) | 
						
							| 258 | 16 | a1i | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  𝐺  =  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) ) ) | 
						
							| 259 |  | fvres | ⊢ ( 𝑘  ∈  𝑌  →  ( ( 𝐴  ↾  𝑌 ) ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 260 |  | fvres | ⊢ ( 𝑘  ∈  𝑌  →  ( ( 𝐵  ↾  𝑌 ) ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 261 | 259 260 | oveq12d | ⊢ ( 𝑘  ∈  𝑌  →  ( ( ( 𝐴  ↾  𝑌 ) ‘ 𝑘 ) [,) ( ( 𝐵  ↾  𝑌 ) ‘ 𝑘 ) )  =  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 262 | 261 | fveq2d | ⊢ ( 𝑘  ∈  𝑌  →  ( vol ‘ ( ( ( 𝐴  ↾  𝑌 ) ‘ 𝑘 ) [,) ( ( 𝐵  ↾  𝑌 ) ‘ 𝑘 ) ) )  =  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 263 | 262 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  ( vol ‘ ( ( ( 𝐴  ↾  𝑌 ) ‘ 𝑘 ) [,) ( ( 𝐵  ↾  𝑌 ) ‘ 𝑘 ) ) )  =  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 264 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  𝐴 : 𝑊 ⟶ ℝ ) | 
						
							| 265 |  | elun1 | ⊢ ( 𝑘  ∈  𝑌  →  𝑘  ∈  ( 𝑌  ∪  { 𝑍 } ) ) | 
						
							| 266 | 265 5 | eleqtrrdi | ⊢ ( 𝑘  ∈  𝑌  →  𝑘  ∈  𝑊 ) | 
						
							| 267 | 266 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  𝑘  ∈  𝑊 ) | 
						
							| 268 | 264 267 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 269 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  𝐵 : 𝑊 ⟶ ℝ ) | 
						
							| 270 | 269 267 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 271 |  | volico | ⊢ ( ( ( 𝐴 ‘ 𝑘 )  ∈  ℝ  ∧  ( 𝐵 ‘ 𝑘 )  ∈  ℝ )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  if ( ( 𝐴 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑘 ) ,  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ,  0 ) ) | 
						
							| 272 | 268 270 271 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  if ( ( 𝐴 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑘 ) ,  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ,  0 ) ) | 
						
							| 273 | 267 8 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  ( 𝐴 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 274 | 273 | iftrued | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  if ( ( 𝐴 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑘 ) ,  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ,  0 )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 275 | 263 272 274 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  ( vol ‘ ( ( ( 𝐴  ↾  𝑌 ) ‘ 𝑘 ) [,) ( ( 𝐵  ↾  𝑌 ) ‘ 𝑘 ) ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 276 | 275 | prodeq2dv | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐴  ↾  𝑌 ) ‘ 𝑘 ) [,) ( ( 𝐵  ↾  𝑌 ) ‘ 𝑘 ) ) )  =  ∏ 𝑘  ∈  𝑌 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 277 | 276 | eqcomd | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑌 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  =  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐴  ↾  𝑌 ) ‘ 𝑘 ) [,) ( ( 𝐵  ↾  𝑌 ) ‘ 𝑘 ) ) ) ) | 
						
							| 278 | 277 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  ∏ 𝑘  ∈  𝑌 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  =  ∏ 𝑘  ∈  𝑌 ( vol ‘ ( ( ( 𝐴  ↾  𝑌 ) ‘ 𝑘 ) [,) ( ( 𝐵  ↾  𝑌 ) ‘ 𝑘 ) ) ) ) | 
						
							| 279 | 257 258 278 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  𝐺  =  ∏ 𝑘  ∈  𝑌 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 280 |  | difrp | ⊢ ( ( ( 𝐴 ‘ 𝑘 )  ∈  ℝ  ∧  ( 𝐵 ‘ 𝑘 )  ∈  ℝ )  →  ( ( 𝐴 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑘 )  ↔  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  ∈  ℝ+ ) ) | 
						
							| 281 | 268 270 280 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  ( ( 𝐴 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑘 )  ↔  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  ∈  ℝ+ ) ) | 
						
							| 282 | 273 281 | mpbid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  ∈  ℝ+ ) | 
						
							| 283 | 75 282 | fprodrpcl | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑌 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  ∈  ℝ+ ) | 
						
							| 284 | 283 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  ∏ 𝑘  ∈  𝑌 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  ∈  ℝ+ ) | 
						
							| 285 | 279 284 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  𝐺  ∈  ℝ+ ) | 
						
							| 286 | 222 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  ( 1  +  𝐸 )  ∈  ℝ+ ) | 
						
							| 287 | 285 286 | ltdivgt1 | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  ( 1  <  ( 1  +  𝐸 )  ↔  ( 𝐺  /  ( 1  +  𝐸 ) )  <  𝐺 ) ) | 
						
							| 288 | 252 287 | mpbid | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  ( 𝐺  /  ( 1  +  𝐸 ) )  <  𝐺 ) | 
						
							| 289 | 288 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑌  ≠  ∅ )  ∧  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  ∈  ℝ )  →  ( 𝐺  /  ( 1  +  𝐸 ) )  <  𝐺 ) | 
						
							| 290 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  X 𝑘  ∈  𝑊 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 291 |  | fvexd | ⊢ ( 𝜑  →  ( 𝑥 ‘ 𝑘 )  ∈  V ) | 
						
							| 292 | 19 | elexd | ⊢ ( 𝜑  →  𝑆  ∈  V ) | 
						
							| 293 | 291 292 | ifcld | ⊢ ( 𝜑  →  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 )  ∈  V ) | 
						
							| 294 | 293 | ralrimivw | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝑊 if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 )  ∈  V ) | 
						
							| 295 | 294 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  ∀ 𝑘  ∈  𝑊 if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 )  ∈  V ) | 
						
							| 296 |  | eqid | ⊢ ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) )  =  ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) | 
						
							| 297 | 296 | fnmpt | ⊢ ( ∀ 𝑘  ∈  𝑊 if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 )  ∈  V  →  ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) )  Fn  𝑊 ) | 
						
							| 298 | 295 297 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) )  Fn  𝑊 ) | 
						
							| 299 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 300 |  | mptexg | ⊢ ( 𝑊  ∈  Fin  →  ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) )  ∈  V ) | 
						
							| 301 | 70 300 | syl | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) )  ∈  V ) | 
						
							| 302 | 301 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) )  ∈  V ) | 
						
							| 303 | 24 | fvmpt2 | ⊢ ( ( 𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ∧  ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) )  ∈  V )  →  ( 𝑂 ‘ 𝑥 )  =  ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) ) | 
						
							| 304 | 299 302 303 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  ( 𝑂 ‘ 𝑥 )  =  ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) ) | 
						
							| 305 | 304 | fneq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  ( ( 𝑂 ‘ 𝑥 )  Fn  𝑊  ↔  ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) )  Fn  𝑊 ) ) | 
						
							| 306 | 298 305 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  ( 𝑂 ‘ 𝑥 )  Fn  𝑊 ) | 
						
							| 307 |  | nfv | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 308 |  | nfcv | ⊢ Ⅎ 𝑘 𝑥 | 
						
							| 309 |  | nfixp1 | ⊢ Ⅎ 𝑘 X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 310 | 308 309 | nfel | ⊢ Ⅎ 𝑘 𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 311 | 307 310 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 312 | 304 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 )  =  ( ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) ‘ 𝑘 ) ) | 
						
							| 313 | 312 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑘  ∈  𝑊 )  →  ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 )  =  ( ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) ‘ 𝑘 ) ) | 
						
							| 314 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  →  𝑘  ∈  𝑊 ) | 
						
							| 315 | 293 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  →  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 )  ∈  V ) | 
						
							| 316 | 296 | fvmpt2 | ⊢ ( ( 𝑘  ∈  𝑊  ∧  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 )  ∈  V )  →  ( ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) ‘ 𝑘 )  =  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) | 
						
							| 317 | 314 315 316 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  →  ( ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) ‘ 𝑘 )  =  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) | 
						
							| 318 | 317 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑘  ∈  𝑊 )  →  ( ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) ‘ 𝑘 )  =  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) | 
						
							| 319 | 313 318 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑘  ∈  𝑊 )  →  ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 )  =  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) | 
						
							| 320 |  | iftrue | ⊢ ( 𝑘  ∈  𝑌  →  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 )  =  ( 𝑥 ‘ 𝑘 ) ) | 
						
							| 321 | 320 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑘  ∈  𝑊 )  ∧  𝑘  ∈  𝑌 )  →  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 )  =  ( 𝑥 ‘ 𝑘 ) ) | 
						
							| 322 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 323 | 322 | elixp | ⊢ ( 𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ↔  ( 𝑥  Fn  𝑌  ∧  ∀ 𝑘  ∈  𝑌 ( 𝑥 ‘ 𝑘 )  ∈  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 324 | 323 | simprbi | ⊢ ( 𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  →  ∀ 𝑘  ∈  𝑌 ( 𝑥 ‘ 𝑘 )  ∈  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 325 | 324 | adantr | ⊢ ( ( 𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ∧  𝑘  ∈  𝑌 )  →  ∀ 𝑘  ∈  𝑌 ( 𝑥 ‘ 𝑘 )  ∈  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 326 |  | simpr | ⊢ ( ( 𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ∧  𝑘  ∈  𝑌 )  →  𝑘  ∈  𝑌 ) | 
						
							| 327 |  | rspa | ⊢ ( ( ∀ 𝑘  ∈  𝑌 ( 𝑥 ‘ 𝑘 )  ∈  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ∧  𝑘  ∈  𝑌 )  →  ( 𝑥 ‘ 𝑘 )  ∈  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 328 | 325 326 327 | syl2anc | ⊢ ( ( 𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ∧  𝑘  ∈  𝑌 )  →  ( 𝑥 ‘ 𝑘 )  ∈  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 329 | 328 | ad4ant24 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑘  ∈  𝑊 )  ∧  𝑘  ∈  𝑌 )  →  ( 𝑥 ‘ 𝑘 )  ∈  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 330 | 321 329 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑘  ∈  𝑊 )  ∧  𝑘  ∈  𝑌 )  →  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 )  ∈  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 331 |  | snidg | ⊢ ( 𝑍  ∈  ( 𝑋  ∖  𝑌 )  →  𝑍  ∈  { 𝑍 } ) | 
						
							| 332 | 4 331 | syl | ⊢ ( 𝜑  →  𝑍  ∈  { 𝑍 } ) | 
						
							| 333 |  | elun2 | ⊢ ( 𝑍  ∈  { 𝑍 }  →  𝑍  ∈  ( 𝑌  ∪  { 𝑍 } ) ) | 
						
							| 334 | 332 333 | syl | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑌  ∪  { 𝑍 } ) ) | 
						
							| 335 | 72 | a1i | ⊢ ( 𝜑  →  ( 𝑌  ∪  { 𝑍 } )  =  𝑊 ) | 
						
							| 336 | 334 335 | eleqtrd | ⊢ ( 𝜑  →  𝑍  ∈  𝑊 ) | 
						
							| 337 | 6 336 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 338 | 337 | rexrd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  ∈  ℝ* ) | 
						
							| 339 | 7 336 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 340 | 339 | rexrd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑍 )  ∈  ℝ* ) | 
						
							| 341 |  | iccssxr | ⊢ ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ⊆  ℝ* | 
						
							| 342 |  | ssrab2 | ⊢ { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) }  ⊆  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 343 | 18 342 | eqsstri | ⊢ 𝑈  ⊆  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 344 | 343 19 | sselid | ⊢ ( 𝜑  →  𝑆  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 345 | 341 344 | sselid | ⊢ ( 𝜑  →  𝑆  ∈  ℝ* ) | 
						
							| 346 |  | iccgelb | ⊢ ( ( ( 𝐴 ‘ 𝑍 )  ∈  ℝ*  ∧  ( 𝐵 ‘ 𝑍 )  ∈  ℝ*  ∧  𝑆  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) ) )  →  ( 𝐴 ‘ 𝑍 )  ≤  𝑆 ) | 
						
							| 347 | 338 340 344 346 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  ≤  𝑆 ) | 
						
							| 348 | 338 340 345 347 20 | elicod | ⊢ ( 𝜑  →  𝑆  ∈  ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 349 | 348 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  ∧  ¬  𝑘  ∈  𝑌 )  →  𝑆  ∈  ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 350 |  | iffalse | ⊢ ( ¬  𝑘  ∈  𝑌  →  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 )  =  𝑆 ) | 
						
							| 351 | 350 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  ∧  ¬  𝑘  ∈  𝑌 )  →  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 )  =  𝑆 ) | 
						
							| 352 | 5 | eleq2i | ⊢ ( 𝑘  ∈  𝑊  ↔  𝑘  ∈  ( 𝑌  ∪  { 𝑍 } ) ) | 
						
							| 353 | 352 | biimpi | ⊢ ( 𝑘  ∈  𝑊  →  𝑘  ∈  ( 𝑌  ∪  { 𝑍 } ) ) | 
						
							| 354 | 353 | adantr | ⊢ ( ( 𝑘  ∈  𝑊  ∧  ¬  𝑘  ∈  𝑌 )  →  𝑘  ∈  ( 𝑌  ∪  { 𝑍 } ) ) | 
						
							| 355 |  | simpr | ⊢ ( ( 𝑘  ∈  𝑊  ∧  ¬  𝑘  ∈  𝑌 )  →  ¬  𝑘  ∈  𝑌 ) | 
						
							| 356 |  | elunnel1 | ⊢ ( ( 𝑘  ∈  ( 𝑌  ∪  { 𝑍 } )  ∧  ¬  𝑘  ∈  𝑌 )  →  𝑘  ∈  { 𝑍 } ) | 
						
							| 357 | 354 355 356 | syl2anc | ⊢ ( ( 𝑘  ∈  𝑊  ∧  ¬  𝑘  ∈  𝑌 )  →  𝑘  ∈  { 𝑍 } ) | 
						
							| 358 |  | elsni | ⊢ ( 𝑘  ∈  { 𝑍 }  →  𝑘  =  𝑍 ) | 
						
							| 359 | 357 358 | syl | ⊢ ( ( 𝑘  ∈  𝑊  ∧  ¬  𝑘  ∈  𝑌 )  →  𝑘  =  𝑍 ) | 
						
							| 360 |  | fveq2 | ⊢ ( 𝑘  =  𝑍  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑍 ) ) | 
						
							| 361 |  | fveq2 | ⊢ ( 𝑘  =  𝑍  →  ( 𝐵 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 362 | 360 361 | oveq12d | ⊢ ( 𝑘  =  𝑍  →  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  =  ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 363 | 359 362 | syl | ⊢ ( ( 𝑘  ∈  𝑊  ∧  ¬  𝑘  ∈  𝑌 )  →  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  =  ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 364 | 363 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  ∧  ¬  𝑘  ∈  𝑌 )  →  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  =  ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 365 | 351 364 | eleq12d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  ∧  ¬  𝑘  ∈  𝑌 )  →  ( if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 )  ∈  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ↔  𝑆  ∈  ( ( 𝐴 ‘ 𝑍 ) [,) ( 𝐵 ‘ 𝑍 ) ) ) ) | 
						
							| 366 | 349 365 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  ∧  ¬  𝑘  ∈  𝑌 )  →  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 )  ∈  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 367 | 366 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑘  ∈  𝑊 )  ∧  ¬  𝑘  ∈  𝑌 )  →  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 )  ∈  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 368 | 330 367 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑘  ∈  𝑊 )  →  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 )  ∈  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 369 | 319 368 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑘  ∈  𝑊 )  →  ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 )  ∈  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 370 | 369 | ex | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  ( 𝑘  ∈  𝑊  →  ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 )  ∈  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 371 | 311 370 | ralrimi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  ∀ 𝑘  ∈  𝑊 ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 )  ∈  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 372 | 306 371 | jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  ( ( 𝑂 ‘ 𝑥 )  Fn  𝑊  ∧  ∀ 𝑘  ∈  𝑊 ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 )  ∈  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 373 |  | fvex | ⊢ ( 𝑂 ‘ 𝑥 )  ∈  V | 
						
							| 374 | 373 | elixp | ⊢ ( ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ↔  ( ( 𝑂 ‘ 𝑥 )  Fn  𝑊  ∧  ∀ 𝑘  ∈  𝑊 ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 )  ∈  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 375 | 372 374 | sylibr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 376 | 290 375 | sseldd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  ( 𝑂 ‘ 𝑥 )  ∈  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 377 |  | eliun | ⊢ ( ( 𝑂 ‘ 𝑥 )  ∈  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) )  ↔  ∃ 𝑗  ∈  ℕ ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 378 | 376 377 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  ∃ 𝑗  ∈  ℕ ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 379 |  | ixpfn | ⊢ ( 𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  →  𝑥  Fn  𝑌 ) | 
						
							| 380 | 379 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  𝑥  Fn  𝑌 ) | 
						
							| 381 | 380 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  →  𝑥  Fn  𝑌 ) | 
						
							| 382 |  | nfv | ⊢ Ⅎ 𝑘 𝑗  ∈  ℕ | 
						
							| 383 | 311 382 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ ) | 
						
							| 384 |  | nfcv | ⊢ Ⅎ 𝑘 ( 𝑂 ‘ 𝑥 ) | 
						
							| 385 |  | nfixp1 | ⊢ Ⅎ 𝑘 X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) | 
						
							| 386 | 384 385 | nfel | ⊢ Ⅎ 𝑘 ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) | 
						
							| 387 | 383 386 | nfan | ⊢ Ⅎ 𝑘 ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 388 | 312 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ∧  𝑘  ∈  𝑌 )  →  ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 )  =  ( ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) ‘ 𝑘 ) ) | 
						
							| 389 | 293 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 )  ∈  V ) | 
						
							| 390 | 267 389 316 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑌 )  →  ( ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) ‘ 𝑘 )  =  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) | 
						
							| 391 | 390 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ∧  𝑘  ∈  𝑌 )  →  ( ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) ‘ 𝑘 )  =  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) | 
						
							| 392 | 320 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ∧  𝑘  ∈  𝑌 )  →  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 )  =  ( 𝑥 ‘ 𝑘 ) ) | 
						
							| 393 | 388 391 392 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ∧  𝑘  ∈  𝑌 )  →  ( 𝑥 ‘ 𝑘 )  =  ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 ) ) | 
						
							| 394 | 393 | ad5ant125 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  ∧  𝑘  ∈  𝑌 )  →  ( 𝑥 ‘ 𝑘 )  =  ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 ) ) | 
						
							| 395 |  | simpl | ⊢ ( ( ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) )  ∧  𝑘  ∈  𝑌 )  →  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 396 | 373 | elixp | ⊢ ( ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) )  ↔  ( ( 𝑂 ‘ 𝑥 )  Fn  𝑊  ∧  ∀ 𝑘  ∈  𝑊 ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 )  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) | 
						
							| 397 | 395 396 | sylib | ⊢ ( ( ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) )  ∧  𝑘  ∈  𝑌 )  →  ( ( 𝑂 ‘ 𝑥 )  Fn  𝑊  ∧  ∀ 𝑘  ∈  𝑊 ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 )  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) | 
						
							| 398 | 397 | simprd | ⊢ ( ( ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) )  ∧  𝑘  ∈  𝑌 )  →  ∀ 𝑘  ∈  𝑊 ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 )  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 399 | 266 | adantl | ⊢ ( ( ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) )  ∧  𝑘  ∈  𝑌 )  →  𝑘  ∈  𝑊 ) | 
						
							| 400 |  | rspa | ⊢ ( ( ∀ 𝑘  ∈  𝑊 ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 )  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) )  ∧  𝑘  ∈  𝑊 )  →  ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 )  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 401 | 398 399 400 | syl2anc | ⊢ ( ( ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) )  ∧  𝑘  ∈  𝑌 )  →  ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 )  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 402 | 401 | adantll | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  ∧  𝑘  ∈  𝑌 )  →  ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 )  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 403 | 394 402 | eqeltrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  ∧  𝑘  ∈  𝑌 )  →  ( 𝑥 ‘ 𝑘 )  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 404 | 51 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  →  𝜑 ) | 
						
							| 405 | 59 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  →  𝑗  ∈  ℕ ) | 
						
							| 406 | 304 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑍 )  =  ( ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) ‘ 𝑍 ) ) | 
						
							| 407 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) )  =  ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) ) | 
						
							| 408 |  | eleq1 | ⊢ ( 𝑘  =  𝑍  →  ( 𝑘  ∈  𝑌  ↔  𝑍  ∈  𝑌 ) ) | 
						
							| 409 |  | fveq2 | ⊢ ( 𝑘  =  𝑍  →  ( 𝑥 ‘ 𝑘 )  =  ( 𝑥 ‘ 𝑍 ) ) | 
						
							| 410 | 408 409 | ifbieq1d | ⊢ ( 𝑘  =  𝑍  →  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 )  =  if ( 𝑍  ∈  𝑌 ,  ( 𝑥 ‘ 𝑍 ) ,  𝑆 ) ) | 
						
							| 411 | 410 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  =  𝑍 )  →  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 )  =  if ( 𝑍  ∈  𝑌 ,  ( 𝑥 ‘ 𝑍 ) ,  𝑆 ) ) | 
						
							| 412 |  | fvexd | ⊢ ( 𝜑  →  ( 𝑥 ‘ 𝑍 )  ∈  V ) | 
						
							| 413 | 412 292 | ifcld | ⊢ ( 𝜑  →  if ( 𝑍  ∈  𝑌 ,  ( 𝑥 ‘ 𝑍 ) ,  𝑆 )  ∈  V ) | 
						
							| 414 | 407 411 336 413 | fvmptd | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) ‘ 𝑍 )  =  if ( 𝑍  ∈  𝑌 ,  ( 𝑥 ‘ 𝑍 ) ,  𝑆 ) ) | 
						
							| 415 | 414 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  ( ( 𝑘  ∈  𝑊  ↦  if ( 𝑘  ∈  𝑌 ,  ( 𝑥 ‘ 𝑘 ) ,  𝑆 ) ) ‘ 𝑍 )  =  if ( 𝑍  ∈  𝑌 ,  ( 𝑥 ‘ 𝑍 ) ,  𝑆 ) ) | 
						
							| 416 | 4 | eldifbd | ⊢ ( 𝜑  →  ¬  𝑍  ∈  𝑌 ) | 
						
							| 417 | 416 | iffalsed | ⊢ ( 𝜑  →  if ( 𝑍  ∈  𝑌 ,  ( 𝑥 ‘ 𝑍 ) ,  𝑆 )  =  𝑆 ) | 
						
							| 418 | 417 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  if ( 𝑍  ∈  𝑌 ,  ( 𝑥 ‘ 𝑍 ) ,  𝑆 )  =  𝑆 ) | 
						
							| 419 | 406 415 418 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  𝑆  =  ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑍 ) ) | 
						
							| 420 | 419 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  →  𝑆  =  ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑍 ) ) | 
						
							| 421 | 404 336 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  →  𝑍  ∈  𝑊 ) | 
						
							| 422 | 396 | simprbi | ⊢ ( ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) )  →  ∀ 𝑘  ∈  𝑊 ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 )  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 423 | 422 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  →  ∀ 𝑘  ∈  𝑊 ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 )  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 424 |  | fveq2 | ⊢ ( 𝑘  =  𝑍  →  ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 )  =  ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑍 ) ) | 
						
							| 425 |  | fveq2 | ⊢ ( 𝑘  =  𝑍  →  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) ) | 
						
							| 426 |  | fveq2 | ⊢ ( 𝑘  =  𝑍  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 )  =  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) | 
						
							| 427 | 425 426 | oveq12d | ⊢ ( 𝑘  =  𝑍  →  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) )  =  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ) | 
						
							| 428 | 424 427 | eleq12d | ⊢ ( 𝑘  =  𝑍  →  ( ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 )  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) )  ↔  ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑍 )  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ) ) | 
						
							| 429 | 428 | rspcva | ⊢ ( ( 𝑍  ∈  𝑊  ∧  ∀ 𝑘  ∈  𝑊 ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑘 )  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  →  ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑍 )  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ) | 
						
							| 430 | 421 423 429 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  →  ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑍 )  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ) | 
						
							| 431 | 420 430 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  →  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ) | 
						
							| 432 | 161 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( 𝐽 ‘ 𝑗 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 433 | 77 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  =  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ) | 
						
							| 434 | 432 433 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( 𝐽 ‘ 𝑗 )  =  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ) | 
						
							| 435 | 434 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 )  =  ( ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ‘ 𝑘 ) ) | 
						
							| 436 | 404 405 431 435 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  →  ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 )  =  ( ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ‘ 𝑘 ) ) | 
						
							| 437 | 436 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  ∧  𝑘  ∈  𝑌 )  →  ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 )  =  ( ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ‘ 𝑘 ) ) | 
						
							| 438 |  | fvres | ⊢ ( 𝑘  ∈  𝑌  →  ( ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) | 
						
							| 439 | 438 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  ∧  𝑘  ∈  𝑌 )  →  ( ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) | 
						
							| 440 | 437 439 | eqtrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  ∧  𝑘  ∈  𝑌 )  →  ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) ) | 
						
							| 441 | 120 | elexd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  ∈  V ) | 
						
							| 442 | 13 | fvmpt2 | ⊢ ( ( 𝑗  ∈  ℕ  ∧  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  ∈  V )  →  ( 𝐾 ‘ 𝑗 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 443 | 151 441 442 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐾 ‘ 𝑗 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 444 | 443 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( 𝐾 ‘ 𝑗 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 445 | 107 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  =  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ) | 
						
							| 446 | 444 445 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( 𝐾 ‘ 𝑗 )  =  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ) | 
						
							| 447 | 446 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ  ∧  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  →  ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 )  =  ( ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ‘ 𝑘 ) ) | 
						
							| 448 | 404 405 431 447 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  →  ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 )  =  ( ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ‘ 𝑘 ) ) | 
						
							| 449 | 448 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  ∧  𝑘  ∈  𝑌 )  →  ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 )  =  ( ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ‘ 𝑘 ) ) | 
						
							| 450 |  | fvres | ⊢ ( 𝑘  ∈  𝑌  →  ( ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ‘ 𝑘 )  =  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) | 
						
							| 451 | 450 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  ∧  𝑘  ∈  𝑌 )  →  ( ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ‘ 𝑘 )  =  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) | 
						
							| 452 | 449 451 | eqtrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  ∧  𝑘  ∈  𝑌 )  →  ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 )  =  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) | 
						
							| 453 | 440 452 | oveq12d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  ∧  𝑘  ∈  𝑌 )  →  ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) )  =  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 454 | 453 | eqcomd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  ∧  𝑘  ∈  𝑌 )  →  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) )  =  ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 455 | 403 454 | eleqtrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  ∧  𝑘  ∈  𝑌 )  →  ( 𝑥 ‘ 𝑘 )  ∈  ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 456 | 455 | ex | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  →  ( 𝑘  ∈  𝑌  →  ( 𝑥 ‘ 𝑘 )  ∈  ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) | 
						
							| 457 | 387 456 | ralrimi | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  →  ∀ 𝑘  ∈  𝑌 ( 𝑥 ‘ 𝑘 )  ∈  ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 458 | 381 457 | jca | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  →  ( 𝑥  Fn  𝑌  ∧  ∀ 𝑘  ∈  𝑌 ( 𝑥 ‘ 𝑘 )  ∈  ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) | 
						
							| 459 | 322 | elixp | ⊢ ( 𝑥  ∈  X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) )  ↔  ( 𝑥  Fn  𝑌  ∧  ∀ 𝑘  ∈  𝑌 ( 𝑥 ‘ 𝑘 )  ∈  ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) | 
						
							| 460 | 458 459 | sylibr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) ) )  →  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 461 | 460 | ex | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) )  →  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) | 
						
							| 462 | 461 | reximdva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  ( ∃ 𝑗  ∈  ℕ ( 𝑂 ‘ 𝑥 )  ∈  X 𝑘  ∈  𝑊 ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑘 ) )  →  ∃ 𝑗  ∈  ℕ 𝑥  ∈  X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) | 
						
							| 463 | 378 462 | mpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  ∃ 𝑗  ∈  ℕ 𝑥  ∈  X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 464 |  | eliun | ⊢ ( 𝑥  ∈  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) )  ↔  ∃ 𝑗  ∈  ℕ 𝑥  ∈  X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 465 | 463 464 | sylibr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  →  𝑥  ∈  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 466 | 465 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) 𝑥  ∈  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 467 |  | dfss3 | ⊢ ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) )  ↔  ∀ 𝑥  ∈  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) 𝑥  ∈  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 468 | 466 467 | sylibr | ⊢ ( 𝜑  →  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 469 |  | ovexd | ⊢ ( 𝜑  →  ( ℝ  ↑m  𝑌 )  ∈  V ) | 
						
							| 470 | 237 | a1i | ⊢ ( 𝜑  →  ℕ  ∈  V ) | 
						
							| 471 | 469 470 | elmapd | ⊢ ( 𝜑  →  ( 𝐾  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ )  ↔  𝐾 : ℕ ⟶ ( ℝ  ↑m  𝑌 ) ) ) | 
						
							| 472 | 121 471 | mpbird | ⊢ ( 𝜑  →  𝐾  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ) | 
						
							| 473 | 469 470 | elmapd | ⊢ ( 𝜑  →  ( 𝐽  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ )  ↔  𝐽 : ℕ ⟶ ( ℝ  ↑m  𝑌 ) ) ) | 
						
							| 474 | 103 473 | mpbird | ⊢ ( 𝜑  →  𝐽  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ) | 
						
							| 475 | 97 87 | elmapd | ⊢ ( 𝜑  →  ( ( 𝐵  ↾  𝑌 )  ∈  ( ℝ  ↑m  𝑌 )  ↔  ( 𝐵  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) ) | 
						
							| 476 | 213 475 | mpbird | ⊢ ( 𝜑  →  ( 𝐵  ↾  𝑌 )  ∈  ( ℝ  ↑m  𝑌 ) ) | 
						
							| 477 | 97 87 | elmapd | ⊢ ( 𝜑  →  ( ( 𝐴  ↾  𝑌 )  ∈  ( ℝ  ↑m  𝑌 )  ↔  ( 𝐴  ↾  𝑌 ) : 𝑌 ⟶ ℝ ) ) | 
						
							| 478 | 212 477 | mpbird | ⊢ ( 𝜑  →  ( 𝐴  ↾  𝑌 )  ∈  ( ℝ  ↑m  𝑌 ) ) | 
						
							| 479 |  | fveq1 | ⊢ ( 𝑒  =  ( 𝐴  ↾  𝑌 )  →  ( 𝑒 ‘ 𝑘 )  =  ( ( 𝐴  ↾  𝑌 ) ‘ 𝑘 ) ) | 
						
							| 480 | 479 | adantr | ⊢ ( ( 𝑒  =  ( 𝐴  ↾  𝑌 )  ∧  𝑘  ∈  𝑌 )  →  ( 𝑒 ‘ 𝑘 )  =  ( ( 𝐴  ↾  𝑌 ) ‘ 𝑘 ) ) | 
						
							| 481 | 259 | adantl | ⊢ ( ( 𝑒  =  ( 𝐴  ↾  𝑌 )  ∧  𝑘  ∈  𝑌 )  →  ( ( 𝐴  ↾  𝑌 ) ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 482 | 480 481 | eqtrd | ⊢ ( ( 𝑒  =  ( 𝐴  ↾  𝑌 )  ∧  𝑘  ∈  𝑌 )  →  ( 𝑒 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 483 | 482 | oveq1d | ⊢ ( ( 𝑒  =  ( 𝐴  ↾  𝑌 )  ∧  𝑘  ∈  𝑌 )  →  ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  =  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 484 | 483 | ixpeq2dva | ⊢ ( 𝑒  =  ( 𝐴  ↾  𝑌 )  →  X 𝑘  ∈  𝑌 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  =  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 485 | 484 | sseq1d | ⊢ ( 𝑒  =  ( 𝐴  ↾  𝑌 )  →  ( X 𝑘  ∈  𝑌 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  ↔  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) | 
						
							| 486 |  | oveq1 | ⊢ ( 𝑒  =  ( 𝐴  ↾  𝑌 )  →  ( 𝑒 ( 𝐿 ‘ 𝑌 ) 𝑓 )  =  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) 𝑓 ) ) | 
						
							| 487 | 486 | breq1d | ⊢ ( 𝑒  =  ( 𝐴  ↾  𝑌 )  →  ( ( 𝑒 ( 𝐿 ‘ 𝑌 ) 𝑓 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) )  ↔  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) 𝑓 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 488 | 485 487 | imbi12d | ⊢ ( 𝑒  =  ( 𝐴  ↾  𝑌 )  →  ( ( X 𝑘  ∈  𝑌 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( 𝑒 ( 𝐿 ‘ 𝑌 ) 𝑓 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) )  ↔  ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) 𝑓 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 489 | 488 | ralbidv | ⊢ ( 𝑒  =  ( 𝐴  ↾  𝑌 )  →  ( ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( 𝑒 ( 𝐿 ‘ 𝑌 ) 𝑓 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) )  ↔  ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) 𝑓 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 490 | 489 | ralbidv | ⊢ ( 𝑒  =  ( 𝐴  ↾  𝑌 )  →  ( ∀ 𝑔  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( 𝑒 ( 𝐿 ‘ 𝑌 ) 𝑓 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) )  ↔  ∀ 𝑔  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) 𝑓 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 491 | 490 | ralbidv | ⊢ ( 𝑒  =  ( 𝐴  ↾  𝑌 )  →  ( ∀ 𝑓  ∈  ( ℝ  ↑m  𝑌 ) ∀ 𝑔  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( 𝑒 ( 𝐿 ‘ 𝑌 ) 𝑓 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) )  ↔  ∀ 𝑓  ∈  ( ℝ  ↑m  𝑌 ) ∀ 𝑔  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) 𝑓 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 492 | 491 | rspcva | ⊢ ( ( ( 𝐴  ↾  𝑌 )  ∈  ( ℝ  ↑m  𝑌 )  ∧  ∀ 𝑒  ∈  ( ℝ  ↑m  𝑌 ) ∀ 𝑓  ∈  ( ℝ  ↑m  𝑌 ) ∀ 𝑔  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝑒 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( 𝑒 ( 𝐿 ‘ 𝑌 ) 𝑓 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) )  →  ∀ 𝑓  ∈  ( ℝ  ↑m  𝑌 ) ∀ 𝑔  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) 𝑓 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 493 | 478 22 492 | syl2anc | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  ( ℝ  ↑m  𝑌 ) ∀ 𝑔  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) 𝑓 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 494 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝐵  ↾  𝑌 )  →  ( 𝑓 ‘ 𝑘 )  =  ( ( 𝐵  ↾  𝑌 ) ‘ 𝑘 ) ) | 
						
							| 495 | 494 | adantr | ⊢ ( ( 𝑓  =  ( 𝐵  ↾  𝑌 )  ∧  𝑘  ∈  𝑌 )  →  ( 𝑓 ‘ 𝑘 )  =  ( ( 𝐵  ↾  𝑌 ) ‘ 𝑘 ) ) | 
						
							| 496 | 260 | adantl | ⊢ ( ( 𝑓  =  ( 𝐵  ↾  𝑌 )  ∧  𝑘  ∈  𝑌 )  →  ( ( 𝐵  ↾  𝑌 ) ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 497 | 495 496 | eqtrd | ⊢ ( ( 𝑓  =  ( 𝐵  ↾  𝑌 )  ∧  𝑘  ∈  𝑌 )  →  ( 𝑓 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 498 | 497 | oveq2d | ⊢ ( ( 𝑓  =  ( 𝐵  ↾  𝑌 )  ∧  𝑘  ∈  𝑌 )  →  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  =  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 499 | 498 | ixpeq2dva | ⊢ ( 𝑓  =  ( 𝐵  ↾  𝑌 )  →  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  =  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 500 | 499 | sseq1d | ⊢ ( 𝑓  =  ( 𝐵  ↾  𝑌 )  →  ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  ↔  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) | 
						
							| 501 |  | oveq2 | ⊢ ( 𝑓  =  ( 𝐵  ↾  𝑌 )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) 𝑓 )  =  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) ) ) | 
						
							| 502 | 501 | breq1d | ⊢ ( 𝑓  =  ( 𝐵  ↾  𝑌 )  →  ( ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) 𝑓 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) )  ↔  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 503 | 500 502 | imbi12d | ⊢ ( 𝑓  =  ( 𝐵  ↾  𝑌 )  →  ( ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) 𝑓 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) )  ↔  ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 504 | 503 | ralbidv | ⊢ ( 𝑓  =  ( 𝐵  ↾  𝑌 )  →  ( ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) 𝑓 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) )  ↔  ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 505 | 504 | ralbidv | ⊢ ( 𝑓  =  ( 𝐵  ↾  𝑌 )  →  ( ∀ 𝑔  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) 𝑓 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) )  ↔  ∀ 𝑔  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 506 | 505 | rspcva | ⊢ ( ( ( 𝐵  ↾  𝑌 )  ∈  ( ℝ  ↑m  𝑌 )  ∧  ∀ 𝑓  ∈  ( ℝ  ↑m  𝑌 ) ∀ 𝑔  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝑓 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) 𝑓 )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) )  →  ∀ 𝑔  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 507 | 476 493 506 | syl2anc | ⊢ ( 𝜑  →  ∀ 𝑔  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 508 |  | fveq1 | ⊢ ( 𝑔  =  𝐽  →  ( 𝑔 ‘ 𝑗 )  =  ( 𝐽 ‘ 𝑗 ) ) | 
						
							| 509 | 508 | fveq1d | ⊢ ( 𝑔  =  𝐽  →  ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 )  =  ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) ) | 
						
							| 510 | 509 | oveq1d | ⊢ ( 𝑔  =  𝐽  →  ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  =  ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 511 | 510 | ixpeq2dv | ⊢ ( 𝑔  =  𝐽  →  X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  =  X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 512 | 511 | iuneq2d | ⊢ ( 𝑔  =  𝐽  →  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  =  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 513 | 512 | sseq2d | ⊢ ( 𝑔  =  𝐽  →  ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  ↔  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) | 
						
							| 514 | 508 | oveq1d | ⊢ ( 𝑔  =  𝐽  →  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) )  =  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) | 
						
							| 515 | 514 | mpteq2dv | ⊢ ( 𝑔  =  𝐽  →  ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) | 
						
							| 516 | 515 | fveq2d | ⊢ ( 𝑔  =  𝐽  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) )  =  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) | 
						
							| 517 | 516 | breq2d | ⊢ ( 𝑔  =  𝐽  →  ( ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) )  ↔  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 518 | 513 517 | imbi12d | ⊢ ( 𝑔  =  𝐽  →  ( ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) )  ↔  ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 519 | 518 | ralbidv | ⊢ ( 𝑔  =  𝐽  →  ( ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) )  ↔  ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 520 | 519 | rspcva | ⊢ ( ( 𝐽  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ )  ∧  ∀ 𝑔  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝑔 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝑔 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) )  →  ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 521 | 474 507 520 | syl2anc | ⊢ ( 𝜑  →  ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 522 |  | fveq1 | ⊢ ( ℎ  =  𝐾  →  ( ℎ ‘ 𝑗 )  =  ( 𝐾 ‘ 𝑗 ) ) | 
						
							| 523 | 522 | fveq1d | ⊢ ( ℎ  =  𝐾  →  ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 )  =  ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) | 
						
							| 524 | 523 | oveq2d | ⊢ ( ℎ  =  𝐾  →  ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  =  ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 525 | 524 | ixpeq2dv | ⊢ ( ℎ  =  𝐾  →  X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  =  X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 526 | 525 | iuneq2d | ⊢ ( ℎ  =  𝐾  →  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  =  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) ) | 
						
							| 527 | 526 | sseq2d | ⊢ ( ℎ  =  𝐾  →  ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  ↔  X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) | 
						
							| 528 | 522 | oveq2d | ⊢ ( ℎ  =  𝐾  →  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) )  =  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) | 
						
							| 529 | 528 | mpteq2dv | ⊢ ( ℎ  =  𝐾  →  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) ) | 
						
							| 530 | 529 | fveq2d | ⊢ ( ℎ  =  𝐾  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) )  =  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) ) ) | 
						
							| 531 | 530 | breq2d | ⊢ ( ℎ  =  𝐾  →  ( ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) )  ↔  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 532 | 527 531 | imbi12d | ⊢ ( ℎ  =  𝐾  →  ( ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) )  ↔  ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 533 | 532 | rspcva | ⊢ ( ( 𝐾  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ )  ∧  ∀ ℎ  ∈  ( ( ℝ  ↑m  𝑌 )  ↑m  ℕ ) ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( ℎ ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( ℎ ‘ 𝑗 ) ) ) ) ) )  →  ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 534 | 472 521 533 | syl2anc | ⊢ ( 𝜑  →  ( X 𝑘  ∈  𝑌 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  𝑌 ( ( ( 𝐽 ‘ 𝑗 ) ‘ 𝑘 ) [,) ( ( 𝐾 ‘ 𝑗 ) ‘ 𝑘 ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 535 | 468 534 | mpd | ⊢ ( 𝜑  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) ) ) | 
						
							| 536 |  | idd | ⊢ ( 𝜑  →  ( ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 537 | 535 536 | mpd | ⊢ ( 𝜑  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) ) ) | 
						
							| 538 | 537 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) ) ) | 
						
							| 539 | 62 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑌  ≠  ∅ )  ∧  𝑗  ∈  ℕ )  →  ( 𝑃 ‘ 𝑗 )  =  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) | 
						
							| 540 | 539 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) )  =  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) ) | 
						
							| 541 | 540 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  =  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) ) ) | 
						
							| 542 | 258 541 | breq12d | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  ( 𝐺  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  ↔  ( ( 𝐴  ↾  𝑌 ) ( 𝐿 ‘ 𝑌 ) ( 𝐵  ↾  𝑌 ) )  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 543 | 538 542 | mpbird | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  𝐺  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 544 | 543 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑌  ≠  ∅ )  ∧  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  ∈  ℝ )  →  𝐺  ≤  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 545 | 247 249 250 289 544 | ltletrd | ⊢ ( ( ( 𝜑  ∧  𝑌  ≠  ∅ )  ∧  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  ∈  ℝ )  →  ( 𝐺  /  ( 1  +  𝐸 ) )  <  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 546 | 235 246 545 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑌  ≠  ∅ )  ∧  ¬  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) )  =  +∞ )  →  ( 𝐺  /  ( 1  +  𝐸 ) )  <  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 547 | 234 546 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  ( 𝐺  /  ( 1  +  𝐸 ) )  <  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 548 | 207 208 209 210 227 547 | sge0uzfsumgt | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  ∃ 𝑚  ∈  ℕ ( 𝐺  /  ( 1  +  𝐸 ) )  <  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) | 
						
							| 549 | 226 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐺  /  ( 1  +  𝐸 ) )  <  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) )  →  ( 𝐺  /  ( 1  +  𝐸 ) )  ∈  ℝ ) | 
						
							| 550 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝑚 )  ∈  Fin ) | 
						
							| 551 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑚 ) )  →  𝜑 ) | 
						
							| 552 |  | elfznn | ⊢ ( 𝑗  ∈  ( 1 ... 𝑚 )  →  𝑗  ∈  ℕ ) | 
						
							| 553 | 552 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑚 ) )  →  𝑗  ∈  ℕ ) | 
						
							| 554 | 50 126 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑃 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 555 | 551 553 554 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑚 ) )  →  ( 𝑃 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 556 | 550 555 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 557 | 556 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐺  /  ( 1  +  𝐸 ) )  <  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) )  →  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 558 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝐺  /  ( 1  +  𝐸 ) )  <  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) )  →  ( 𝐺  /  ( 1  +  𝐸 ) )  <  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) | 
						
							| 559 | 549 557 558 | ltled | ⊢ ( ( 𝜑  ∧  ( 𝐺  /  ( 1  +  𝐸 ) )  <  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) )  →  ( 𝐺  /  ( 1  +  𝐸 ) )  ≤  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) | 
						
							| 560 | 216 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐺  /  ( 1  +  𝐸 ) )  <  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) )  →  𝐺  ∈  ℝ ) | 
						
							| 561 | 222 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐺  /  ( 1  +  𝐸 ) )  <  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) )  →  ( 1  +  𝐸 )  ∈  ℝ+ ) | 
						
							| 562 | 560 557 561 | ledivmuld | ⊢ ( ( 𝜑  ∧  ( 𝐺  /  ( 1  +  𝐸 ) )  <  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) )  →  ( ( 𝐺  /  ( 1  +  𝐸 ) )  ≤  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 )  ↔  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 563 | 559 562 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝐺  /  ( 1  +  𝐸 ) )  <  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) )  →  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 564 | 563 | ex | ⊢ ( 𝜑  →  ( ( 𝐺  /  ( 1  +  𝐸 ) )  <  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 )  →  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 565 | 564 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝐺  /  ( 1  +  𝐸 ) )  <  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 )  →  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 566 | 565 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑌  ≠  ∅ )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝐺  /  ( 1  +  𝐸 ) )  <  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 )  →  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 567 | 566 | reximdva | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  ( ∃ 𝑚  ∈  ℕ ( 𝐺  /  ( 1  +  𝐸 ) )  <  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 )  →  ∃ 𝑚  ∈  ℕ 𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 568 | 548 567 | mpd | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  ∃ 𝑚  ∈  ℕ 𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 569 | 204 206 568 | syl2anc | ⊢ ( ( 𝜑  ∧  ¬  𝑌  =  ∅ )  →  ∃ 𝑚  ∈  ℕ 𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 570 | 203 569 | pm2.61dan | ⊢ ( 𝜑  →  ∃ 𝑚  ∈  ℕ 𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 571 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) )  →  𝑋  ∈  Fin ) | 
						
							| 572 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) )  →  𝑌  ⊆  𝑋 ) | 
						
							| 573 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) )  →  𝑍  ∈  ( 𝑋  ∖  𝑌 ) ) | 
						
							| 574 | 6 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) )  →  𝐴 : 𝑊 ⟶ ℝ ) | 
						
							| 575 | 7 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) )  →  𝐵 : 𝑊 ⟶ ℝ ) | 
						
							| 576 | 10 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) )  →  𝐶 : ℕ ⟶ ( ℝ  ↑m  𝑊 ) ) | 
						
							| 577 |  | eqid | ⊢ ( 𝑦  ∈  𝑌  ↦  0 )  =  ( 𝑦  ∈  𝑌  ↦  0 ) | 
						
							| 578 |  | eqid | ⊢ ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) )  =  ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) | 
						
							| 579 | 12 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) )  →  𝐷 : ℕ ⟶ ( ℝ  ↑m  𝑊 ) ) | 
						
							| 580 |  | eqid | ⊢ ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) )  =  ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) | 
						
							| 581 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐶 ‘ 𝑖 )  =  ( 𝐶 ‘ 𝑗 ) ) | 
						
							| 582 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐷 ‘ 𝑖 )  =  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 583 | 581 582 | oveq12d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) )  =  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 584 | 583 | cbvmptv | ⊢ ( 𝑖  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 585 | 584 | fveq2i | ⊢ ( Σ^ ‘ ( 𝑖  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) )  =  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 586 | 585 14 | eqeltrid | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑖  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) )  ∈  ℝ ) | 
						
							| 587 | 586 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) )  →  ( Σ^ ‘ ( 𝑖  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( 𝐷 ‘ 𝑖 ) ) ) )  ∈  ℝ ) | 
						
							| 588 |  | eleq1w | ⊢ ( 𝑗  =  𝑖  →  ( 𝑗  ∈  𝑌  ↔  𝑖  ∈  𝑌 ) ) | 
						
							| 589 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑐 ‘ 𝑗 )  =  ( 𝑐 ‘ 𝑖 ) ) | 
						
							| 590 | 589 | breq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥  ↔  ( 𝑐 ‘ 𝑖 )  ≤  𝑥 ) ) | 
						
							| 591 | 590 589 | ifbieq1d | ⊢ ( 𝑗  =  𝑖  →  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 )  =  if ( ( 𝑐 ‘ 𝑖 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑖 ) ,  𝑥 ) ) | 
						
							| 592 | 588 589 591 | ifbieq12d | ⊢ ( 𝑗  =  𝑖  →  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) )  =  if ( 𝑖  ∈  𝑌 ,  ( 𝑐 ‘ 𝑖 ) ,  if ( ( 𝑐 ‘ 𝑖 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑖 ) ,  𝑥 ) ) ) | 
						
							| 593 | 592 | cbvmptv | ⊢ ( 𝑗  ∈  𝑊  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) ) )  =  ( 𝑖  ∈  𝑊  ↦  if ( 𝑖  ∈  𝑌 ,  ( 𝑐 ‘ 𝑖 ) ,  if ( ( 𝑐 ‘ 𝑖 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑖 ) ,  𝑥 ) ) ) | 
						
							| 594 | 593 | mpteq2i | ⊢ ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( 𝑗  ∈  𝑊  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) ) ) )  =  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( 𝑖  ∈  𝑊  ↦  if ( 𝑖  ∈  𝑌 ,  ( 𝑐 ‘ 𝑖 ) ,  if ( ( 𝑐 ‘ 𝑖 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑖 ) ,  𝑥 ) ) ) ) | 
						
							| 595 | 594 | mpteq2i | ⊢ ( 𝑥  ∈  ℝ  ↦  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( 𝑗  ∈  𝑊  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) ) ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( 𝑖  ∈  𝑊  ↦  if ( 𝑖  ∈  𝑌 ,  ( 𝑐 ‘ 𝑖 ) ,  if ( ( 𝑐 ‘ 𝑖 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑖 ) ,  𝑥 ) ) ) ) ) | 
						
							| 596 | 15 595 | eqtri | ⊢ 𝐻  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑐  ∈  ( ℝ  ↑m  𝑊 )  ↦  ( 𝑖  ∈  𝑊  ↦  if ( 𝑖  ∈  𝑌 ,  ( 𝑐 ‘ 𝑖 ) ,  if ( ( 𝑐 ‘ 𝑖 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑖 ) ,  𝑥 ) ) ) ) ) | 
						
							| 597 | 17 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) )  →  𝐸  ∈  ℝ+ ) | 
						
							| 598 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝐶 ‘ 𝑗 )  =  ( 𝐶 ‘ 𝑖 ) ) | 
						
							| 599 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝐷 ‘ 𝑗 )  =  ( 𝐷 ‘ 𝑖 ) ) | 
						
							| 600 | 599 | fveq2d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) )  =  ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑖 ) ) ) | 
						
							| 601 | 598 600 | oveq12d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) )  =  ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑖 ) ) ) ) | 
						
							| 602 | 601 | cbvmptv | ⊢ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) )  =  ( 𝑖  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑖 ) ) ) ) | 
						
							| 603 | 602 | fveq2i | ⊢ ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) )  =  ( Σ^ ‘ ( 𝑖  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑖 ) ) ) ) ) | 
						
							| 604 | 603 | oveq2i | ⊢ ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  =  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑖  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 605 | 604 | breq2i | ⊢ ( ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  ↔  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑖  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 606 | 605 | rabbii | ⊢ { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑗 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) }  =  { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑖  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑖 ) ) ) ) ) ) } | 
						
							| 607 | 18 606 | eqtri | ⊢ 𝑈  =  { 𝑧  ∈  ( ( 𝐴 ‘ 𝑍 ) [,] ( 𝐵 ‘ 𝑍 ) )  ∣  ( 𝐺  ·  ( 𝑧  −  ( 𝐴 ‘ 𝑍 ) ) )  ≤  ( ( 1  +  𝐸 )  ·  ( Σ^ ‘ ( 𝑖  ∈  ℕ  ↦  ( ( 𝐶 ‘ 𝑖 ) ( 𝐿 ‘ 𝑊 ) ( ( 𝐻 ‘ 𝑧 ) ‘ ( 𝐷 ‘ 𝑖 ) ) ) ) ) ) } | 
						
							| 608 | 19 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) )  →  𝑆  ∈  𝑈 ) | 
						
							| 609 | 20 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) )  →  𝑆  <  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 610 |  | eqid | ⊢ ( 𝑖  ∈  ℕ  ↦  ( ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ) )  =  ( 𝑖  ∈  ℕ  ↦  ( ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ) ) | 
						
							| 611 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 612 |  | id | ⊢ ( 𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) )  →  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 613 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑃 ‘ 𝑗 )  =  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 614 | 613 | cbvsumv | ⊢ Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 )  =  Σ 𝑖  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑖 ) | 
						
							| 615 | 614 | oveq2i | ⊢ ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) )  =  ( ( 1  +  𝐸 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 616 | 615 | a1i | ⊢ ( 𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) )  →  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) )  =  ( ( 1  +  𝐸 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 617 | 612 616 | breqtrd | ⊢ ( 𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) )  →  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 618 | 617 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) )  →  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 619 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  𝜑 ) | 
						
							| 620 |  | elfznn | ⊢ ( 𝑖  ∈  ( 1 ... 𝑚 )  →  𝑖  ∈  ℕ ) | 
						
							| 621 | 620 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  𝑖  ∈  ℕ ) | 
						
							| 622 |  | eleq1w | ⊢ ( 𝑗  =  𝑖  →  ( 𝑗  ∈  ℕ  ↔  𝑖  ∈  ℕ ) ) | 
						
							| 623 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝐽 ‘ 𝑗 )  =  ( 𝐽 ‘ 𝑖 ) ) | 
						
							| 624 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝐾 ‘ 𝑗 )  =  ( 𝐾 ‘ 𝑖 ) ) | 
						
							| 625 | 623 624 | oveq12d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) )  =  ( ( 𝐽 ‘ 𝑖 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑖 ) ) ) | 
						
							| 626 | 613 625 | eqeq12d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑃 ‘ 𝑗 )  =  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) )  ↔  ( 𝑃 ‘ 𝑖 )  =  ( ( 𝐽 ‘ 𝑖 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑖 ) ) ) ) | 
						
							| 627 | 622 626 | imbi12d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑗  ∈  ℕ  →  ( 𝑃 ‘ 𝑗 )  =  ( ( 𝐽 ‘ 𝑗 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑗 ) ) )  ↔  ( 𝑖  ∈  ℕ  →  ( 𝑃 ‘ 𝑖 )  =  ( ( 𝐽 ‘ 𝑖 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑖 ) ) ) ) ) | 
						
							| 628 | 627 62 | chvarvv | ⊢ ( 𝑖  ∈  ℕ  →  ( 𝑃 ‘ 𝑖 )  =  ( ( 𝐽 ‘ 𝑖 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑖 ) ) ) | 
						
							| 629 | 628 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 𝑃 ‘ 𝑖 )  =  ( ( 𝐽 ‘ 𝑖 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑖 ) ) ) | 
						
							| 630 | 622 | anbi2d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ↔  ( 𝜑  ∧  𝑖  ∈  ℕ ) ) ) | 
						
							| 631 | 598 | fveq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 )  =  ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) ) | 
						
							| 632 | 599 | fveq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) | 
						
							| 633 | 631 632 | oveq12d | ⊢ ( 𝑗  =  𝑖  →  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) )  =  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ) | 
						
							| 634 | 633 | eleq2d | ⊢ ( 𝑗  =  𝑖  →  ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) )  ↔  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ) ) | 
						
							| 635 | 598 | reseq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 )  =  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ) | 
						
							| 636 | 634 635 | ifbieq1d | ⊢ ( 𝑗  =  𝑖  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 637 | 623 636 | eqeq12d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝐽 ‘ 𝑗 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  ↔  ( 𝐽 ‘ 𝑖 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) ) ) | 
						
							| 638 | 630 637 | imbi12d | ⊢ ( 𝑗  =  𝑖  →  ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐽 ‘ 𝑗 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) )  ↔  ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 𝐽 ‘ 𝑖 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) ) ) ) | 
						
							| 639 | 638 161 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 𝐽 ‘ 𝑖 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 640 | 599 | reseq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 )  =  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ) | 
						
							| 641 | 634 640 | ifbieq1d | ⊢ ( 𝑗  =  𝑖  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 642 | 624 641 | eqeq12d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝐾 ‘ 𝑗 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 )  ↔  ( 𝐾 ‘ 𝑖 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) ) ) | 
						
							| 643 | 630 642 | imbi12d | ⊢ ( 𝑗  =  𝑖  →  ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐾 ‘ 𝑗 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑗 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑗 )  ↾  𝑌 ) ,  𝐹 ) )  ↔  ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 𝐾 ‘ 𝑖 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) ) ) ) | 
						
							| 644 | 643 443 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 𝐾 ‘ 𝑖 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 645 | 639 644 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( 𝐽 ‘ 𝑖 ) ( 𝐿 ‘ 𝑌 ) ( 𝐾 ‘ 𝑖 ) )  =  ( if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) ( 𝐿 ‘ 𝑌 ) if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) ) ) | 
						
							| 646 | 629 645 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 𝑃 ‘ 𝑖 )  =  ( if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) ( 𝐿 ‘ 𝑌 ) if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) ) ) | 
						
							| 647 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  𝑖  ∈  ℕ ) | 
						
							| 648 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) )  ∈  V ) | 
						
							| 649 | 610 | fvmpt2 | ⊢ ( ( 𝑖  ∈  ℕ  ∧  ( ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) )  ∈  V )  →  ( ( 𝑖  ∈  ℕ  ↦  ( ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ) ) ‘ 𝑖 )  =  ( ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ) ) | 
						
							| 650 | 647 648 649 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( 𝑖  ∈  ℕ  ↦  ( ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ) ) ‘ 𝑖 )  =  ( ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ) ) | 
						
							| 651 |  | fvex | ⊢ ( 𝐶 ‘ 𝑖 )  ∈  V | 
						
							| 652 | 651 | resex | ⊢ ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 )  ∈  V | 
						
							| 653 | 652 | a1i | ⊢ ( 𝜑  →  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 )  ∈  V ) | 
						
							| 654 | 9 155 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑌  ↦  0 )  ∈  V ) | 
						
							| 655 | 653 654 | ifcld | ⊢ ( 𝜑  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) )  ∈  V ) | 
						
							| 656 | 655 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) )  ∈  V ) | 
						
							| 657 | 578 | fvmpt2 | ⊢ ( ( 𝑖  ∈  ℕ  ∧  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) )  ∈  V )  →  ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) | 
						
							| 658 | 647 656 657 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) | 
						
							| 659 | 9 | eqcomi | ⊢ ( 𝑦  ∈  𝑌  ↦  0 )  =  𝐹 | 
						
							| 660 |  | ifeq2 | ⊢ ( ( 𝑦  ∈  𝑌  ↦  0 )  =  𝐹  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 661 | 659 660 | ax-mp | ⊢ if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) | 
						
							| 662 | 661 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 663 | 658 662 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 664 |  | fvex | ⊢ ( 𝐷 ‘ 𝑖 )  ∈  V | 
						
							| 665 | 664 | resex | ⊢ ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 )  ∈  V | 
						
							| 666 | 665 | a1i | ⊢ ( 𝜑  →  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 )  ∈  V ) | 
						
							| 667 | 666 654 | ifcld | ⊢ ( 𝜑  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) )  ∈  V ) | 
						
							| 668 | 667 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) )  ∈  V ) | 
						
							| 669 | 580 | fvmpt2 | ⊢ ( ( 𝑖  ∈  ℕ  ∧  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) )  ∈  V )  →  ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) | 
						
							| 670 | 647 668 669 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) | 
						
							| 671 |  | biid | ⊢ ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) )  ↔  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ) | 
						
							| 672 | 671 659 | ifbieq2i | ⊢ if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) | 
						
							| 673 | 672 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 674 | 670 673 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 )  =  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) ) | 
						
							| 675 | 663 674 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) )  =  ( if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) ( 𝐿 ‘ 𝑌 ) if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) ) ) | 
						
							| 676 | 650 675 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( 𝑖  ∈  ℕ  ↦  ( ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ) ) ‘ 𝑖 )  =  ( if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) ( 𝐿 ‘ 𝑌 ) if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  𝐹 ) ) ) | 
						
							| 677 | 646 676 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 𝑃 ‘ 𝑖 )  =  ( ( 𝑖  ∈  ℕ  ↦  ( ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ) ) ‘ 𝑖 ) ) | 
						
							| 678 | 619 621 677 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  ( 𝑃 ‘ 𝑖 )  =  ( ( 𝑖  ∈  ℕ  ↦  ( ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ) ) ‘ 𝑖 ) ) | 
						
							| 679 | 678 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  ( 𝑃 ‘ 𝑖 )  =  ( ( 𝑖  ∈  ℕ  ↦  ( ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ) ) ‘ 𝑖 ) ) | 
						
							| 680 | 679 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) )  →  Σ 𝑖  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑖 )  =  Σ 𝑖  ∈  ( 1 ... 𝑚 ) ( ( 𝑖  ∈  ℕ  ↦  ( ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ) ) ‘ 𝑖 ) ) | 
						
							| 681 | 680 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) )  →  ( ( 1  +  𝐸 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑖 ) )  =  ( ( 1  +  𝐸 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑚 ) ( ( 𝑖  ∈  ℕ  ↦  ( ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ) ) ‘ 𝑖 ) ) ) | 
						
							| 682 | 618 681 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) )  →  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑚 ) ( ( 𝑖  ∈  ℕ  ↦  ( ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐶 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ( 𝐿 ‘ 𝑌 ) ( ( 𝑖  ∈  ℕ  ↦  if ( 𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ,  ( ( 𝐷 ‘ 𝑖 )  ↾  𝑌 ) ,  ( 𝑦  ∈  𝑌  ↦  0 ) ) ) ‘ 𝑖 ) ) ) ‘ 𝑖 ) ) ) | 
						
							| 683 |  | fveq2 | ⊢ ( 𝑗  =  ℎ  →  ( 𝐷 ‘ 𝑗 )  =  ( 𝐷 ‘ ℎ ) ) | 
						
							| 684 | 683 | fveq1d | ⊢ ( 𝑗  =  ℎ  →  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 )  =  ( ( 𝐷 ‘ ℎ ) ‘ 𝑍 ) ) | 
						
							| 685 | 684 | cbvmptv | ⊢ ( 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝑚 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) }  ↦  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) )  =  ( ℎ  ∈  { 𝑖  ∈  ( 1 ... 𝑚 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) }  ↦  ( ( 𝐷 ‘ ℎ ) ‘ 𝑍 ) ) | 
						
							| 686 | 685 | rneqi | ⊢ ran  ( 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝑚 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) }  ↦  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) )  =  ran  ( ℎ  ∈  { 𝑖  ∈  ( 1 ... 𝑚 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) }  ↦  ( ( 𝐷 ‘ ℎ ) ‘ 𝑍 ) ) | 
						
							| 687 |  | fveq2 | ⊢ ( ℎ  =  𝑖  →  ( 𝐶 ‘ ℎ )  =  ( 𝐶 ‘ 𝑖 ) ) | 
						
							| 688 | 687 | fveq1d | ⊢ ( ℎ  =  𝑖  →  ( ( 𝐶 ‘ ℎ ) ‘ 𝑍 )  =  ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) ) | 
						
							| 689 |  | fveq2 | ⊢ ( ℎ  =  𝑖  →  ( 𝐷 ‘ ℎ )  =  ( 𝐷 ‘ 𝑖 ) ) | 
						
							| 690 | 689 | fveq1d | ⊢ ( ℎ  =  𝑖  →  ( ( 𝐷 ‘ ℎ ) ‘ 𝑍 )  =  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) | 
						
							| 691 | 688 690 | oveq12d | ⊢ ( ℎ  =  𝑖  →  ( ( ( 𝐶 ‘ ℎ ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ ℎ ) ‘ 𝑍 ) )  =  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ) | 
						
							| 692 | 691 | eleq2d | ⊢ ( ℎ  =  𝑖  →  ( 𝑆  ∈  ( ( ( 𝐶 ‘ ℎ ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ ℎ ) ‘ 𝑍 ) )  ↔  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) ) ) | 
						
							| 693 | 692 | cbvrabv | ⊢ { ℎ  ∈  ( 1 ... 𝑚 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ ℎ ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ ℎ ) ‘ 𝑍 ) ) }  =  { 𝑖  ∈  ( 1 ... 𝑚 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) } | 
						
							| 694 | 693 | mpteq1i | ⊢ ( 𝑗  ∈  { ℎ  ∈  ( 1 ... 𝑚 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ ℎ ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ ℎ ) ‘ 𝑍 ) ) }  ↦  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) )  =  ( 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝑚 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) }  ↦  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) | 
						
							| 695 | 694 | rneqi | ⊢ ran  ( 𝑗  ∈  { ℎ  ∈  ( 1 ... 𝑚 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ ℎ ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ ℎ ) ‘ 𝑍 ) ) }  ↦  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) )  =  ran  ( 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝑚 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) }  ↦  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) | 
						
							| 696 | 695 | uneq2i | ⊢ ( { ( 𝐵 ‘ 𝑍 ) }  ∪  ran  ( 𝑗  ∈  { ℎ  ∈  ( 1 ... 𝑚 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ ℎ ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ ℎ ) ‘ 𝑍 ) ) }  ↦  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) )  =  ( { ( 𝐵 ‘ 𝑍 ) }  ∪  ran  ( 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝑚 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ 𝑖 ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑍 ) ) }  ↦  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ) | 
						
							| 697 |  | eqid | ⊢ inf ( ( { ( 𝐵 ‘ 𝑍 ) }  ∪  ran  ( 𝑗  ∈  { ℎ  ∈  ( 1 ... 𝑚 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ ℎ ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ ℎ ) ‘ 𝑍 ) ) }  ↦  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ) ,  ℝ ,   <  )  =  inf ( ( { ( 𝐵 ‘ 𝑍 ) }  ∪  ran  ( 𝑗  ∈  { ℎ  ∈  ( 1 ... 𝑚 )  ∣  𝑆  ∈  ( ( ( 𝐶 ‘ ℎ ) ‘ 𝑍 ) [,) ( ( 𝐷 ‘ ℎ ) ‘ 𝑍 ) ) }  ↦  ( ( 𝐷 ‘ 𝑗 ) ‘ 𝑍 ) ) ) ,  ℝ ,   <  ) | 
						
							| 698 | 1 571 572 573 5 574 575 576 577 578 579 580 587 596 16 597 607 608 609 610 611 682 686 696 697 | hoidmvlelem2 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) ) )  →  ∃ 𝑢  ∈  𝑈 𝑆  <  𝑢 ) | 
						
							| 699 | 698 | 3exp | ⊢ ( 𝜑  →  ( 𝑚  ∈  ℕ  →  ( 𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) )  →  ∃ 𝑢  ∈  𝑈 𝑆  <  𝑢 ) ) ) | 
						
							| 700 | 699 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  ℕ 𝐺  ≤  ( ( 1  +  𝐸 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑚 ) ( 𝑃 ‘ 𝑗 ) )  →  ∃ 𝑢  ∈  𝑈 𝑆  <  𝑢 ) ) | 
						
							| 701 | 570 700 | mpd | ⊢ ( 𝜑  →  ∃ 𝑢  ∈  𝑈 𝑆  <  𝑢 ) |