| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovnhoilem1.x |
|- ( ph -> X e. Fin ) |
| 2 |
|
ovnhoilem1.a |
|- ( ph -> A : X --> RR ) |
| 3 |
|
ovnhoilem1.b |
|- ( ph -> B : X --> RR ) |
| 4 |
|
ovnhoilem1.c |
|- I = X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) |
| 5 |
|
ovnhoilem1.m |
|- M = { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } |
| 6 |
|
ovnhoilem1.h |
|- H = ( j e. NN |-> ( k e. X |-> if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) ) ) |
| 7 |
4
|
a1i |
|- ( ph -> I = X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) |
| 8 |
|
nfv |
|- F/ k ph |
| 9 |
2
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) |
| 10 |
3
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) |
| 11 |
10
|
rexrd |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR* ) |
| 12 |
8 9 11
|
hoissrrn2 |
|- ( ph -> X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) C_ ( RR ^m X ) ) |
| 13 |
7 12
|
eqsstrd |
|- ( ph -> I C_ ( RR ^m X ) ) |
| 14 |
1 13 5
|
ovnval2 |
|- ( ph -> ( ( voln* ` X ) ` I ) = if ( X = (/) , 0 , inf ( M , RR* , < ) ) ) |
| 15 |
|
iftrue |
|- ( X = (/) -> if ( X = (/) , 0 , inf ( M , RR* , < ) ) = 0 ) |
| 16 |
15
|
adantl |
|- ( ( ph /\ X = (/) ) -> if ( X = (/) , 0 , inf ( M , RR* , < ) ) = 0 ) |
| 17 |
|
0xr |
|- 0 e. RR* |
| 18 |
17
|
a1i |
|- ( ph -> 0 e. RR* ) |
| 19 |
|
pnfxr |
|- +oo e. RR* |
| 20 |
19
|
a1i |
|- ( ph -> +oo e. RR* ) |
| 21 |
8 1 9 10
|
hoiprodcl3 |
|- ( ph -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. ( 0 [,) +oo ) ) |
| 22 |
|
icogelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. ( 0 [,) +oo ) ) -> 0 <_ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
| 23 |
18 20 21 22
|
syl3anc |
|- ( ph -> 0 <_ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ X = (/) ) -> 0 <_ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
| 25 |
16 24
|
eqbrtrd |
|- ( ( ph /\ X = (/) ) -> if ( X = (/) , 0 , inf ( M , RR* , < ) ) <_ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
| 26 |
|
iffalse |
|- ( -. X = (/) -> if ( X = (/) , 0 , inf ( M , RR* , < ) ) = inf ( M , RR* , < ) ) |
| 27 |
26
|
adantl |
|- ( ( ph /\ -. X = (/) ) -> if ( X = (/) , 0 , inf ( M , RR* , < ) ) = inf ( M , RR* , < ) ) |
| 28 |
|
ssrab2 |
|- { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } C_ RR* |
| 29 |
5 28
|
eqsstri |
|- M C_ RR* |
| 30 |
29
|
a1i |
|- ( ( ph /\ -. X = (/) ) -> M C_ RR* ) |
| 31 |
|
icossxr |
|- ( 0 [,) +oo ) C_ RR* |
| 32 |
31 21
|
sselid |
|- ( ph -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR* ) |
| 33 |
32
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR* ) |
| 34 |
|
opelxpi |
|- ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) -> <. ( A ` k ) , ( B ` k ) >. e. ( RR X. RR ) ) |
| 35 |
9 10 34
|
syl2anc |
|- ( ( ph /\ k e. X ) -> <. ( A ` k ) , ( B ` k ) >. e. ( RR X. RR ) ) |
| 36 |
|
0re |
|- 0 e. RR |
| 37 |
|
opelxpi |
|- ( ( 0 e. RR /\ 0 e. RR ) -> <. 0 , 0 >. e. ( RR X. RR ) ) |
| 38 |
36 36 37
|
mp2an |
|- <. 0 , 0 >. e. ( RR X. RR ) |
| 39 |
38
|
a1i |
|- ( ( ph /\ k e. X ) -> <. 0 , 0 >. e. ( RR X. RR ) ) |
| 40 |
35 39
|
ifcld |
|- ( ( ph /\ k e. X ) -> if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) e. ( RR X. RR ) ) |
| 41 |
40
|
fmpttd |
|- ( ph -> ( k e. X |-> if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) ) : X --> ( RR X. RR ) ) |
| 42 |
|
reex |
|- RR e. _V |
| 43 |
42 42
|
xpex |
|- ( RR X. RR ) e. _V |
| 44 |
1 43
|
jctil |
|- ( ph -> ( ( RR X. RR ) e. _V /\ X e. Fin ) ) |
| 45 |
|
elmapg |
|- ( ( ( RR X. RR ) e. _V /\ X e. Fin ) -> ( ( k e. X |-> if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) ) e. ( ( RR X. RR ) ^m X ) <-> ( k e. X |-> if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) ) : X --> ( RR X. RR ) ) ) |
| 46 |
44 45
|
syl |
|- ( ph -> ( ( k e. X |-> if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) ) e. ( ( RR X. RR ) ^m X ) <-> ( k e. X |-> if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) ) : X --> ( RR X. RR ) ) ) |
| 47 |
41 46
|
mpbird |
|- ( ph -> ( k e. X |-> if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) ) e. ( ( RR X. RR ) ^m X ) ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ j e. NN ) -> ( k e. X |-> if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) ) e. ( ( RR X. RR ) ^m X ) ) |
| 49 |
48 6
|
fmptd |
|- ( ph -> H : NN --> ( ( RR X. RR ) ^m X ) ) |
| 50 |
|
ovex |
|- ( ( RR X. RR ) ^m X ) e. _V |
| 51 |
|
nnex |
|- NN e. _V |
| 52 |
50 51
|
elmap |
|- ( H e. ( ( ( RR X. RR ) ^m X ) ^m NN ) <-> H : NN --> ( ( RR X. RR ) ^m X ) ) |
| 53 |
49 52
|
sylibr |
|- ( ph -> H e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) |
| 54 |
53
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> H e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) |
| 55 |
|
eqidd |
|- ( ph -> X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) = X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) |
| 56 |
35
|
fmpttd |
|- ( ph -> ( k e. X |-> <. ( A ` k ) , ( B ` k ) >. ) : X --> ( RR X. RR ) ) |
| 57 |
|
iftrue |
|- ( j = 1 -> if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) = <. ( A ` k ) , ( B ` k ) >. ) |
| 58 |
57
|
mpteq2dv |
|- ( j = 1 -> ( k e. X |-> if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) ) = ( k e. X |-> <. ( A ` k ) , ( B ` k ) >. ) ) |
| 59 |
|
1nn |
|- 1 e. NN |
| 60 |
59
|
a1i |
|- ( ph -> 1 e. NN ) |
| 61 |
|
mptexg |
|- ( X e. Fin -> ( k e. X |-> <. ( A ` k ) , ( B ` k ) >. ) e. _V ) |
| 62 |
1 61
|
syl |
|- ( ph -> ( k e. X |-> <. ( A ` k ) , ( B ` k ) >. ) e. _V ) |
| 63 |
6 58 60 62
|
fvmptd3 |
|- ( ph -> ( H ` 1 ) = ( k e. X |-> <. ( A ` k ) , ( B ` k ) >. ) ) |
| 64 |
63
|
feq1d |
|- ( ph -> ( ( H ` 1 ) : X --> ( RR X. RR ) <-> ( k e. X |-> <. ( A ` k ) , ( B ` k ) >. ) : X --> ( RR X. RR ) ) ) |
| 65 |
56 64
|
mpbird |
|- ( ph -> ( H ` 1 ) : X --> ( RR X. RR ) ) |
| 66 |
65
|
adantr |
|- ( ( ph /\ k e. X ) -> ( H ` 1 ) : X --> ( RR X. RR ) ) |
| 67 |
|
simpr |
|- ( ( ph /\ k e. X ) -> k e. X ) |
| 68 |
66 67
|
fvovco |
|- ( ( ph /\ k e. X ) -> ( ( [,) o. ( H ` 1 ) ) ` k ) = ( ( 1st ` ( ( H ` 1 ) ` k ) ) [,) ( 2nd ` ( ( H ` 1 ) ` k ) ) ) ) |
| 69 |
35
|
elexd |
|- ( ( ph /\ k e. X ) -> <. ( A ` k ) , ( B ` k ) >. e. _V ) |
| 70 |
63 69
|
fvmpt2d |
|- ( ( ph /\ k e. X ) -> ( ( H ` 1 ) ` k ) = <. ( A ` k ) , ( B ` k ) >. ) |
| 71 |
70
|
fveq2d |
|- ( ( ph /\ k e. X ) -> ( 1st ` ( ( H ` 1 ) ` k ) ) = ( 1st ` <. ( A ` k ) , ( B ` k ) >. ) ) |
| 72 |
|
fvex |
|- ( A ` k ) e. _V |
| 73 |
|
fvex |
|- ( B ` k ) e. _V |
| 74 |
72 73
|
op1st |
|- ( 1st ` <. ( A ` k ) , ( B ` k ) >. ) = ( A ` k ) |
| 75 |
74
|
a1i |
|- ( ( ph /\ k e. X ) -> ( 1st ` <. ( A ` k ) , ( B ` k ) >. ) = ( A ` k ) ) |
| 76 |
71 75
|
eqtrd |
|- ( ( ph /\ k e. X ) -> ( 1st ` ( ( H ` 1 ) ` k ) ) = ( A ` k ) ) |
| 77 |
70
|
fveq2d |
|- ( ( ph /\ k e. X ) -> ( 2nd ` ( ( H ` 1 ) ` k ) ) = ( 2nd ` <. ( A ` k ) , ( B ` k ) >. ) ) |
| 78 |
72 73
|
op2nd |
|- ( 2nd ` <. ( A ` k ) , ( B ` k ) >. ) = ( B ` k ) |
| 79 |
78
|
a1i |
|- ( ( ph /\ k e. X ) -> ( 2nd ` <. ( A ` k ) , ( B ` k ) >. ) = ( B ` k ) ) |
| 80 |
77 79
|
eqtrd |
|- ( ( ph /\ k e. X ) -> ( 2nd ` ( ( H ` 1 ) ` k ) ) = ( B ` k ) ) |
| 81 |
76 80
|
oveq12d |
|- ( ( ph /\ k e. X ) -> ( ( 1st ` ( ( H ` 1 ) ` k ) ) [,) ( 2nd ` ( ( H ` 1 ) ` k ) ) ) = ( ( A ` k ) [,) ( B ` k ) ) ) |
| 82 |
68 81
|
eqtrd |
|- ( ( ph /\ k e. X ) -> ( ( [,) o. ( H ` 1 ) ) ` k ) = ( ( A ` k ) [,) ( B ` k ) ) ) |
| 83 |
82
|
ixpeq2dva |
|- ( ph -> X_ k e. X ( ( [,) o. ( H ` 1 ) ) ` k ) = X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) |
| 84 |
55 7 83
|
3eqtr4d |
|- ( ph -> I = X_ k e. X ( ( [,) o. ( H ` 1 ) ) ` k ) ) |
| 85 |
|
fveq2 |
|- ( j = 1 -> ( H ` j ) = ( H ` 1 ) ) |
| 86 |
85
|
coeq2d |
|- ( j = 1 -> ( [,) o. ( H ` j ) ) = ( [,) o. ( H ` 1 ) ) ) |
| 87 |
86
|
fveq1d |
|- ( j = 1 -> ( ( [,) o. ( H ` j ) ) ` k ) = ( ( [,) o. ( H ` 1 ) ) ` k ) ) |
| 88 |
87
|
ixpeq2dv |
|- ( j = 1 -> X_ k e. X ( ( [,) o. ( H ` j ) ) ` k ) = X_ k e. X ( ( [,) o. ( H ` 1 ) ) ` k ) ) |
| 89 |
88
|
ssiun2s |
|- ( 1 e. NN -> X_ k e. X ( ( [,) o. ( H ` 1 ) ) ` k ) C_ U_ j e. NN X_ k e. X ( ( [,) o. ( H ` j ) ) ` k ) ) |
| 90 |
59 89
|
ax-mp |
|- X_ k e. X ( ( [,) o. ( H ` 1 ) ) ` k ) C_ U_ j e. NN X_ k e. X ( ( [,) o. ( H ` j ) ) ` k ) |
| 91 |
84 90
|
eqsstrdi |
|- ( ph -> I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( H ` j ) ) ` k ) ) |
| 92 |
91
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( H ` j ) ) ` k ) ) |
| 93 |
82
|
fveq2d |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( [,) o. ( H ` 1 ) ) ` k ) ) = ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
| 94 |
93
|
