Description: The Lebesgue measure (for the zero dimensional space of reals) of every measurable set is zero. (Contributed by Glauco Siliprandi, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | von0val.1 | ⊢ ( 𝜑 → 𝐴 ∈ dom ( voln ‘ ∅ ) ) | |
| Assertion | von0val | ⊢ ( 𝜑 → ( ( voln ‘ ∅ ) ‘ 𝐴 ) = 0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | von0val.1 | ⊢ ( 𝜑 → 𝐴 ∈ dom ( voln ‘ ∅ ) ) | |
| 2 | 0fi | ⊢ ∅ ∈ Fin | |
| 3 | 2 | a1i | ⊢ ( 𝜑 → ∅ ∈ Fin ) | 
| 4 | 3 1 | mblvon | ⊢ ( 𝜑 → ( ( voln ‘ ∅ ) ‘ 𝐴 ) = ( ( voln* ‘ ∅ ) ‘ 𝐴 ) ) | 
| 5 | 3 1 | vonmblss2 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℝ ↑m ∅ ) ) | 
| 6 | 5 | ovn0val | ⊢ ( 𝜑 → ( ( voln* ‘ ∅ ) ‘ 𝐴 ) = 0 ) | 
| 7 | 4 6 | eqtrd | ⊢ ( 𝜑 → ( ( voln ‘ ∅ ) ‘ 𝐴 ) = 0 ) |