Metamath Proof Explorer


Theorem voncl

Description: The Lebesgue measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses voncl.x
|- ( ph -> X e. Fin )
voncl.s
|- S = dom ( voln ` X )
voncl.a
|- ( ph -> A e. S )
Assertion voncl
|- ( ph -> ( ( voln ` X ) ` A ) e. ( 0 [,] +oo ) )

Proof

Step Hyp Ref Expression
1 voncl.x
 |-  ( ph -> X e. Fin )
2 voncl.s
 |-  S = dom ( voln ` X )
3 voncl.a
 |-  ( ph -> A e. S )
4 1 vonmea
 |-  ( ph -> ( voln ` X ) e. Meas )
5 4 2 3 meacl
 |-  ( ph -> ( ( voln ` X ) ` A ) e. ( 0 [,] +oo ) )