Step |
Hyp |
Ref |
Expression |
1 |
|
vr1val.1 |
|- X = ( var1 ` R ) |
2 |
|
vr1cl2.2 |
|- S = ( PwSer1 ` R ) |
3 |
|
vr1cl2.3 |
|- B = ( Base ` S ) |
4 |
1
|
vr1val |
|- X = ( ( 1o mVar R ) ` (/) ) |
5 |
|
eqid |
|- ( 1o mPwSer R ) = ( 1o mPwSer R ) |
6 |
|
eqid |
|- ( 1o mVar R ) = ( 1o mVar R ) |
7 |
|
eqid |
|- ( Base ` ( 1o mPwSer R ) ) = ( Base ` ( 1o mPwSer R ) ) |
8 |
|
1on |
|- 1o e. On |
9 |
8
|
a1i |
|- ( R e. Ring -> 1o e. On ) |
10 |
|
id |
|- ( R e. Ring -> R e. Ring ) |
11 |
|
0lt1o |
|- (/) e. 1o |
12 |
11
|
a1i |
|- ( R e. Ring -> (/) e. 1o ) |
13 |
5 6 7 9 10 12
|
mvrcl2 |
|- ( R e. Ring -> ( ( 1o mVar R ) ` (/) ) e. ( Base ` ( 1o mPwSer R ) ) ) |
14 |
2
|
psr1val |
|- S = ( ( 1o ordPwSer R ) ` (/) ) |
15 |
|
0ss |
|- (/) C_ ( 1o X. 1o ) |
16 |
15
|
a1i |
|- ( R e. Ring -> (/) C_ ( 1o X. 1o ) ) |
17 |
5 14 16
|
opsrbas |
|- ( R e. Ring -> ( Base ` ( 1o mPwSer R ) ) = ( Base ` S ) ) |
18 |
17 3
|
eqtr4di |
|- ( R e. Ring -> ( Base ` ( 1o mPwSer R ) ) = B ) |
19 |
13 18
|
eleqtrd |
|- ( R e. Ring -> ( ( 1o mVar R ) ` (/) ) e. B ) |
20 |
4 19
|
eqeltrid |
|- ( R e. Ring -> X e. B ) |