Step |
Hyp |
Ref |
Expression |
1 |
|
ovnhoilem1.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
ovnhoilem1.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
3 |
|
ovnhoilem1.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
4 |
|
ovnhoilem1.c |
⊢ 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) |
5 |
|
ovnhoilem1.m |
⊢ 𝑀 = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } |
6 |
|
ovnhoilem1.h |
⊢ 𝐻 = ( 𝑗 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ) |
7 |
4
|
a1i |
⊢ ( 𝜑 → 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
8 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
9 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
10 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
11 |
10
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) |
12 |
8 9 11
|
hoissrrn2 |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ( ℝ ↑m 𝑋 ) ) |
13 |
7 12
|
eqsstrd |
⊢ ( 𝜑 → 𝐼 ⊆ ( ℝ ↑m 𝑋 ) ) |
14 |
1 13 5
|
ovnval2 |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) = if ( 𝑋 = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) ) |
15 |
|
iftrue |
⊢ ( 𝑋 = ∅ → if ( 𝑋 = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) = 0 ) |
16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → if ( 𝑋 = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) = 0 ) |
17 |
|
0xr |
⊢ 0 ∈ ℝ* |
18 |
17
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
19 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
20 |
19
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
21 |
8 1 9 10
|
hoiprodcl3 |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ( 0 [,) +∞ ) ) |
22 |
|
icogelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ( 0 [,) +∞ ) ) → 0 ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
23 |
18 20 21 22
|
syl3anc |
⊢ ( 𝜑 → 0 ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 0 ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
25 |
16 24
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → if ( 𝑋 = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
26 |
|
iffalse |
⊢ ( ¬ 𝑋 = ∅ → if ( 𝑋 = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) = inf ( 𝑀 , ℝ* , < ) ) |
27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → if ( 𝑋 = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) = inf ( 𝑀 , ℝ* , < ) ) |
28 |
|
ssrab2 |
⊢ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ⊆ ℝ* |
29 |
5 28
|
eqsstri |
⊢ 𝑀 ⊆ ℝ* |
30 |
29
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑀 ⊆ ℝ* ) |
31 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
32 |
31 21
|
sselid |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ* ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ* ) |
34 |
|
opelxpi |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) → 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ∈ ( ℝ × ℝ ) ) |
35 |
9 10 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ∈ ( ℝ × ℝ ) ) |
36 |
|
0re |
⊢ 0 ∈ ℝ |
37 |
|
opelxpi |
⊢ ( ( 0 ∈ ℝ ∧ 0 ∈ ℝ ) → 〈 0 , 0 〉 ∈ ( ℝ × ℝ ) ) |
38 |
36 36 37
|
mp2an |
⊢ 〈 0 , 0 〉 ∈ ( ℝ × ℝ ) |
39 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 〈 0 , 0 〉 ∈ ( ℝ × ℝ ) ) |
40 |
35 39
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ∈ ( ℝ × ℝ ) ) |
41 |
40
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
42 |
|
reex |
⊢ ℝ ∈ V |
43 |
42 42
|
xpex |
⊢ ( ℝ × ℝ ) ∈ V |
44 |
1 43
|
jctil |
⊢ ( 𝜑 → ( ( ℝ × ℝ ) ∈ V ∧ 𝑋 ∈ Fin ) ) |
45 |
|
elmapg |
⊢ ( ( ( ℝ × ℝ ) ∈ V ∧ 𝑋 ∈ Fin ) → ( ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↔ ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) : 𝑋 ⟶ ( ℝ × ℝ ) ) ) |
46 |
44 45
|
syl |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↔ ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) : 𝑋 ⟶ ( ℝ × ℝ ) ) ) |
47 |
41 46
|
mpbird |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ) |
49 |
48 6
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( ( ℝ × ℝ ) ↑m 𝑋 ) ) |
50 |
|
ovex |
⊢ ( ( ℝ × ℝ ) ↑m 𝑋 ) ∈ V |
51 |
|
nnex |
⊢ ℕ ∈ V |
52 |
50 51
|
elmap |
⊢ ( 𝐻 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ↔ 𝐻 : ℕ ⟶ ( ( ℝ × ℝ ) ↑m 𝑋 ) ) |
53 |
49 52
|
sylibr |
⊢ ( 𝜑 → 𝐻 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ) |
54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝐻 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ) |
55 |
|
eqidd |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
56 |
35
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
57 |
|
iftrue |
⊢ ( 𝑗 = 1 → if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) = 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) |
58 |
57
|
mpteq2dv |
⊢ ( 𝑗 = 1 → ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) = ( 𝑘 ∈ 𝑋 ↦ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) ) |
59 |
|
1nn |
⊢ 1 ∈ ℕ |
60 |
59
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
61 |
|
mptexg |
⊢ ( 𝑋 ∈ Fin → ( 𝑘 ∈ 𝑋 ↦ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) ∈ V ) |
62 |
1 61
|
syl |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) ∈ V ) |
63 |
6 58 60 62
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐻 ‘ 1 ) = ( 𝑘 ∈ 𝑋 ↦ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) ) |
64 |
63
|
feq1d |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 1 ) : 𝑋 ⟶ ( ℝ × ℝ ) ↔ ( 𝑘 ∈ 𝑋 ↦ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) ) |
65 |
56 64
|
mpbird |
⊢ ( 𝜑 → ( 𝐻 ‘ 1 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐻 ‘ 1 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
67 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
68 |
66 67
|
fvovco |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) = ( ( 1st ‘ ( ( 𝐻 ‘ 1 ) ‘ 𝑘 ) ) [,) ( 2nd ‘ ( ( 𝐻 ‘ 1 ) ‘ 𝑘 ) ) ) ) |
69 |
35
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ∈ V ) |
70 |
63 69
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐻 ‘ 1 ) ‘ 𝑘 ) = 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) |
71 |
70
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 1st ‘ ( ( 𝐻 ‘ 1 ) ‘ 𝑘 ) ) = ( 1st ‘ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) ) |
72 |
|
fvex |
⊢ ( 𝐴 ‘ 𝑘 ) ∈ V |
73 |
|
fvex |
⊢ ( 𝐵 ‘ 𝑘 ) ∈ V |
74 |
72 73
|
op1st |
⊢ ( 1st ‘ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) = ( 𝐴 ‘ 𝑘 ) |
75 |
74
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 1st ‘ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) = ( 𝐴 ‘ 𝑘 ) ) |
76 |
71 75
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 1st ‘ ( ( 𝐻 ‘ 1 ) ‘ 𝑘 ) ) = ( 𝐴 ‘ 𝑘 ) ) |
77 |
70
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 2nd ‘ ( ( 𝐻 ‘ 1 ) ‘ 𝑘 ) ) = ( 2nd ‘ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) ) |
78 |
72 73
|
op2nd |
⊢ ( 2nd ‘ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) = ( 𝐵 ‘ 𝑘 ) |
79 |
78
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 2nd ‘ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) = ( 𝐵 ‘ 𝑘 ) ) |
80 |
77 79
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 2nd ‘ ( ( 𝐻 ‘ 1 ) ‘ 𝑘 ) ) = ( 𝐵 ‘ 𝑘 ) ) |
81 |
76 80
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 1st ‘ ( ( 𝐻 ‘ 1 ) ‘ 𝑘 ) ) [,) ( 2nd ‘ ( ( 𝐻 ‘ 1 ) ‘ 𝑘 ) ) ) = ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
82 |
68 81
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
83 |
82
|
ixpeq2dva |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
84 |
55 7 83
|
3eqtr4d |
⊢ ( 𝜑 → 𝐼 = X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) |
85 |
|
fveq2 |
⊢ ( 𝑗 = 1 → ( 𝐻 ‘ 𝑗 ) = ( 𝐻 ‘ 1 ) ) |
86 |
85
|
coeq2d |
⊢ ( 𝑗 = 1 → ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) = ( [,) ∘ ( 𝐻 ‘ 1 ) ) ) |
87 |
86
|
fveq1d |
⊢ ( 𝑗 = 1 → ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) |
88 |
87
|
ixpeq2dv |
⊢ ( 𝑗 = 1 → X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) = X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) |
89 |
88
|
ssiun2s |
⊢ ( 1 ∈ ℕ → X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
90 |
59 89
|
ax-mp |
⊢ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) |
91 |
84 90
|
eqsstrdi |
⊢ ( 𝜑 → 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
92 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
93 |
82
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
94 |
93
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) ) |
95 |
94
|
prodeq2dv |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) ) |
96 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) ) |
97 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
98 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
99 |
8 1 65
|
hoiprodcl |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) ∈ ( 0 [,) +∞ ) ) |
100 |
98 99
|
sselid |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) ∈ ( 0 [,] +∞ ) ) |
101 |
87
|
fveq2d |
⊢ ( 𝑗 = 1 → ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) ) |
102 |
101
|
prodeq2ad |
⊢ ( 𝑗 = 1 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) ) |
103 |
97 100 102
|
sge0snmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ { 1 } ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) ) |
104 |
103
|
eqcomd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) = ( Σ^ ‘ ( 𝑗 ∈ { 1 } ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
105 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) = ( Σ^ ‘ ( 𝑗 ∈ { 1 } ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
106 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ ¬ 𝑋 = ∅ ) |
107 |
51
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ℕ ∈ V ) |
108 |
|
snssi |
⊢ ( 1 ∈ ℕ → { 1 } ⊆ ℕ ) |
109 |
59 108
|
ax-mp |
⊢ { 1 } ⊆ ℕ |
110 |
109
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → { 1 } ⊆ ℕ ) |
111 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ { 1 } ) |
112 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ { 1 } ) → 𝑋 ∈ Fin ) |
113 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 1 } ) → 𝜑 ) |
114 |
|
elsni |
⊢ ( 𝑗 ∈ { 1 } → 𝑗 = 1 ) |
115 |
114
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 1 } ) → 𝑗 = 1 ) |
116 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 = 1 ) → ( 𝐻 ‘ 1 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
117 |
85
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 = 1 ) → ( 𝐻 ‘ 𝑗 ) = ( 𝐻 ‘ 1 ) ) |
118 |
117
|
feq1d |
⊢ ( ( 𝜑 ∧ 𝑗 = 1 ) → ( ( 𝐻 ‘ 𝑗 ) : 𝑋 ⟶ ( ℝ × ℝ ) ↔ ( 𝐻 ‘ 1 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) ) |
119 |
116 118
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 = 1 ) → ( 𝐻 ‘ 𝑗 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
120 |
113 115 119
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 1 } ) → ( 𝐻 ‘ 𝑗 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
121 |
120
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ { 1 } ) → ( 𝐻 ‘ 𝑗 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
122 |
111 112 121
|
hoiprodcl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ { 1 } ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ∈ ( 0 [,) +∞ ) ) |
123 |
98 122
|
sselid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ { 1 } ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ∈ ( 0 [,] +∞ ) ) |
124 |
39
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ 〈 0 , 0 〉 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
125 |
124
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → ( 𝑘 ∈ 𝑋 ↦ 〈 0 , 0 〉 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
126 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → 𝜑 ) |
127 |
|
eldifi |
⊢ ( 𝑗 ∈ ( ℕ ∖ { 1 } ) → 𝑗 ∈ ℕ ) |
128 |
127
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → 𝑗 ∈ ℕ ) |
129 |
6
|
a1i |
⊢ ( 𝜑 → 𝐻 = ( 𝑗 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ) ) |
130 |
48
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ∈ V ) |
131 |
129 130
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐻 ‘ 𝑗 ) = ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ) |
132 |
126 128 131
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → ( 𝐻 ‘ 𝑗 ) = ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ) |
133 |
|
eldifsni |
⊢ ( 𝑗 ∈ ( ℕ ∖ { 1 } ) → 𝑗 ≠ 1 ) |
134 |
133
|
neneqd |
⊢ ( 𝑗 ∈ ( ℕ ∖ { 1 } ) → ¬ 𝑗 = 1 ) |
135 |
134
|
iffalsed |
⊢ ( 𝑗 ∈ ( ℕ ∖ { 1 } ) → if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) = 〈 0 , 0 〉 ) |
136 |
135
|
mpteq2dv |
⊢ ( 𝑗 ∈ ( ℕ ∖ { 1 } ) → ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) = ( 𝑘 ∈ 𝑋 ↦ 〈 0 , 0 〉 ) ) |
137 |
136
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) = ( 𝑘 ∈ 𝑋 ↦ 〈 0 , 0 〉 ) ) |
138 |
132 137
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → ( 𝐻 ‘ 𝑗 ) = ( 𝑘 ∈ 𝑋 ↦ 〈 0 , 0 〉 ) ) |
139 |
138
|
feq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → ( ( 𝐻 ‘ 𝑗 ) : 𝑋 ⟶ ( ℝ × ℝ ) ↔ ( 𝑘 ∈ 𝑋 ↦ 〈 0 , 0 〉 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) ) |
140 |
125 139
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → ( 𝐻 ‘ 𝑗 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
141 |
140
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐻 ‘ 𝑗 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
142 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
143 |
141 142
|
fvovco |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( 1st ‘ ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑘 ) ) [,) ( 2nd ‘ ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
144 |
38
|
elexi |
⊢ 〈 0 , 0 〉 ∈ V |
145 |
144
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → 〈 0 , 0 〉 ∈ V ) |
146 |
138 145
|
fvmpt2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑘 ) = 〈 0 , 0 〉 ) |
147 |
146
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 1st ‘ ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑘 ) ) = ( 1st ‘ 〈 0 , 0 〉 ) ) |
148 |
17
|
elexi |
⊢ 0 ∈ V |
149 |
148 148
|
op1st |
⊢ ( 1st ‘ 〈 0 , 0 〉 ) = 0 |
150 |
149
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 1st ‘ 〈 0 , 0 〉 ) = 0 ) |
151 |
147 150
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 1st ‘ ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑘 ) ) = 0 ) |
152 |
146
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 2nd ‘ ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑘 ) ) = ( 2nd ‘ 〈 0 , 0 〉 ) ) |
153 |
148 148
|
op2nd |
⊢ ( 2nd ‘ 〈 0 , 0 〉 ) = 0 |
154 |
153
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 2nd ‘ 〈 0 , 0 〉 ) = 0 ) |
155 |
152 154
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 2nd ‘ ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑘 ) ) = 0 ) |
156 |
151 155
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 1st ‘ ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑘 ) ) [,) ( 2nd ‘ ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑘 ) ) ) = ( 0 [,) 0 ) ) |
157 |
|
0le0 |
⊢ 0 ≤ 0 |
158 |
|
ico0 |
⊢ ( ( 0 ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( 0 [,) 0 ) = ∅ ↔ 0 ≤ 0 ) ) |
159 |
17 17 158
|
mp2an |
⊢ ( ( 0 [,) 0 ) = ∅ ↔ 0 ≤ 0 ) |
160 |
157 159
|
mpbir |
⊢ ( 0 [,) 0 ) = ∅ |
161 |
160
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 0 [,) 0 ) = ∅ ) |
162 |
143 156 161
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) = ∅ ) |
163 |
162
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ∅ ) ) |
164 |
|
vol0 |
⊢ ( vol ‘ ∅ ) = 0 |
165 |
164
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ∅ ) = 0 ) |
166 |
163 165
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = 0 ) |
167 |
166
|
prodeq2dv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑋 0 ) |
168 |
167
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑋 0 ) |
169 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
170 |
|
fprodconst |
⊢ ( ( 𝑋 ∈ Fin ∧ 0 ∈ ℂ ) → ∏ 𝑘 ∈ 𝑋 0 = ( 0 ↑ ( ♯ ‘ 𝑋 ) ) ) |
171 |
1 169 170
|
syl2anc |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 0 = ( 0 ↑ ( ♯ ‘ 𝑋 ) ) ) |
172 |
171
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → ∏ 𝑘 ∈ 𝑋 0 = ( 0 ↑ ( ♯ ‘ 𝑋 ) ) ) |
173 |
|
neqne |
⊢ ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ ) |
174 |
173
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ≠ ∅ ) |
175 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ∈ Fin ) |
176 |
|
hashnncl |
⊢ ( 𝑋 ∈ Fin → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
177 |
175 176
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
178 |
174 177
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
179 |
|
0exp |
⊢ ( ( ♯ ‘ 𝑋 ) ∈ ℕ → ( 0 ↑ ( ♯ ‘ 𝑋 ) ) = 0 ) |
180 |
178 179
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( 0 ↑ ( ♯ ‘ 𝑋 ) ) = 0 ) |
181 |
180
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → ( 0 ↑ ( ♯ ‘ 𝑋 ) ) = 0 ) |
182 |
168 172 181
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = 0 ) |
183 |
106 107 110 123 182
|
sge0ss |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( Σ^ ‘ ( 𝑗 ∈ { 1 } ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
184 |
96 105 183
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
185 |
92 184
|
jca |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
186 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑖 |
187 |
|
nfcv |
⊢ Ⅎ 𝑘 ℕ |
188 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) |
189 |
187 188
|
nfmpt |
⊢ Ⅎ 𝑘 ( 𝑗 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ) |
190 |
6 189
|
nfcxfr |
⊢ Ⅎ 𝑘 𝐻 |
191 |
186 190
|
nfeq |
⊢ Ⅎ 𝑘 𝑖 = 𝐻 |
192 |
|
fveq1 |
⊢ ( 𝑖 = 𝐻 → ( 𝑖 ‘ 𝑗 ) = ( 𝐻 ‘ 𝑗 ) ) |
193 |
192
|
coeq2d |
⊢ ( 𝑖 = 𝐻 → ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) = ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ) |
194 |
193
|
fveq1d |
⊢ ( 𝑖 = 𝐻 → ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
195 |
194
|
adantr |
⊢ ( ( 𝑖 = 𝐻 ∧ 𝑘 ∈ 𝑋 ) → ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
196 |
191 195
|
ixpeq2d |
⊢ ( 𝑖 = 𝐻 → X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) = X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
197 |
196
|
iuneq2d |
⊢ ( 𝑖 = 𝐻 → ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
198 |
197
|
sseq2d |
⊢ ( 𝑖 = 𝐻 → ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ↔ 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
199 |
194
|
fveq2d |
⊢ ( 𝑖 = 𝐻 → ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
200 |
199
|
a1d |
⊢ ( 𝑖 = 𝐻 → ( 𝑘 ∈ 𝑋 → ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
201 |
191 200
|
ralrimi |
⊢ ( 𝑖 = 𝐻 → ∀ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
202 |
201
|
prodeq2d |
⊢ ( 𝑖 = 𝐻 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
203 |
202
|
mpteq2dv |
⊢ ( 𝑖 = 𝐻 → ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) = ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
204 |
203
|
fveq2d |
⊢ ( 𝑖 = 𝐻 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
205 |
204
|
eqeq2d |
⊢ ( 𝑖 = 𝐻 → ( ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ↔ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
206 |
198 205
|
anbi12d |
⊢ ( 𝑖 = 𝐻 → ( ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ↔ ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
207 |
206
|
rspcev |
⊢ ( ( 𝐻 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) → ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
208 |
54 185 207
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
209 |
33 208
|
jca |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ* ∧ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
210 |
|
eqeq1 |
⊢ ( 𝑧 = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) → ( 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ↔ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
211 |
210
|
anbi2d |
⊢ ( 𝑧 = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) → ( ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ↔ ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
212 |
211
|
rexbidv |
⊢ ( 𝑧 = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) → ( ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ↔ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
213 |
212
|
elrab |
⊢ ( ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ↔ ( ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ* ∧ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
214 |
209 213
|
sylibr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ) |
215 |
5
|
eqcomi |
⊢ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } = 𝑀 |
216 |
215
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } = 𝑀 ) |
217 |
214 216
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ 𝑀 ) |
218 |
|
infxrlb |
⊢ ( ( 𝑀 ⊆ ℝ* ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ 𝑀 ) → inf ( 𝑀 , ℝ* , < ) ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
219 |
30 217 218
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → inf ( 𝑀 , ℝ* , < ) ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
220 |
27 219
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → if ( 𝑋 = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
221 |
25 220
|
pm2.61dan |
⊢ ( 𝜑 → if ( 𝑋 = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
222 |
14 221
|
eqbrtrd |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |