| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovnhoilem1.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 2 |
|
ovnhoilem1.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
| 3 |
|
ovnhoilem1.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
| 4 |
|
ovnhoilem1.c |
⊢ 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) |
| 5 |
|
ovnhoilem1.m |
⊢ 𝑀 = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } |
| 6 |
|
ovnhoilem1.h |
⊢ 𝐻 = ( 𝑗 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ) |
| 7 |
4
|
a1i |
⊢ ( 𝜑 → 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 8 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 9 |
2
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
| 10 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
| 11 |
10
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) |
| 12 |
8 9 11
|
hoissrrn2 |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ( ℝ ↑m 𝑋 ) ) |
| 13 |
7 12
|
eqsstrd |
⊢ ( 𝜑 → 𝐼 ⊆ ( ℝ ↑m 𝑋 ) ) |
| 14 |
1 13 5
|
ovnval2 |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) = if ( 𝑋 = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) ) |
| 15 |
|
iftrue |
⊢ ( 𝑋 = ∅ → if ( 𝑋 = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) = 0 ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → if ( 𝑋 = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) = 0 ) |
| 17 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
| 19 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 21 |
8 1 9 10
|
hoiprodcl3 |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ( 0 [,) +∞ ) ) |
| 22 |
|
icogelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ( 0 [,) +∞ ) ) → 0 ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 23 |
18 20 21 22
|
syl3anc |
⊢ ( 𝜑 → 0 ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 0 ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 25 |
16 24
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → if ( 𝑋 = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 26 |
|
iffalse |
⊢ ( ¬ 𝑋 = ∅ → if ( 𝑋 = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) = inf ( 𝑀 , ℝ* , < ) ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → if ( 𝑋 = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) = inf ( 𝑀 , ℝ* , < ) ) |
| 28 |
|
ssrab2 |
⊢ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ⊆ ℝ* |
| 29 |
5 28
|
eqsstri |
⊢ 𝑀 ⊆ ℝ* |
| 30 |
29
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑀 ⊆ ℝ* ) |
| 31 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
| 32 |
31 21
|
sselid |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ* ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ* ) |
| 34 |
|
opelxpi |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) → 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ∈ ( ℝ × ℝ ) ) |
| 35 |
9 10 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ∈ ( ℝ × ℝ ) ) |
| 36 |
|
0re |
⊢ 0 ∈ ℝ |
| 37 |
|
opelxpi |
⊢ ( ( 0 ∈ ℝ ∧ 0 ∈ ℝ ) → 〈 0 , 0 〉 ∈ ( ℝ × ℝ ) ) |
| 38 |
36 36 37
|
mp2an |
⊢ 〈 0 , 0 〉 ∈ ( ℝ × ℝ ) |
| 39 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 〈 0 , 0 〉 ∈ ( ℝ × ℝ ) ) |
| 40 |
35 39
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ∈ ( ℝ × ℝ ) ) |
| 41 |
40
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
| 42 |
|
reex |
⊢ ℝ ∈ V |
| 43 |
42 42
|
xpex |
⊢ ( ℝ × ℝ ) ∈ V |
| 44 |
1 43
|
jctil |
⊢ ( 𝜑 → ( ( ℝ × ℝ ) ∈ V ∧ 𝑋 ∈ Fin ) ) |
| 45 |
|
elmapg |
⊢ ( ( ( ℝ × ℝ ) ∈ V ∧ 𝑋 ∈ Fin ) → ( ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↔ ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) : 𝑋 ⟶ ( ℝ × ℝ ) ) ) |
| 46 |
44 45
|
syl |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↔ ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) : 𝑋 ⟶ ( ℝ × ℝ ) ) ) |
| 47 |
41 46
|
mpbird |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ) |
| 49 |
48 6
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( ( ℝ × ℝ ) ↑m 𝑋 ) ) |
| 50 |
|
ovex |
⊢ ( ( ℝ × ℝ ) ↑m 𝑋 ) ∈ V |
| 51 |
|
nnex |
⊢ ℕ ∈ V |
| 52 |
50 51
|
elmap |
⊢ ( 𝐻 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ↔ 𝐻 : ℕ ⟶ ( ( ℝ × ℝ ) ↑m 𝑋 ) ) |
| 53 |
49 52
|
sylibr |
⊢ ( 𝜑 → 𝐻 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝐻 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ) |
| 55 |
|
eqidd |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 56 |
35
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
| 57 |
|
iftrue |
⊢ ( 𝑗 = 1 → if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) = 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) |
| 58 |
57
|
mpteq2dv |
⊢ ( 𝑗 = 1 → ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) = ( 𝑘 ∈ 𝑋 ↦ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) ) |
| 59 |
|
1nn |
⊢ 1 ∈ ℕ |
| 60 |
59
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
| 61 |
|
mptexg |
⊢ ( 𝑋 ∈ Fin → ( 𝑘 ∈ 𝑋 ↦ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) ∈ V ) |
| 62 |
1 61
|
syl |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) ∈ V ) |
| 63 |
6 58 60 62
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐻 ‘ 1 ) = ( 𝑘 ∈ 𝑋 ↦ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) ) |
| 64 |
63
|
feq1d |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 1 ) : 𝑋 ⟶ ( ℝ × ℝ ) ↔ ( 𝑘 ∈ 𝑋 ↦ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) ) |
| 65 |
56 64
|
mpbird |
⊢ ( 𝜑 → ( 𝐻 ‘ 1 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
| 66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐻 ‘ 1 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
| 67 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
| 68 |
66 67
|
fvovco |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) = ( ( 1st ‘ ( ( 𝐻 ‘ 1 ) ‘ 𝑘 ) ) [,) ( 2nd ‘ ( ( 𝐻 ‘ 1 ) ‘ 𝑘 ) ) ) ) |
| 69 |
35
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ∈ V ) |
| 70 |
63 69
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐻 ‘ 1 ) ‘ 𝑘 ) = 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) |
| 71 |
70
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 1st ‘ ( ( 𝐻 ‘ 1 ) ‘ 𝑘 ) ) = ( 1st ‘ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) ) |
| 72 |
|
fvex |
⊢ ( 𝐴 ‘ 𝑘 ) ∈ V |
| 73 |
|
fvex |
⊢ ( 𝐵 ‘ 𝑘 ) ∈ V |
| 74 |
72 73
|
op1st |
⊢ ( 1st ‘ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) = ( 𝐴 ‘ 𝑘 ) |
| 75 |
74
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 1st ‘ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) = ( 𝐴 ‘ 𝑘 ) ) |
| 76 |
71 75
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 1st ‘ ( ( 𝐻 ‘ 1 ) ‘ 𝑘 ) ) = ( 𝐴 ‘ 𝑘 ) ) |
| 77 |
70
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 2nd ‘ ( ( 𝐻 ‘ 1 ) ‘ 𝑘 ) ) = ( 2nd ‘ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) ) |
| 78 |
72 73
|
op2nd |
⊢ ( 2nd ‘ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) = ( 𝐵 ‘ 𝑘 ) |
| 79 |
78
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 2nd ‘ 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 ) = ( 𝐵 ‘ 𝑘 ) ) |
| 80 |
77 79
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 2nd ‘ ( ( 𝐻 ‘ 1 ) ‘ 𝑘 ) ) = ( 𝐵 ‘ 𝑘 ) ) |
| 81 |
76 80
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 1st ‘ ( ( 𝐻 ‘ 1 ) ‘ 𝑘 ) ) [,) ( 2nd ‘ ( ( 𝐻 ‘ 1 ) ‘ 𝑘 ) ) ) = ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 82 |
68 81
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 83 |
82
|
ixpeq2dva |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 84 |
55 7 83
|
3eqtr4d |
⊢ ( 𝜑 → 𝐼 = X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) |
| 85 |
|
fveq2 |
⊢ ( 𝑗 = 1 → ( 𝐻 ‘ 𝑗 ) = ( 𝐻 ‘ 1 ) ) |
| 86 |
85
|
coeq2d |
⊢ ( 𝑗 = 1 → ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) = ( [,) ∘ ( 𝐻 ‘ 1 ) ) ) |
| 87 |
86
|
fveq1d |
⊢ ( 𝑗 = 1 → ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) |
| 88 |
87
|
ixpeq2dv |
⊢ ( 𝑗 = 1 → X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) = X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) |
| 89 |
88
|
ssiun2s |
⊢ ( 1 ∈ ℕ → X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 90 |
59 89
|
ax-mp |
⊢ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) |
| 91 |
84 90
|
eqsstrdi |
⊢ ( 𝜑 → 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 92 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 93 |
82
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 94 |
93
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) ) |
| 95 |
94
|
prodeq2dv |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) ) |
| 96 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) ) |
| 97 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 98 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
| 99 |
8 1 65
|
hoiprodcl |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) ∈ ( 0 [,) +∞ ) ) |
| 100 |
98 99
|
sselid |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) ∈ ( 0 [,] +∞ ) ) |
| 101 |
87
|
fveq2d |
⊢ ( 𝑗 = 1 → ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) ) |
| 102 |
101
|
prodeq2ad |
⊢ ( 𝑗 = 1 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) ) |
| 103 |
97 100 102
|
sge0snmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ { 1 } ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) ) |
| 104 |
103
|
eqcomd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) = ( Σ^ ‘ ( 𝑗 ∈ { 1 } ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
| 105 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 1 ) ) ‘ 𝑘 ) ) = ( Σ^ ‘ ( 𝑗 ∈ { 1 } ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
| 106 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ ¬ 𝑋 = ∅ ) |
| 107 |
51
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ℕ ∈ V ) |
| 108 |
|
snssi |
⊢ ( 1 ∈ ℕ → { 1 } ⊆ ℕ ) |
| 109 |
59 108
|
ax-mp |
⊢ { 1 } ⊆ ℕ |
| 110 |
109
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → { 1 } ⊆ ℕ ) |
| 111 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ { 1 } ) |
| 112 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ { 1 } ) → 𝑋 ∈ Fin ) |
| 113 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 1 } ) → 𝜑 ) |
| 114 |
|
elsni |
⊢ ( 𝑗 ∈ { 1 } → 𝑗 = 1 ) |
| 115 |
114
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 1 } ) → 𝑗 = 1 ) |
| 116 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 = 1 ) → ( 𝐻 ‘ 1 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
| 117 |
85
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 = 1 ) → ( 𝐻 ‘ 𝑗 ) = ( 𝐻 ‘ 1 ) ) |
| 118 |
117
|
feq1d |
⊢ ( ( 𝜑 ∧ 𝑗 = 1 ) → ( ( 𝐻 ‘ 𝑗 ) : 𝑋 ⟶ ( ℝ × ℝ ) ↔ ( 𝐻 ‘ 1 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) ) |
| 119 |
116 118
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 = 1 ) → ( 𝐻 ‘ 𝑗 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
| 120 |
113 115 119
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 1 } ) → ( 𝐻 ‘ 𝑗 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
| 121 |
120
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ { 1 } ) → ( 𝐻 ‘ 𝑗 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
| 122 |
111 112 121
|
hoiprodcl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ { 1 } ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ∈ ( 0 [,) +∞ ) ) |
| 123 |
98 122
|
sselid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ { 1 } ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ∈ ( 0 [,] +∞ ) ) |
| 124 |
39
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ 〈 0 , 0 〉 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
| 125 |
124
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → ( 𝑘 ∈ 𝑋 ↦ 〈 0 , 0 〉 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
| 126 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → 𝜑 ) |
| 127 |
|
eldifi |
⊢ ( 𝑗 ∈ ( ℕ ∖ { 1 } ) → 𝑗 ∈ ℕ ) |
| 128 |
127
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → 𝑗 ∈ ℕ ) |
| 129 |
6
|
a1i |
⊢ ( 𝜑 → 𝐻 = ( 𝑗 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ) ) |
| 130 |
48
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ∈ V ) |
| 131 |
129 130
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐻 ‘ 𝑗 ) = ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ) |
| 132 |
126 128 131
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → ( 𝐻 ‘ 𝑗 ) = ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ) |
| 133 |
|
eldifsni |
⊢ ( 𝑗 ∈ ( ℕ ∖ { 1 } ) → 𝑗 ≠ 1 ) |
| 134 |
133
|
neneqd |
⊢ ( 𝑗 ∈ ( ℕ ∖ { 1 } ) → ¬ 𝑗 = 1 ) |
| 135 |
134
|
iffalsed |
⊢ ( 𝑗 ∈ ( ℕ ∖ { 1 } ) → if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) = 〈 0 , 0 〉 ) |
| 136 |
135
|
mpteq2dv |
⊢ ( 𝑗 ∈ ( ℕ ∖ { 1 } ) → ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) = ( 𝑘 ∈ 𝑋 ↦ 〈 0 , 0 〉 ) ) |
| 137 |
136
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) = ( 𝑘 ∈ 𝑋 ↦ 〈 0 , 0 〉 ) ) |
| 138 |
132 137
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → ( 𝐻 ‘ 𝑗 ) = ( 𝑘 ∈ 𝑋 ↦ 〈 0 , 0 〉 ) ) |
| 139 |
138
|
feq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → ( ( 𝐻 ‘ 𝑗 ) : 𝑋 ⟶ ( ℝ × ℝ ) ↔ ( 𝑘 ∈ 𝑋 ↦ 〈 0 , 0 〉 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) ) |
| 140 |
125 139
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → ( 𝐻 ‘ 𝑗 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
| 141 |
140
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐻 ‘ 𝑗 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
| 142 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
| 143 |
141 142
|
fvovco |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( 1st ‘ ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑘 ) ) [,) ( 2nd ‘ ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑘 ) ) ) ) |
| 144 |
38
|
elexi |
⊢ 〈 0 , 0 〉 ∈ V |
| 145 |
144
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → 〈 0 , 0 〉 ∈ V ) |
| 146 |
138 145
|
fvmpt2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑘 ) = 〈 0 , 0 〉 ) |
| 147 |
146
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 1st ‘ ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑘 ) ) = ( 1st ‘ 〈 0 , 0 〉 ) ) |
| 148 |
17
|
elexi |
⊢ 0 ∈ V |
| 149 |
148 148
|
op1st |
⊢ ( 1st ‘ 〈 0 , 0 〉 ) = 0 |
| 150 |
149
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 1st ‘ 〈 0 , 0 〉 ) = 0 ) |
| 151 |
147 150
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 1st ‘ ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑘 ) ) = 0 ) |
| 152 |
146
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 2nd ‘ ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑘 ) ) = ( 2nd ‘ 〈 0 , 0 〉 ) ) |
| 153 |
148 148
|
op2nd |
⊢ ( 2nd ‘ 〈 0 , 0 〉 ) = 0 |
| 154 |
153
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 2nd ‘ 〈 0 , 0 〉 ) = 0 ) |
| 155 |
152 154
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 2nd ‘ ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑘 ) ) = 0 ) |
| 156 |
151 155
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 1st ‘ ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑘 ) ) [,) ( 2nd ‘ ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑘 ) ) ) = ( 0 [,) 0 ) ) |
| 157 |
|
0le0 |
⊢ 0 ≤ 0 |
| 158 |
|
ico0 |
⊢ ( ( 0 ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( 0 [,) 0 ) = ∅ ↔ 0 ≤ 0 ) ) |
| 159 |
17 17 158
|
mp2an |
⊢ ( ( 0 [,) 0 ) = ∅ ↔ 0 ≤ 0 ) |
| 160 |
157 159
|
mpbir |
⊢ ( 0 [,) 0 ) = ∅ |
| 161 |
160
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 0 [,) 0 ) = ∅ ) |
| 162 |
143 156 161
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) = ∅ ) |
| 163 |
162
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ∅ ) ) |
| 164 |
|
vol0 |
⊢ ( vol ‘ ∅ ) = 0 |
| 165 |
164
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ∅ ) = 0 ) |
| 166 |
163 165
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = 0 ) |
| 167 |
166
|
prodeq2dv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑋 0 ) |
| 168 |
167
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑋 0 ) |
| 169 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
| 170 |
|
fprodconst |
⊢ ( ( 𝑋 ∈ Fin ∧ 0 ∈ ℂ ) → ∏ 𝑘 ∈ 𝑋 0 = ( 0 ↑ ( ♯ ‘ 𝑋 ) ) ) |
| 171 |
1 169 170
|
syl2anc |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 0 = ( 0 ↑ ( ♯ ‘ 𝑋 ) ) ) |
| 172 |
171
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → ∏ 𝑘 ∈ 𝑋 0 = ( 0 ↑ ( ♯ ‘ 𝑋 ) ) ) |
| 173 |
|
neqne |
⊢ ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ ) |
| 174 |
173
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ≠ ∅ ) |
| 175 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ∈ Fin ) |
| 176 |
|
hashnncl |
⊢ ( 𝑋 ∈ Fin → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
| 177 |
175 176
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
| 178 |
174 177
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
| 179 |
|
0exp |
⊢ ( ( ♯ ‘ 𝑋 ) ∈ ℕ → ( 0 ↑ ( ♯ ‘ 𝑋 ) ) = 0 ) |
| 180 |
178 179
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( 0 ↑ ( ♯ ‘ 𝑋 ) ) = 0 ) |
| 181 |
180
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → ( 0 ↑ ( ♯ ‘ 𝑋 ) ) = 0 ) |
| 182 |
168 172 181
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ ( ℕ ∖ { 1 } ) ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = 0 ) |
| 183 |
106 107 110 123 182
|
sge0ss |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( Σ^ ‘ ( 𝑗 ∈ { 1 } ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
| 184 |
96 105 183
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
| 185 |
92 184
|
jca |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 186 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑖 |
| 187 |
|
nfcv |
⊢ Ⅎ 𝑘 ℕ |
| 188 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) |
| 189 |
187 188
|
nfmpt |
⊢ Ⅎ 𝑘 ( 𝑗 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ if ( 𝑗 = 1 , 〈 ( 𝐴 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑘 ) 〉 , 〈 0 , 0 〉 ) ) ) |
| 190 |
6 189
|
nfcxfr |
⊢ Ⅎ 𝑘 𝐻 |
| 191 |
186 190
|
nfeq |
⊢ Ⅎ 𝑘 𝑖 = 𝐻 |
| 192 |
|
fveq1 |
⊢ ( 𝑖 = 𝐻 → ( 𝑖 ‘ 𝑗 ) = ( 𝐻 ‘ 𝑗 ) ) |
| 193 |
192
|
coeq2d |
⊢ ( 𝑖 = 𝐻 → ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) = ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ) |
| 194 |
193
|
fveq1d |
⊢ ( 𝑖 = 𝐻 → ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 195 |
194
|
adantr |
⊢ ( ( 𝑖 = 𝐻 ∧ 𝑘 ∈ 𝑋 ) → ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 196 |
191 195
|
ixpeq2d |
⊢ ( 𝑖 = 𝐻 → X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) = X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 197 |
196
|
iuneq2d |
⊢ ( 𝑖 = 𝐻 → ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
| 198 |
197
|
sseq2d |
⊢ ( 𝑖 = 𝐻 → ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ↔ 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 199 |
194
|
fveq2d |
⊢ ( 𝑖 = 𝐻 → ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 200 |
199
|
a1d |
⊢ ( 𝑖 = 𝐻 → ( 𝑘 ∈ 𝑋 → ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
| 201 |
191 200
|
ralrimi |
⊢ ( 𝑖 = 𝐻 → ∀ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 202 |
201
|
prodeq2d |
⊢ ( 𝑖 = 𝐻 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 203 |
202
|
mpteq2dv |
⊢ ( 𝑖 = 𝐻 → ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) = ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
| 204 |
203
|
fveq2d |
⊢ ( 𝑖 = 𝐻 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
| 205 |
204
|
eqeq2d |
⊢ ( 𝑖 = 𝐻 → ( ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ↔ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 206 |
198 205
|
anbi12d |
⊢ ( 𝑖 = 𝐻 → ( ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ↔ ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
| 207 |
206
|
rspcev |
⊢ ( ( 𝐻 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) → ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 208 |
54 185 207
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 209 |
33 208
|
jca |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ* ∧ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
| 210 |
|
eqeq1 |
⊢ ( 𝑧 = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) → ( 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ↔ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 211 |
210
|
anbi2d |
⊢ ( 𝑧 = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) → ( ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ↔ ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
| 212 |
211
|
rexbidv |
⊢ ( 𝑧 = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) → ( ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ↔ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
| 213 |
212
|
elrab |
⊢ ( ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ↔ ( ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ* ∧ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
| 214 |
209 213
|
sylibr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ) |
| 215 |
5
|
eqcomi |
⊢ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } = 𝑀 |
| 216 |
215
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐼 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } = 𝑀 ) |
| 217 |
214 216
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ 𝑀 ) |
| 218 |
|
infxrlb |
⊢ ( ( 𝑀 ⊆ ℝ* ∧ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ 𝑀 ) → inf ( 𝑀 , ℝ* , < ) ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 219 |
30 217 218
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → inf ( 𝑀 , ℝ* , < ) ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 220 |
27 219
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → if ( 𝑋 = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 221 |
25 220
|
pm2.61dan |
⊢ ( 𝜑 → if ( 𝑋 = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 222 |
14 221
|
eqbrtrd |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |