Step |
Hyp |
Ref |
Expression |
1 |
|
sge0uzfsumgt.p |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
sge0uzfsumgt.h |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
3 |
|
sge0uzfsumgt.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝐾 ) |
4 |
|
sge0uzfsumgt.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
5 |
|
sge0uzfsumgt.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
6 |
|
sge0uzfsumgt.l |
⊢ ( 𝜑 → 𝐶 < ( Σ^ ‘ ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) ) |
7 |
3
|
fvexi |
⊢ 𝑍 ∈ V |
8 |
7
|
a1i |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
9 |
1 8 4 5 6
|
sge0gtfsumgt |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) 𝐶 < Σ 𝑘 ∈ 𝑥 𝐵 ) |
10 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝐶 < Σ 𝑘 ∈ 𝑥 𝐵 ) → 𝐾 ∈ ℤ ) |
11 |
|
elpwinss |
⊢ ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) → 𝑥 ⊆ 𝑍 ) |
12 |
11
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝐶 < Σ 𝑘 ∈ 𝑥 𝐵 ) → 𝑥 ⊆ 𝑍 ) |
13 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) → 𝑥 ∈ Fin ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝐶 < Σ 𝑘 ∈ 𝑥 𝐵 ) → 𝑥 ∈ Fin ) |
15 |
10 3 12 14
|
uzfissfz |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝐶 < Σ 𝑘 ∈ 𝑥 𝐵 ) → ∃ 𝑚 ∈ 𝑍 𝑥 ⊆ ( 𝐾 ... 𝑚 ) ) |
16 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐶 < Σ 𝑘 ∈ 𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝐾 ... 𝑚 ) ) → 𝐶 ∈ ℝ ) |
17 |
|
nfv |
⊢ Ⅎ 𝑘 𝑥 ⊆ ( 𝐾 ... 𝑚 ) |
18 |
1 17
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑥 ⊆ ( 𝐾 ... 𝑚 ) ) |
19 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( 𝐾 ... 𝑚 ) ) → ( 𝐾 ... 𝑚 ) ∈ Fin ) |
20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( 𝐾 ... 𝑚 ) ) → 𝑥 ⊆ ( 𝐾 ... 𝑚 ) ) |
21 |
19 20
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( 𝐾 ... 𝑚 ) ) → 𝑥 ∈ Fin ) |
22 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ( 𝐾 ... 𝑚 ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝜑 ) |
23 |
20
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ( 𝐾 ... 𝑚 ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝑘 ∈ ( 𝐾 ... 𝑚 ) ) |
24 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
25 |
|
fzssuz |
⊢ ( 𝐾 ... 𝑚 ) ⊆ ( ℤ≥ ‘ 𝐾 ) |
26 |
25 3
|
sseqtrri |
⊢ ( 𝐾 ... 𝑚 ) ⊆ 𝑍 |
27 |
|
id |
⊢ ( 𝑘 ∈ ( 𝐾 ... 𝑚 ) → 𝑘 ∈ ( 𝐾 ... 𝑚 ) ) |
28 |
26 27
|
sselid |
⊢ ( 𝑘 ∈ ( 𝐾 ... 𝑚 ) → 𝑘 ∈ 𝑍 ) |
29 |
28 4
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... 𝑚 ) ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
30 |
24 29
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... 𝑚 ) ) → 𝐵 ∈ ℝ ) |
31 |
22 23 30
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ( 𝐾 ... 𝑚 ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝐵 ∈ ℝ ) |
32 |
18 21 31
|
fsumreclf |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( 𝐾 ... 𝑚 ) ) → Σ 𝑘 ∈ 𝑥 𝐵 ∈ ℝ ) |
33 |
32
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐶 < Σ 𝑘 ∈ 𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝐾 ... 𝑚 ) ) → Σ 𝑘 ∈ 𝑥 𝐵 ∈ ℝ ) |
34 |
|
fzfid |
⊢ ( 𝜑 → ( 𝐾 ... 𝑚 ) ∈ Fin ) |
35 |
1 34 30
|
fsumreclf |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐾 ... 𝑚 ) 𝐵 ∈ ℝ ) |
36 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐶 < Σ 𝑘 ∈ 𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝐾 ... 𝑚 ) ) → Σ 𝑘 ∈ ( 𝐾 ... 𝑚 ) 𝐵 ∈ ℝ ) |
37 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐶 < Σ 𝑘 ∈ 𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝐾 ... 𝑚 ) ) → 𝐶 < Σ 𝑘 ∈ 𝑥 𝐵 ) |
38 |
30
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ( 𝐾 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 𝐾 ... 𝑚 ) ) → 𝐵 ∈ ℝ ) |
39 |
|
0xr |
⊢ 0 ∈ ℝ* |
40 |
39
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... 𝑚 ) ) → 0 ∈ ℝ* ) |
41 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
42 |
41
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... 𝑚 ) ) → +∞ ∈ ℝ* ) |
43 |
|
icogelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → 0 ≤ 𝐵 ) |
44 |
40 42 29 43
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... 𝑚 ) ) → 0 ≤ 𝐵 ) |
45 |
44
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ( 𝐾 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 𝐾 ... 𝑚 ) ) → 0 ≤ 𝐵 ) |
46 |
18 19 38 45 20
|
fsumlessf |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( 𝐾 ... 𝑚 ) ) → Σ 𝑘 ∈ 𝑥 𝐵 ≤ Σ 𝑘 ∈ ( 𝐾 ... 𝑚 ) 𝐵 ) |
47 |
46
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐶 < Σ 𝑘 ∈ 𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝐾 ... 𝑚 ) ) → Σ 𝑘 ∈ 𝑥 𝐵 ≤ Σ 𝑘 ∈ ( 𝐾 ... 𝑚 ) 𝐵 ) |
48 |
16 33 36 37 47
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝐶 < Σ 𝑘 ∈ 𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝐾 ... 𝑚 ) ) → 𝐶 < Σ 𝑘 ∈ ( 𝐾 ... 𝑚 ) 𝐵 ) |
49 |
48
|
ex |
⊢ ( ( 𝜑 ∧ 𝐶 < Σ 𝑘 ∈ 𝑥 𝐵 ) → ( 𝑥 ⊆ ( 𝐾 ... 𝑚 ) → 𝐶 < Σ 𝑘 ∈ ( 𝐾 ... 𝑚 ) 𝐵 ) ) |
50 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐶 < Σ 𝑘 ∈ 𝑥 𝐵 ) ∧ 𝑚 ∈ 𝑍 ) → ( 𝑥 ⊆ ( 𝐾 ... 𝑚 ) → 𝐶 < Σ 𝑘 ∈ ( 𝐾 ... 𝑚 ) 𝐵 ) ) |
51 |
50
|
3adantl2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝐶 < Σ 𝑘 ∈ 𝑥 𝐵 ) ∧ 𝑚 ∈ 𝑍 ) → ( 𝑥 ⊆ ( 𝐾 ... 𝑚 ) → 𝐶 < Σ 𝑘 ∈ ( 𝐾 ... 𝑚 ) 𝐵 ) ) |
52 |
51
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝐶 < Σ 𝑘 ∈ 𝑥 𝐵 ) → ( ∃ 𝑚 ∈ 𝑍 𝑥 ⊆ ( 𝐾 ... 𝑚 ) → ∃ 𝑚 ∈ 𝑍 𝐶 < Σ 𝑘 ∈ ( 𝐾 ... 𝑚 ) 𝐵 ) ) |
53 |
15 52
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝐶 < Σ 𝑘 ∈ 𝑥 𝐵 ) → ∃ 𝑚 ∈ 𝑍 𝐶 < Σ 𝑘 ∈ ( 𝐾 ... 𝑚 ) 𝐵 ) |
54 |
53
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) → ( 𝐶 < Σ 𝑘 ∈ 𝑥 𝐵 → ∃ 𝑚 ∈ 𝑍 𝐶 < Σ 𝑘 ∈ ( 𝐾 ... 𝑚 ) 𝐵 ) ) ) |
55 |
54
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) 𝐶 < Σ 𝑘 ∈ 𝑥 𝐵 → ∃ 𝑚 ∈ 𝑍 𝐶 < Σ 𝑘 ∈ ( 𝐾 ... 𝑚 ) 𝐵 ) ) |
56 |
9 55
|
mpd |
⊢ ( 𝜑 → ∃ 𝑚 ∈ 𝑍 𝐶 < Σ 𝑘 ∈ ( 𝐾 ... 𝑚 ) 𝐵 ) |