Description: The Lebesgue measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | voncl.x | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
voncl.s | ⊢ 𝑆 = dom ( voln ‘ 𝑋 ) | ||
voncl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | ||
Assertion | voncl | ⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | voncl.x | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
2 | voncl.s | ⊢ 𝑆 = dom ( voln ‘ 𝑋 ) | |
3 | voncl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | |
4 | 1 | vonmea | ⊢ ( 𝜑 → ( voln ‘ 𝑋 ) ∈ Meas ) |
5 | 4 2 3 | meacl | ⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |