Metamath Proof Explorer


Theorem nnsplit

Description: Express the set of positive integers as the disjoint (see nnuzdisj ) union of the first N values and the rest. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Assertion nnsplit
|- ( N e. NN -> NN = ( ( 1 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) )

Proof

Step Hyp Ref Expression
1 nnuz
 |-  NN = ( ZZ>= ` 1 )
2 1 a1i
 |-  ( N e. NN -> NN = ( ZZ>= ` 1 ) )
3 peano2nn
 |-  ( N e. NN -> ( N + 1 ) e. NN )
4 3 1 eleqtrdi
 |-  ( N e. NN -> ( N + 1 ) e. ( ZZ>= ` 1 ) )
5 uzsplit
 |-  ( ( N + 1 ) e. ( ZZ>= ` 1 ) -> ( ZZ>= ` 1 ) = ( ( 1 ... ( ( N + 1 ) - 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) )
6 4 5 syl
 |-  ( N e. NN -> ( ZZ>= ` 1 ) = ( ( 1 ... ( ( N + 1 ) - 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) )
7 nncn
 |-  ( N e. NN -> N e. CC )
8 1cnd
 |-  ( N e. NN -> 1 e. CC )
9 7 8 pncand
 |-  ( N e. NN -> ( ( N + 1 ) - 1 ) = N )
10 9 oveq2d
 |-  ( N e. NN -> ( 1 ... ( ( N + 1 ) - 1 ) ) = ( 1 ... N ) )
11 10 uneq1d
 |-  ( N e. NN -> ( ( 1 ... ( ( N + 1 ) - 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) = ( ( 1 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) )
12 2 6 11 3eqtrd
 |-  ( N e. NN -> NN = ( ( 1 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) )