| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0uzfsumgt.p | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | sge0uzfsumgt.h | ⊢ ( 𝜑  →  𝐾  ∈  ℤ ) | 
						
							| 3 |  | sge0uzfsumgt.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝐾 ) | 
						
							| 4 |  | sge0uzfsumgt.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐵  ∈  ( 0 [,) +∞ ) ) | 
						
							| 5 |  | sge0uzfsumgt.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 6 |  | sge0uzfsumgt.l | ⊢ ( 𝜑  →  𝐶  <  ( Σ^ ‘ ( 𝑘  ∈  𝑍  ↦  𝐵 ) ) ) | 
						
							| 7 | 3 | fvexi | ⊢ 𝑍  ∈  V | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  𝑍  ∈  V ) | 
						
							| 9 | 1 8 4 5 6 | sge0gtfsumgt | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin ) 𝐶  <  Σ 𝑘  ∈  𝑥 𝐵 ) | 
						
							| 10 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝐶  <  Σ 𝑘  ∈  𝑥 𝐵 )  →  𝐾  ∈  ℤ ) | 
						
							| 11 |  | elpwinss | ⊢ ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  →  𝑥  ⊆  𝑍 ) | 
						
							| 12 | 11 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝐶  <  Σ 𝑘  ∈  𝑥 𝐵 )  →  𝑥  ⊆  𝑍 ) | 
						
							| 13 |  | elinel2 | ⊢ ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  →  𝑥  ∈  Fin ) | 
						
							| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝐶  <  Σ 𝑘  ∈  𝑥 𝐵 )  →  𝑥  ∈  Fin ) | 
						
							| 15 | 10 3 12 14 | uzfissfz | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝐶  <  Σ 𝑘  ∈  𝑥 𝐵 )  →  ∃ 𝑚  ∈  𝑍 𝑥  ⊆  ( 𝐾 ... 𝑚 ) ) | 
						
							| 16 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐶  <  Σ 𝑘  ∈  𝑥 𝐵 )  ∧  𝑥  ⊆  ( 𝐾 ... 𝑚 ) )  →  𝐶  ∈  ℝ ) | 
						
							| 17 |  | nfv | ⊢ Ⅎ 𝑘 𝑥  ⊆  ( 𝐾 ... 𝑚 ) | 
						
							| 18 | 1 17 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑥  ⊆  ( 𝐾 ... 𝑚 ) ) | 
						
							| 19 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ( 𝐾 ... 𝑚 ) )  →  ( 𝐾 ... 𝑚 )  ∈  Fin ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ( 𝐾 ... 𝑚 ) )  →  𝑥  ⊆  ( 𝐾 ... 𝑚 ) ) | 
						
							| 21 | 19 20 | ssfid | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ( 𝐾 ... 𝑚 ) )  →  𝑥  ∈  Fin ) | 
						
							| 22 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  ( 𝐾 ... 𝑚 ) )  ∧  𝑘  ∈  𝑥 )  →  𝜑 ) | 
						
							| 23 | 20 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  ( 𝐾 ... 𝑚 ) )  ∧  𝑘  ∈  𝑥 )  →  𝑘  ∈  ( 𝐾 ... 𝑚 ) ) | 
						
							| 24 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 25 |  | fzssuz | ⊢ ( 𝐾 ... 𝑚 )  ⊆  ( ℤ≥ ‘ 𝐾 ) | 
						
							| 26 | 25 3 | sseqtrri | ⊢ ( 𝐾 ... 𝑚 )  ⊆  𝑍 | 
						
							| 27 |  | id | ⊢ ( 𝑘  ∈  ( 𝐾 ... 𝑚 )  →  𝑘  ∈  ( 𝐾 ... 𝑚 ) ) | 
						
							| 28 | 26 27 | sselid | ⊢ ( 𝑘  ∈  ( 𝐾 ... 𝑚 )  →  𝑘  ∈  𝑍 ) | 
						
							| 29 | 28 4 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐾 ... 𝑚 ) )  →  𝐵  ∈  ( 0 [,) +∞ ) ) | 
						
							| 30 | 24 29 | sselid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐾 ... 𝑚 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 31 | 22 23 30 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  ( 𝐾 ... 𝑚 ) )  ∧  𝑘  ∈  𝑥 )  →  𝐵  ∈  ℝ ) | 
						
							| 32 | 18 21 31 | fsumreclf | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ( 𝐾 ... 𝑚 ) )  →  Σ 𝑘  ∈  𝑥 𝐵  ∈  ℝ ) | 
						
							| 33 | 32 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐶  <  Σ 𝑘  ∈  𝑥 𝐵 )  ∧  𝑥  ⊆  ( 𝐾 ... 𝑚 ) )  →  Σ 𝑘  ∈  𝑥 𝐵  ∈  ℝ ) | 
						
							| 34 |  | fzfid | ⊢ ( 𝜑  →  ( 𝐾 ... 𝑚 )  ∈  Fin ) | 
						
							| 35 | 1 34 30 | fsumreclf | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝐾 ... 𝑚 ) 𝐵  ∈  ℝ ) | 
						
							| 36 | 35 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐶  <  Σ 𝑘  ∈  𝑥 𝐵 )  ∧  𝑥  ⊆  ( 𝐾 ... 𝑚 ) )  →  Σ 𝑘  ∈  ( 𝐾 ... 𝑚 ) 𝐵  ∈  ℝ ) | 
						
							| 37 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝐶  <  Σ 𝑘  ∈  𝑥 𝐵 )  ∧  𝑥  ⊆  ( 𝐾 ... 𝑚 ) )  →  𝐶  <  Σ 𝑘  ∈  𝑥 𝐵 ) | 
						
							| 38 | 30 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  ( 𝐾 ... 𝑚 ) )  ∧  𝑘  ∈  ( 𝐾 ... 𝑚 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 39 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 40 | 39 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐾 ... 𝑚 ) )  →  0  ∈  ℝ* ) | 
						
							| 41 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 42 | 41 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐾 ... 𝑚 ) )  →  +∞  ∈  ℝ* ) | 
						
							| 43 |  | icogelb | ⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  𝐵  ∈  ( 0 [,) +∞ ) )  →  0  ≤  𝐵 ) | 
						
							| 44 | 40 42 29 43 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐾 ... 𝑚 ) )  →  0  ≤  𝐵 ) | 
						
							| 45 | 44 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  ( 𝐾 ... 𝑚 ) )  ∧  𝑘  ∈  ( 𝐾 ... 𝑚 ) )  →  0  ≤  𝐵 ) | 
						
							| 46 | 18 19 38 45 20 | fsumlessf | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ( 𝐾 ... 𝑚 ) )  →  Σ 𝑘  ∈  𝑥 𝐵  ≤  Σ 𝑘  ∈  ( 𝐾 ... 𝑚 ) 𝐵 ) | 
						
							| 47 | 46 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐶  <  Σ 𝑘  ∈  𝑥 𝐵 )  ∧  𝑥  ⊆  ( 𝐾 ... 𝑚 ) )  →  Σ 𝑘  ∈  𝑥 𝐵  ≤  Σ 𝑘  ∈  ( 𝐾 ... 𝑚 ) 𝐵 ) | 
						
							| 48 | 16 33 36 37 47 | ltletrd | ⊢ ( ( ( 𝜑  ∧  𝐶  <  Σ 𝑘  ∈  𝑥 𝐵 )  ∧  𝑥  ⊆  ( 𝐾 ... 𝑚 ) )  →  𝐶  <  Σ 𝑘  ∈  ( 𝐾 ... 𝑚 ) 𝐵 ) | 
						
							| 49 | 48 | ex | ⊢ ( ( 𝜑  ∧  𝐶  <  Σ 𝑘  ∈  𝑥 𝐵 )  →  ( 𝑥  ⊆  ( 𝐾 ... 𝑚 )  →  𝐶  <  Σ 𝑘  ∈  ( 𝐾 ... 𝑚 ) 𝐵 ) ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐶  <  Σ 𝑘  ∈  𝑥 𝐵 )  ∧  𝑚  ∈  𝑍 )  →  ( 𝑥  ⊆  ( 𝐾 ... 𝑚 )  →  𝐶  <  Σ 𝑘  ∈  ( 𝐾 ... 𝑚 ) 𝐵 ) ) | 
						
							| 51 | 50 | 3adantl2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝐶  <  Σ 𝑘  ∈  𝑥 𝐵 )  ∧  𝑚  ∈  𝑍 )  →  ( 𝑥  ⊆  ( 𝐾 ... 𝑚 )  →  𝐶  <  Σ 𝑘  ∈  ( 𝐾 ... 𝑚 ) 𝐵 ) ) | 
						
							| 52 | 51 | reximdva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝐶  <  Σ 𝑘  ∈  𝑥 𝐵 )  →  ( ∃ 𝑚  ∈  𝑍 𝑥  ⊆  ( 𝐾 ... 𝑚 )  →  ∃ 𝑚  ∈  𝑍 𝐶  <  Σ 𝑘  ∈  ( 𝐾 ... 𝑚 ) 𝐵 ) ) | 
						
							| 53 | 15 52 | mpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝐶  <  Σ 𝑘  ∈  𝑥 𝐵 )  →  ∃ 𝑚  ∈  𝑍 𝐶  <  Σ 𝑘  ∈  ( 𝐾 ... 𝑚 ) 𝐵 ) | 
						
							| 54 | 53 | 3exp | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  →  ( 𝐶  <  Σ 𝑘  ∈  𝑥 𝐵  →  ∃ 𝑚  ∈  𝑍 𝐶  <  Σ 𝑘  ∈  ( 𝐾 ... 𝑚 ) 𝐵 ) ) ) | 
						
							| 55 | 54 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin ) 𝐶  <  Σ 𝑘  ∈  𝑥 𝐵  →  ∃ 𝑚  ∈  𝑍 𝐶  <  Σ 𝑘  ∈  ( 𝐾 ... 𝑚 ) 𝐵 ) ) | 
						
							| 56 | 9 55 | mpd | ⊢ ( 𝜑  →  ∃ 𝑚  ∈  𝑍 𝐶  <  Σ 𝑘  ∈  ( 𝐾 ... 𝑚 ) 𝐵 ) |