Metamath Proof Explorer


Theorem vonn0hoi

Description: The Lebesgue outer measure of a multidimensional half-open interval when the dimension of the space is nonzero. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonn0hoi.x φ X Fin
vonn0hoi.n φ X
vonn0hoi.a φ A : X
vonn0hoi.b φ B : X
vonn0hoi.i I = k X A k B k
Assertion vonn0hoi φ voln X I = k X vol A k B k

Proof

Step Hyp Ref Expression
1 vonn0hoi.x φ X Fin
2 vonn0hoi.n φ X
3 vonn0hoi.a φ A : X
4 vonn0hoi.b φ B : X
5 vonn0hoi.i I = k X A k B k
6 eqid x Fin a x , b x if x = 0 k x vol a k b k = x Fin a x , b x if x = 0 k x vol a k b k
7 1 3 4 5 6 vonhoi φ voln X I = A x Fin a x , b x if x = 0 k x vol a k b k X B
8 6 1 2 3 4 hoidmvn0val φ A x Fin a x , b x if x = 0 k x vol a k b k X B = k X vol A k B k
9 7 8 eqtrd φ voln X I = k X vol A k B k