eqcomd |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( vol ` ( ( [,) o. ( H ` 1 ) ) ` k ) ) ) |
| 95 |
94
|
prodeq2dv |
|- ( ph -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = prod_ k e. X ( vol ` ( ( [,) o. ( H ` 1 ) ) ` k ) ) ) |
| 96 |
95
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = prod_ k e. X ( vol ` ( ( [,) o. ( H ` 1 ) ) ` k ) ) ) |
| 97 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 98 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
| 99 |
8 1 65
|
hoiprodcl |
|- ( ph -> prod_ k e. X ( vol ` ( ( [,) o. ( H ` 1 ) ) ` k ) ) e. ( 0 [,) +oo ) ) |
| 100 |
98 99
|
sselid |
|- ( ph -> prod_ k e. X ( vol ` ( ( [,) o. ( H ` 1 ) ) ` k ) ) e. ( 0 [,] +oo ) ) |
| 101 |
87
|
fveq2d |
|- ( j = 1 -> ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( H ` 1 ) ) ` k ) ) ) |
| 102 |
101
|
prodeq2ad |
|- ( j = 1 -> prod_ k e. X ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) = prod_ k e. X ( vol ` ( ( [,) o. ( H ` 1 ) ) ` k ) ) ) |
| 103 |
97 100 102
|
sge0snmpt |
|- ( ph -> ( sum^ ` ( j e. { 1 } |-> prod_ k e. X ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) ) ) = prod_ k e. X ( vol ` ( ( [,) o. ( H ` 1 ) ) ` k ) ) ) |
| 104 |
103
|
eqcomd |
|- ( ph -> prod_ k e. X ( vol ` ( ( [,) o. ( H ` 1 ) ) ` k ) ) = ( sum^ ` ( j e. { 1 } |-> prod_ k e. X ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) ) ) ) |
| 105 |
104
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> prod_ k e. X ( vol ` ( ( [,) o. ( H ` 1 ) ) ` k ) ) = ( sum^ ` ( j e. { 1 } |-> prod_ k e. X ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) ) ) ) |
| 106 |
|
nfv |
|- F/ j ( ph /\ -. X = (/) ) |
| 107 |
51
|
a1i |
|- ( ( ph /\ -. X = (/) ) -> NN e. _V ) |
| 108 |
|
snssi |
|- ( 1 e. NN -> { 1 } C_ NN ) |
| 109 |
59 108
|
ax-mp |
|- { 1 } C_ NN |
| 110 |
109
|
a1i |
|- ( ( ph /\ -. X = (/) ) -> { 1 } C_ NN ) |
| 111 |
|
nfv |
|- F/ k ( ( ph /\ -. X = (/) ) /\ j e. { 1 } ) |
| 112 |
1
|
ad2antrr |
|- ( ( ( ph /\ -. X = (/) ) /\ j e. { 1 } ) -> X e. Fin ) |
| 113 |
|
simpl |
|- ( ( ph /\ j e. { 1 } ) -> ph ) |
| 114 |
|
elsni |
|- ( j e. { 1 } -> j = 1 ) |
| 115 |
114
|
adantl |
|- ( ( ph /\ j e. { 1 } ) -> j = 1 ) |
| 116 |
65
|
adantr |
|- ( ( ph /\ j = 1 ) -> ( H ` 1 ) : X --> ( RR X. RR ) ) |
| 117 |
85
|
adantl |
|- ( ( ph /\ j = 1 ) -> ( H ` j ) = ( H ` 1 ) ) |
| 118 |
117
|
feq1d |
|- ( ( ph /\ j = 1 ) -> ( ( H ` j ) : X --> ( RR X. RR ) <-> ( H ` 1 ) : X --> ( RR X. RR ) ) ) |
| 119 |
116 118
|
mpbird |
|- ( ( ph /\ j = 1 ) -> ( H ` j ) : X --> ( RR X. RR ) ) |
| 120 |
113 115 119
|
syl2anc |
|- ( ( ph /\ j e. { 1 } ) -> ( H ` j ) : X --> ( RR X. RR ) ) |
| 121 |
120
|
adantlr |
|- ( ( ( ph /\ -. X = (/) ) /\ j e. { 1 } ) -> ( H ` j ) : X --> ( RR X. RR ) ) |
| 122 |
111 112 121
|
hoiprodcl |
|- ( ( ( ph /\ -. X = (/) ) /\ j e. { 1 } ) -> prod_ k e. X ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) e. ( 0 [,) +oo ) ) |
| 123 |
98 122
|
sselid |
|- ( ( ( ph /\ -. X = (/) ) /\ j e. { 1 } ) -> prod_ k e. X ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) e. ( 0 [,] +oo ) ) |
| 124 |
39
|
fmpttd |
|- ( ph -> ( k e. X |-> <. 0 , 0 >. ) : X --> ( RR X. RR ) ) |
| 125 |
124
|
adantr |
|- ( ( ph /\ j e. ( NN \ { 1 } ) ) -> ( k e. X |-> <. 0 , 0 >. ) : X --> ( RR X. RR ) ) |
| 126 |
|
simpl |
|- ( ( ph /\ j e. ( NN \ { 1 } ) ) -> ph ) |
| 127 |
|
eldifi |
|- ( j e. ( NN \ { 1 } ) -> j e. NN ) |
| 128 |
127
|
adantl |
|- ( ( ph /\ j e. ( NN \ { 1 } ) ) -> j e. NN ) |
| 129 |
6
|
a1i |
|- ( ph -> H = ( j e. NN |-> ( k e. X |-> if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) ) ) ) |
| 130 |
48
|
elexd |
|- ( ( ph /\ j e. NN ) -> ( k e. X |-> if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) ) e. _V ) |
| 131 |
129 130
|
fvmpt2d |
|- ( ( ph /\ j e. NN ) -> ( H ` j ) = ( k e. X |-> if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) ) ) |
| 132 |
126 128 131
|
syl2anc |
|- ( ( ph /\ j e. ( NN \ { 1 } ) ) -> ( H ` j ) = ( k e. X |-> if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) ) ) |
| 133 |
|
eldifsni |
|- ( j e. ( NN \ { 1 } ) -> j =/= 1 ) |
| 134 |
133
|
neneqd |
|- ( j e. ( NN \ { 1 } ) -> -. j = 1 ) |
| 135 |
134
|
iffalsed |
|- ( j e. ( NN \ { 1 } ) -> if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) = <. 0 , 0 >. ) |
| 136 |
135
|
mpteq2dv |
|- ( j e. ( NN \ { 1 } ) -> ( k e. X |-> if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) ) = ( k e. X |-> <. 0 , 0 >. ) ) |
| 137 |
136
|
adantl |
|- ( ( ph /\ j e. ( NN \ { 1 } ) ) -> ( k e. X |-> if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) ) = ( k e. X |-> <. 0 , 0 >. ) ) |
| 138 |
132 137
|
eqtrd |
|- ( ( ph /\ j e. ( NN \ { 1 } ) ) -> ( H ` j ) = ( k e. X |-> <. 0 , 0 >. ) ) |
| 139 |
138
|
feq1d |
|- ( ( ph /\ j e. ( NN \ { 1 } ) ) -> ( ( H ` j ) : X --> ( RR X. RR ) <-> ( k e. X |-> <. 0 , 0 >. ) : X --> ( RR X. RR ) ) ) |
| 140 |
125 139
|
mpbird |
|- ( ( ph /\ j e. ( NN \ { 1 } ) ) -> ( H ` j ) : X --> ( RR X. RR ) ) |
| 141 |
140
|
adantr |
|- ( ( ( ph /\ j e. ( NN \ { 1 } ) ) /\ k e. X ) -> ( H ` j ) : X --> ( RR X. RR ) ) |
| 142 |
|
simpr |
|- ( ( ( ph /\ j e. ( NN \ { 1 } ) ) /\ k e. X ) -> k e. X ) |
| 143 |
141 142
|
fvovco |
|- ( ( ( ph /\ j e. ( NN \ { 1 } ) ) /\ k e. X ) -> ( ( [,) o. ( H ` j ) ) ` k ) = ( ( 1st ` ( ( H ` j ) ` k ) ) [,) ( 2nd ` ( ( H ` j ) ` k ) ) ) ) |
| 144 |
38
|
elexi |
|- <. 0 , 0 >. e. _V |
| 145 |
144
|
a1i |
|- ( ( ( ph /\ j e. ( NN \ { 1 } ) ) /\ k e. X ) -> <. 0 , 0 >. e. _V ) |
| 146 |
138 145
|
fvmpt2d |
|- ( ( ( ph /\ j e. ( NN \ { 1 } ) ) /\ k e. X ) -> ( ( H ` j ) ` k ) = <. 0 , 0 >. ) |
| 147 |
146
|
fveq2d |
|- ( ( ( ph /\ j e. ( NN \ { 1 } ) ) /\ k e. X ) -> ( 1st ` ( ( H ` j ) ` k ) ) = ( 1st ` <. 0 , 0 >. ) ) |
| 148 |
17
|
elexi |
|- 0 e. _V |
| 149 |
148 148
|
op1st |
|- ( 1st ` <. 0 , 0 >. ) = 0 |
| 150 |
149
|
a1i |
|- ( ( ( ph /\ j e. ( NN \ { 1 } ) ) /\ k e. X ) -> ( 1st ` <. 0 , 0 >. ) = 0 ) |
| 151 |
147 150
|
eqtrd |
|- ( ( ( ph /\ j e. ( NN \ { 1 } ) ) /\ k e. X ) -> ( 1st ` ( ( H ` j ) ` k ) ) = 0 ) |
| 152 |
146
|
fveq2d |
|- ( ( ( ph /\ j e. ( NN \ { 1 } ) ) /\ k e. X ) -> ( 2nd ` ( ( H ` j ) ` k ) ) = ( 2nd ` <. 0 , 0 >. ) ) |
| 153 |
148 148
|
op2nd |
|- ( 2nd ` <. 0 , 0 >. ) = 0 |
| 154 |
153
|
a1i |
|- ( ( ( ph /\ j e. ( NN \ { 1 } ) ) /\ k e. X ) -> ( 2nd ` <. 0 , 0 >. ) = 0 ) |
| 155 |
152 154
|
eqtrd |
|- ( ( ( ph /\ j e. ( NN \ { 1 } ) ) /\ k e. X ) -> ( 2nd ` ( ( H ` j ) ` k ) ) = 0 ) |
| 156 |
151 155
|
oveq12d |
|- ( ( ( ph /\ j e. ( NN \ { 1 } ) ) /\ k e. X ) -> ( ( 1st ` ( ( H ` j ) ` k ) ) [,) ( 2nd ` ( ( H ` j ) ` k ) ) ) = ( 0 [,) 0 ) ) |
| 157 |
|
0le0 |
|- 0 <_ 0 |
| 158 |
|
ico0 |
|- ( ( 0 e. RR* /\ 0 e. RR* ) -> ( ( 0 [,) 0 ) = (/) <-> 0 <_ 0 ) ) |
| 159 |
17 17 158
|
mp2an |
|- ( ( 0 [,) 0 ) = (/) <-> 0 <_ 0 ) |
| 160 |
157 159
|
mpbir |
|- ( 0 [,) 0 ) = (/) |
| 161 |
160
|
a1i |
|- ( ( ( ph /\ j e. ( NN \ { 1 } ) ) /\ k e. X ) -> ( 0 [,) 0 ) = (/) ) |
| 162 |
143 156 161
|
3eqtrd |
|- ( ( ( ph /\ j e. ( NN \ { 1 } ) ) /\ k e. X ) -> ( ( [,) o. ( H ` j ) ) ` k ) = (/) ) |
| 163 |
162
|
fveq2d |
|- ( ( ( ph /\ j e. ( NN \ { 1 } ) ) /\ k e. X ) -> ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) = ( vol ` (/) ) ) |
| 164 |
|
vol0 |
|- ( vol ` (/) ) = 0 |
| 165 |
164
|
a1i |
|- ( ( ( ph /\ j e. ( NN \ { 1 } ) ) /\ k e. X ) -> ( vol ` (/) ) = 0 ) |
| 166 |
163 165
|
eqtrd |
|- ( ( ( ph /\ j e. ( NN \ { 1 } ) ) /\ k e. X ) -> ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) = 0 ) |
| 167 |
166
|
prodeq2dv |
|- ( ( ph /\ j e. ( NN \ { 1 } ) ) -> prod_ k e. X ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) = prod_ k e. X 0 ) |
| 168 |
167
|
adantlr |
|- ( ( ( ph /\ -. X = (/) ) /\ j e. ( NN \ { 1 } ) ) -> prod_ k e. X ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) = prod_ k e. X 0 ) |
| 169 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
| 170 |
|
fprodconst |
|- ( ( X e. Fin /\ 0 e. CC ) -> prod_ k e. X 0 = ( 0 ^ ( # ` X ) ) ) |
| 171 |
1 169 170
|
syl2anc |
|- ( ph -> prod_ k e. X 0 = ( 0 ^ ( # ` X ) ) ) |
| 172 |
171
|
ad2antrr |
|- ( ( ( ph /\ -. X = (/) ) /\ j e. ( NN \ { 1 } ) ) -> prod_ k e. X 0 = ( 0 ^ ( # ` X ) ) ) |
| 173 |
|
neqne |
|- ( -. X = (/) -> X =/= (/) ) |
| 174 |
173
|
adantl |
|- ( ( ph /\ -. X = (/) ) -> X =/= (/) ) |
| 175 |
1
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> X e. Fin ) |
| 176 |
|
hashnncl |
|- ( X e. Fin -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
| 177 |
175 176
|
syl |
|- ( ( ph /\ -. X = (/) ) -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
| 178 |
174 177
|
mpbird |
|- ( ( ph /\ -. X = (/) ) -> ( # ` X ) e. NN ) |
| 179 |
|
0exp |
|- ( ( # ` X ) e. NN -> ( 0 ^ ( # ` X ) ) = 0 ) |
| 180 |
178 179
|
syl |
|- ( ( ph /\ -. X = (/) ) -> ( 0 ^ ( # ` X ) ) = 0 ) |
| 181 |
180
|
adantr |
|- ( ( ( ph /\ -. X = (/) ) /\ j e. ( NN \ { 1 } ) ) -> ( 0 ^ ( # ` X ) ) = 0 ) |
| 182 |
168 172 181
|
3eqtrd |
|- ( ( ( ph /\ -. X = (/) ) /\ j e. ( NN \ { 1 } ) ) -> prod_ k e. X ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) = 0 ) |
| 183 |
106 107 110 123 182
|
sge0ss |
|- ( ( ph /\ -. X = (/) ) -> ( sum^ ` ( j e. { 1 } |-> prod_ k e. X ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) ) ) ) |
| 184 |
96 105 183
|
3eqtrd |
|- ( ( ph /\ -. X = (/) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) ) ) ) |
| 185 |
92 184
|
jca |
|- ( ( ph /\ -. X = (/) ) -> ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( H ` j ) ) ` k ) /\ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) ) ) ) ) |
| 186 |
|
nfcv |
|- F/_ k i |
| 187 |
|
nfcv |
|- F/_ k NN |
| 188 |
|
nfmpt1 |
|- F/_ k ( k e. X |-> if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) ) |
| 189 |
187 188
|
nfmpt |
|- F/_ k ( j e. NN |-> ( k e. X |-> if ( j = 1 , <. ( A ` k ) , ( B ` k ) >. , <. 0 , 0 >. ) ) ) |
| 190 |
6 189
|
nfcxfr |
|- F/_ k H |
| 191 |
186 190
|
nfeq |
|- F/ k i = H |
| 192 |
|
fveq1 |
|- ( i = H -> ( i ` j ) = ( H ` j ) ) |
| 193 |
192
|
coeq2d |
|- ( i = H -> ( [,) o. ( i ` j ) ) = ( [,) o. ( H ` j ) ) ) |
| 194 |
193
|
fveq1d |
|- ( i = H -> ( ( [,) o. ( i ` j ) ) ` k ) = ( ( [,) o. ( H ` j ) ) ` k ) ) |
| 195 |
194
|
adantr |
|- ( ( i = H /\ k e. X ) -> ( ( [,) o. ( i ` j ) ) ` k ) = ( ( [,) o. ( H ` j ) ) ` k ) ) |
| 196 |
191 195
|
ixpeq2d |
|- ( i = H -> X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) = X_ k e. X ( ( [,) o. ( H ` j ) ) ` k ) ) |
| 197 |
196
|
iuneq2d |
|- ( i = H -> U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) = U_ j e. NN X_ k e. X ( ( [,) o. ( H ` j ) ) ` k ) ) |
| 198 |
197
|
sseq2d |
|- ( i = H -> ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) <-> I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( H ` j ) ) ` k ) ) ) |
| 199 |
194
|
fveq2d |
|- ( i = H -> ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) ) |
| 200 |
199
|
a1d |
|- ( i = H -> ( k e. X -> ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) ) ) |
| 201 |
191 200
|
ralrimi |
|- ( i = H -> A. k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) ) |
| 202 |
201
|
prodeq2d |
|- ( i = H -> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) = prod_ k e. X ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) ) |
| 203 |
202
|
mpteq2dv |
|- ( i = H -> ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) = ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) ) ) |
| 204 |
203
|
fveq2d |
|- ( i = H -> ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) ) ) ) |
| 205 |
204
|
eqeq2d |
|- ( i = H -> ( prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) <-> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) ) ) ) ) |
| 206 |
198 205
|
anbi12d |
|- ( i = H -> ( ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) <-> ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( H ` j ) ) ` k ) /\ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) ) ) ) ) ) |
| 207 |
206
|
rspcev |
|- ( ( H e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( H ` j ) ) ` k ) /\ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( H ` j ) ) ` k ) ) ) ) ) ) -> E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) |
| 208 |
54 185 207
|
syl2anc |
|- ( ( ph /\ -. X = (/) ) -> E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) |
| 209 |
33 208
|
jca |
|- ( ( ph /\ -. X = (/) ) -> ( prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR* /\ E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) ) |
| 210 |
|
eqeq1 |
|- ( z = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) -> ( z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) <-> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) |
| 211 |
210
|
anbi2d |
|- ( z = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) -> ( ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) <-> ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) ) |
| 212 |
211
|
rexbidv |
|- ( z = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) -> ( E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) <-> E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) ) |
| 213 |
212
|
elrab |
|- ( prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } <-> ( prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR* /\ E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) ) |
| 214 |
209 213
|
sylibr |
|- ( ( ph /\ -. X = (/) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } ) |
| 215 |
5
|
eqcomi |
|- { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } = M |
| 216 |
215
|
a1i |
|- ( ( ph /\ -. X = (/) ) -> { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( I C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } = M ) |
| 217 |
214 216
|
eleqtrd |
|- ( ( ph /\ -. X = (/) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. M ) |
| 218 |
|
infxrlb |
|- ( ( M C_ RR* /\ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. M ) -> inf ( M , RR* , < ) <_ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
| 219 |
30 217 218
|
syl2anc |
|- ( ( ph /\ -. X = (/) ) -> inf ( M , RR* , < ) <_ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
| 220 |
27 219
|
eqbrtrd |
|- ( ( ph /\ -. X = (/) ) -> if ( X = (/) , 0 , inf ( M , RR* , < ) ) <_ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
| 221 |
25 220
|
pm2.61dan |
|- ( ph -> if ( X = (/) , 0 , inf ( M , RR* , < ) ) <_ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
| 222 |
14 221
|
eqbrtrd |
|- ( ph -> ( ( voln* ` X ) ` I ) <_ prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |