| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0uzfsumgt.p |  |-  F/ k ph | 
						
							| 2 |  | sge0uzfsumgt.h |  |-  ( ph -> K e. ZZ ) | 
						
							| 3 |  | sge0uzfsumgt.z |  |-  Z = ( ZZ>= ` K ) | 
						
							| 4 |  | sge0uzfsumgt.b |  |-  ( ( ph /\ k e. Z ) -> B e. ( 0 [,) +oo ) ) | 
						
							| 5 |  | sge0uzfsumgt.c |  |-  ( ph -> C e. RR ) | 
						
							| 6 |  | sge0uzfsumgt.l |  |-  ( ph -> C < ( sum^ ` ( k e. Z |-> B ) ) ) | 
						
							| 7 | 3 | fvexi |  |-  Z e. _V | 
						
							| 8 | 7 | a1i |  |-  ( ph -> Z e. _V ) | 
						
							| 9 | 1 8 4 5 6 | sge0gtfsumgt |  |-  ( ph -> E. x e. ( ~P Z i^i Fin ) C < sum_ k e. x B ) | 
						
							| 10 | 2 | 3ad2ant1 |  |-  ( ( ph /\ x e. ( ~P Z i^i Fin ) /\ C < sum_ k e. x B ) -> K e. ZZ ) | 
						
							| 11 |  | elpwinss |  |-  ( x e. ( ~P Z i^i Fin ) -> x C_ Z ) | 
						
							| 12 | 11 | 3ad2ant2 |  |-  ( ( ph /\ x e. ( ~P Z i^i Fin ) /\ C < sum_ k e. x B ) -> x C_ Z ) | 
						
							| 13 |  | elinel2 |  |-  ( x e. ( ~P Z i^i Fin ) -> x e. Fin ) | 
						
							| 14 | 13 | 3ad2ant2 |  |-  ( ( ph /\ x e. ( ~P Z i^i Fin ) /\ C < sum_ k e. x B ) -> x e. Fin ) | 
						
							| 15 | 10 3 12 14 | uzfissfz |  |-  ( ( ph /\ x e. ( ~P Z i^i Fin ) /\ C < sum_ k e. x B ) -> E. m e. Z x C_ ( K ... m ) ) | 
						
							| 16 | 5 | ad2antrr |  |-  ( ( ( ph /\ C < sum_ k e. x B ) /\ x C_ ( K ... m ) ) -> C e. RR ) | 
						
							| 17 |  | nfv |  |-  F/ k x C_ ( K ... m ) | 
						
							| 18 | 1 17 | nfan |  |-  F/ k ( ph /\ x C_ ( K ... m ) ) | 
						
							| 19 |  | fzfid |  |-  ( ( ph /\ x C_ ( K ... m ) ) -> ( K ... m ) e. Fin ) | 
						
							| 20 |  | simpr |  |-  ( ( ph /\ x C_ ( K ... m ) ) -> x C_ ( K ... m ) ) | 
						
							| 21 | 19 20 | ssfid |  |-  ( ( ph /\ x C_ ( K ... m ) ) -> x e. Fin ) | 
						
							| 22 |  | simpll |  |-  ( ( ( ph /\ x C_ ( K ... m ) ) /\ k e. x ) -> ph ) | 
						
							| 23 | 20 | sselda |  |-  ( ( ( ph /\ x C_ ( K ... m ) ) /\ k e. x ) -> k e. ( K ... m ) ) | 
						
							| 24 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 25 |  | fzssuz |  |-  ( K ... m ) C_ ( ZZ>= ` K ) | 
						
							| 26 | 25 3 | sseqtrri |  |-  ( K ... m ) C_ Z | 
						
							| 27 |  | id |  |-  ( k e. ( K ... m ) -> k e. ( K ... m ) ) | 
						
							| 28 | 26 27 | sselid |  |-  ( k e. ( K ... m ) -> k e. Z ) | 
						
							| 29 | 28 4 | sylan2 |  |-  ( ( ph /\ k e. ( K ... m ) ) -> B e. ( 0 [,) +oo ) ) | 
						
							| 30 | 24 29 | sselid |  |-  ( ( ph /\ k e. ( K ... m ) ) -> B e. RR ) | 
						
							| 31 | 22 23 30 | syl2anc |  |-  ( ( ( ph /\ x C_ ( K ... m ) ) /\ k e. x ) -> B e. RR ) | 
						
							| 32 | 18 21 31 | fsumreclf |  |-  ( ( ph /\ x C_ ( K ... m ) ) -> sum_ k e. x B e. RR ) | 
						
							| 33 | 32 | adantlr |  |-  ( ( ( ph /\ C < sum_ k e. x B ) /\ x C_ ( K ... m ) ) -> sum_ k e. x B e. RR ) | 
						
							| 34 |  | fzfid |  |-  ( ph -> ( K ... m ) e. Fin ) | 
						
							| 35 | 1 34 30 | fsumreclf |  |-  ( ph -> sum_ k e. ( K ... m ) B e. RR ) | 
						
							| 36 | 35 | ad2antrr |  |-  ( ( ( ph /\ C < sum_ k e. x B ) /\ x C_ ( K ... m ) ) -> sum_ k e. ( K ... m ) B e. RR ) | 
						
							| 37 |  | simplr |  |-  ( ( ( ph /\ C < sum_ k e. x B ) /\ x C_ ( K ... m ) ) -> C < sum_ k e. x B ) | 
						
							| 38 | 30 | adantlr |  |-  ( ( ( ph /\ x C_ ( K ... m ) ) /\ k e. ( K ... m ) ) -> B e. RR ) | 
						
							| 39 |  | 0xr |  |-  0 e. RR* | 
						
							| 40 | 39 | a1i |  |-  ( ( ph /\ k e. ( K ... m ) ) -> 0 e. RR* ) | 
						
							| 41 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 42 | 41 | a1i |  |-  ( ( ph /\ k e. ( K ... m ) ) -> +oo e. RR* ) | 
						
							| 43 |  | icogelb |  |-  ( ( 0 e. RR* /\ +oo e. RR* /\ B e. ( 0 [,) +oo ) ) -> 0 <_ B ) | 
						
							| 44 | 40 42 29 43 | syl3anc |  |-  ( ( ph /\ k e. ( K ... m ) ) -> 0 <_ B ) | 
						
							| 45 | 44 | adantlr |  |-  ( ( ( ph /\ x C_ ( K ... m ) ) /\ k e. ( K ... m ) ) -> 0 <_ B ) | 
						
							| 46 | 18 19 38 45 20 | fsumlessf |  |-  ( ( ph /\ x C_ ( K ... m ) ) -> sum_ k e. x B <_ sum_ k e. ( K ... m ) B ) | 
						
							| 47 | 46 | adantlr |  |-  ( ( ( ph /\ C < sum_ k e. x B ) /\ x C_ ( K ... m ) ) -> sum_ k e. x B <_ sum_ k e. ( K ... m ) B ) | 
						
							| 48 | 16 33 36 37 47 | ltletrd |  |-  ( ( ( ph /\ C < sum_ k e. x B ) /\ x C_ ( K ... m ) ) -> C < sum_ k e. ( K ... m ) B ) | 
						
							| 49 | 48 | ex |  |-  ( ( ph /\ C < sum_ k e. x B ) -> ( x C_ ( K ... m ) -> C < sum_ k e. ( K ... m ) B ) ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ( ph /\ C < sum_ k e. x B ) /\ m e. Z ) -> ( x C_ ( K ... m ) -> C < sum_ k e. ( K ... m ) B ) ) | 
						
							| 51 | 50 | 3adantl2 |  |-  ( ( ( ph /\ x e. ( ~P Z i^i Fin ) /\ C < sum_ k e. x B ) /\ m e. Z ) -> ( x C_ ( K ... m ) -> C < sum_ k e. ( K ... m ) B ) ) | 
						
							| 52 | 51 | reximdva |  |-  ( ( ph /\ x e. ( ~P Z i^i Fin ) /\ C < sum_ k e. x B ) -> ( E. m e. Z x C_ ( K ... m ) -> E. m e. Z C < sum_ k e. ( K ... m ) B ) ) | 
						
							| 53 | 15 52 | mpd |  |-  ( ( ph /\ x e. ( ~P Z i^i Fin ) /\ C < sum_ k e. x B ) -> E. m e. Z C < sum_ k e. ( K ... m ) B ) | 
						
							| 54 | 53 | 3exp |  |-  ( ph -> ( x e. ( ~P Z i^i Fin ) -> ( C < sum_ k e. x B -> E. m e. Z C < sum_ k e. ( K ... m ) B ) ) ) | 
						
							| 55 | 54 | rexlimdv |  |-  ( ph -> ( E. x e. ( ~P Z i^i Fin ) C < sum_ k e. x B -> E. m e. Z C < sum_ k e. ( K ... m ) B ) ) | 
						
							| 56 | 9 55 | mpd |  |-  ( ph -> E. m e. Z C < sum_ k e. ( K ... m ) B ) |