| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vr1val.1 |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 2 |
|
vr1cl2.2 |
⊢ 𝑆 = ( PwSer1 ‘ 𝑅 ) |
| 3 |
|
vr1cl2.3 |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 4 |
1
|
vr1val |
⊢ 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ ) |
| 5 |
|
eqid |
⊢ ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 ) |
| 6 |
|
eqid |
⊢ ( 1o mVar 𝑅 ) = ( 1o mVar 𝑅 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ ( 1o mPwSer 𝑅 ) ) = ( Base ‘ ( 1o mPwSer 𝑅 ) ) |
| 8 |
|
1on |
⊢ 1o ∈ On |
| 9 |
8
|
a1i |
⊢ ( 𝑅 ∈ Ring → 1o ∈ On ) |
| 10 |
|
id |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Ring ) |
| 11 |
|
0lt1o |
⊢ ∅ ∈ 1o |
| 12 |
11
|
a1i |
⊢ ( 𝑅 ∈ Ring → ∅ ∈ 1o ) |
| 13 |
5 6 7 9 10 12
|
mvrcl2 |
⊢ ( 𝑅 ∈ Ring → ( ( 1o mVar 𝑅 ) ‘ ∅ ) ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
| 14 |
2
|
psr1val |
⊢ 𝑆 = ( ( 1o ordPwSer 𝑅 ) ‘ ∅ ) |
| 15 |
|
0ss |
⊢ ∅ ⊆ ( 1o × 1o ) |
| 16 |
15
|
a1i |
⊢ ( 𝑅 ∈ Ring → ∅ ⊆ ( 1o × 1o ) ) |
| 17 |
5 14 16
|
opsrbas |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( 1o mPwSer 𝑅 ) ) = ( Base ‘ 𝑆 ) ) |
| 18 |
17 3
|
eqtr4di |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( 1o mPwSer 𝑅 ) ) = 𝐵 ) |
| 19 |
13 18
|
eleqtrd |
⊢ ( 𝑅 ∈ Ring → ( ( 1o mVar 𝑅 ) ‘ ∅ ) ∈ 𝐵 ) |
| 20 |
4 19
|
eqeltrid |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |